CN108332388B - 基于实时负荷跟踪的暖通循环水***节能控制***及方法 - Google Patents

基于实时负荷跟踪的暖通循环水***节能控制***及方法 Download PDF

Info

Publication number
CN108332388B
CN108332388B CN201810155982.XA CN201810155982A CN108332388B CN 108332388 B CN108332388 B CN 108332388B CN 201810155982 A CN201810155982 A CN 201810155982A CN 108332388 B CN108332388 B CN 108332388B
Authority
CN
China
Prior art keywords
frequency
sampling
time
water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810155982.XA
Other languages
English (en)
Other versions
CN108332388A (zh
Inventor
刘一尘
林仁干
罗应金
刘岚菲
卢芳
曹佳杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHEJIANG DUNAN AUTOMATION CONTROL TECHNOLOGY CO LTD
Original Assignee
ZHEJIANG DUNAN AUTOMATION CONTROL TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHEJIANG DUNAN AUTOMATION CONTROL TECHNOLOGY CO LTD filed Critical ZHEJIANG DUNAN AUTOMATION CONTROL TECHNOLOGY CO LTD
Priority to CN201810155982.XA priority Critical patent/CN108332388B/zh
Publication of CN108332388A publication Critical patent/CN108332388A/zh
Application granted granted Critical
Publication of CN108332388B publication Critical patent/CN108332388B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明公开了基于实时负荷跟踪的暖通循环水***节能控制***及方法,该******包括传感器组、采样单元、变频控制单元、输出逆变单元和变频器,传感器组连接采样单元,采样单元连接变频控制单元,变频控制单元连接输出逆变单元,输出逆变单元连接变频器,变频器连接有循环水泵。该方法通过对空调***冷负荷的实时跟踪分析,来确定空调***应提供的供冷量,接着通过调节水泵工作频率,使之满足供冷量的需要,实现减小或消除空调***工作频率的振荡区间的目的,使空调***在节能的同时平稳运行。

Description

基于实时负荷跟踪的暖通循环水***节能控制***及方法
技术领域
本发明涉及一种基于实时负荷跟踪的暖通循环水***节能控制***及方法。
背景技术
目前的空调控制***在节能时通常采用随动控制变频的方式,调节水泵的转动频率达到节能的目的。即设定***的工况指标(如水温、压力等),***周期性地执行变频控制计算(采样实际工况,计算出与指标的误差,并通过PID等算法计算调整工况参数来缩小误差),以期最终达到设备的工况指标。
目前的变频控制方式,在变频控制上,很难做到精准控制,不够节能。
由于空调***的运行存在较大的时滞性和积累性,单一时刻的采样并不能反映***的实时工况,在此情况下,控制***的变频输出会出现较大的超调,这种超调随着时间积累会产生较大的误差,且这种误差在***中周期性的出现。为消除这类误差,***会频繁地进行大幅度变频,造成水泵频率的大幅振荡。
发明内容
本发明的目的在于提供基于实时负荷跟踪的暖通循环水***节能控制***及方法,通过对空调***冷负荷的实时跟踪分析,来确定空调***应提供的供冷量,接着通过调节水泵工作频率,使之满足供冷量的需要,实现减小或消除空调***工作频率的振荡区间的目的,使空调***在节能的同时平稳运行。
为了解决上述技术问题,采用如下技术方案:
基于实时负荷跟踪的暖通循环水***节能控制***,包括传感器组、采样单元、变频控制单元、输出逆变单元和变频器,传感器组连接采样单元,采样单元连接变频控制单元,变频控制单元连接输出逆变单元,输出逆变单元连接变频器,变频器连接有循环水泵。
传感器组,完成***供水温度、回水温度、供水流量的电信信号变送。
采样单元,完成传感器电传信号的A/D转换,输出***工况参数集。
变频控制单元,根据工况参数集完成采样管理和变频计算,输出频率表征量。
输出逆变单元,完成频率表征量的D/A转换,输出频率控制电传信号。
变频器,根据频率控制电传信号调节供电频率,控制水泵变频运行。
基于实时负荷跟踪的暖通循环水***节能控制方法,其特征在于包括以下工作步骤:
(1)传感器组进行***供水温度、回水温度、供水流量的电信信号变送;
(2)采样单元进行传感器组电传信号的A/D转换,输出***工况参数集;
(3)变频控制单元过滤异常数据;
(4)创建采样样本;
(5)周期控制单元在每个采样周期发起新的采样,并检查样本等待队列中的样本;
(6)计算冷负荷;
(7)计算使***供冷与负荷平衡的水泵工作频率,输出频率表征量;
(8)输出逆变单元完成频率表征量ωt的D/A转换,输出频率控制电传信号;
(9)变频器根据频率控制电传信号调节供电频率,实现水泵变频运行。
进一步,在步骤(4)中,样本数据包括供水温度数据、回水温度数据、采样起始流量数据、采样终末流量数据、采样时间偏移,其中供水温度数据和采样起始流量数据在当前时间进行采集工作,回水温度数据和采样终末流量数据不能在当前时间直接采集得到,需要等待一段时间后才能采集,这段等待时间设为采样时间偏移。
进一步,采样时间偏移的计算方法为:
设使用侧冷冻供水管路长度为L,流量计安装处的管路截面积为S,冷冻水流速为V,时差为Δt,则有:
Figure GDA0002528068290000031
Figure GDA0002528068290000032
合并两式即有:
Figure GDA0002528068290000033
此为t时刻测定供水温度时,回水温度测定时刻的偏移量;
未完成的样本送入样本等待队列中。
进一步,在步骤(5)中,对于等待时间已经归0的样本,填入当前采集的回水温度数据和终末流量数据完成采样,完成的样本送入样本列表中;对于等待时间尚未归0的样本,根据当前流速重新计算并更新尚未归0的样本剩余等待时间。
进一步,在步骤(5)中,更新尚未归0的样本的剩余等待时间后需要修正剩余等待时间偏移量。
进一步,在步骤(6)中,冷负荷W的计算原理:
W=F(t)·C·(Tretl-Tsupl)
式中F(t)为t时刻流量,C为热容,Tretl和Tsupl分别为回水温度和供水温度;
由于空调***的输出响应速度较慢,为防止控制输出出现大幅度的震荡,需要拉长***调频的周期,如果采样周期与变频周期一致,则变频周期中的环境变化会被忽略,此时根据采样结果计算的冷负荷就会产生失真。
因此,采用在每一个变频周期中进行多次采样的办法,尽可能减小冷负荷的计算误差。
实际n次采样的总冷负荷计算式为:
Figure GDA0002528068290000034
式中F(i)、Tsup(i)、Tret(i)分别为第i次采样的流量、供水温度和回水温度,tsample为采样周期,C为热容。
进一步,在步骤(7)中,计算使***供冷与负荷平衡的水泵工作频率包括:
(7.1)供冷量的计算;
(7.2)平衡频率的计算。
进一步,供冷量的计算的具体步骤如下:
冷冻循环泵的符号定义:N0为工频转速,N(t)为t时刻变频转速,P0为工频功率,P(t)为t时刻变频功率,ω0为工频频率,ω(t)为t时刻变频频率,F0为工频流量,F(t)为t时刻变频流量;
则有以下关系:
Figure GDA0002528068290000041
然后根据对冷冻循环子***的分析,可知供冷量Q与水泵频率的关系:
Figure GDA0002528068290000042
当T为一个周期时间时,上式简化为:
Figure GDA0002528068290000043
进一步,平衡频率的计算的具体步骤如下:
根据算法原理有:Q=W
于是有:
Figure GDA0002528068290000044
式中ωt为当前测量条件下的变频目标频率,Tsup和Tret分别为主机的供水温度和回水温度;
由上式可以发现水泵频率ωt和主机供水温度度Tsup均可成为控制供冷量的控制量;控制Tsup需要对主机进行控制,在实际工程中较为困难,因此假定主机设置给定了供回水温差ΔT,在此仅通过水泵频率ωt控制供冷量,原式变为:
Figure GDA0002528068290000051
则有:
Figure GDA0002528068290000052
化简得:
Figure GDA0002528068290000053
由于采用上述技术方案,具有以下有益效果:
本发明为基于实时负荷跟踪的暖通循环水***节能控制***及方法,该方法通过对空调***冷负荷的实时跟踪分析,来确定空调***应提供的供冷量,接着通过调节水泵工作频率,使之满足供冷量的需要,实现减小或消除空调***工作频率的振荡区间的目的,使空调***在节能的同时平稳运行。该方法具有变频目标明确,***多工作在平衡状态,振荡较小,节能效果增强等优点。
附图说明
下面结合附图对本发明作进一步说明:
图1为本发明中基于实时负荷跟踪的暖通循环水***节能控制***的结构示意图;
图2为本发明中基于实时负荷跟踪的暖通循环水***节能控制方法的流程图;
图3为本发明中修正剩余等待时间偏移量的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,基于实时负荷跟踪的暖通循环水***节能控制***,包括传感器组、采样单元、变频控制单元、输出逆变单元和变频器,传感器组连接采样单元,采样单元连接变频控制单元,变频控制单元连接输出逆变单元,输出逆变单元连接变频器,变频器连接有循环水泵。
传感器组,完成***供水温度、回水温度、供水流量的电信信号变送。
采样单元,完成传感器电传信号的A/D转换,输出***工况参数集。
变频控制单元,根据工况参数集完成采样管理和变频计算,输出频率表征量。
输出逆变单元,完成频率表征量的D/A转换,输出频率控制电传信号。
如图2所示:基于实时负荷跟踪的暖通循环水***节能控制方法,包括以下工作步骤:
(1)传感器组进行***供水温度、回水温度、供水流量的电信信号变送。
(2)采样单元进行传感器组电传信号的A/D转换,输出***工况参数集。
(3)变频控制单元过滤异常数据。
(4)创建采样样本,样本数据包括供水温度、回水温度、采样起始流量、采样终末流量、采样时间偏移,其中回水温度和采样终末流量当前尚不能采集到,要等待一段时间后才能采集,这段等待时间即为采样时间偏移,其计算方法为:
设使用侧冷冻供水管路长度为L(注1),流量计安装处的管路截面积为S,冷冻水流速为V,时差为Δt,则有:
Figure GDA0002528068290000061
Figure GDA0002528068290000062
合并两式即有:
Figure GDA0002528068290000063
此为t时刻测定供水温度时,回水温度测定时刻的偏移量。
未完成的样本送入样本等待队列中。
注1:供水管路截面积不一定处处相等,所以此处的管路长度L应为测量各段不同截面积的管路长度后,根据管道容积进行换算获得的等价长度。
(5)周期控制单元在每个采样周期发起新的采样,并检查样本等待队列中的样本,对于等待时间已经归0的样本,填入当前采集的回水温度和终末流量完成采样,完成的样本送入样本列表中;对于等待时间尚未归0的样本,根据当前流速重新计算并更新其剩余等待时间。
更新尚未归0的样本的剩余等待时间后需要修正剩余等待时间偏移量,修正剩余等待时间偏移量流程见图3。
(6)计算冷负荷:
冷负荷W的计算原理:
W=F(t)·C·(Tretl-Tsupl)
式中F(t)为t时刻流量,C为热容,Tretl和Tsupl分别为回水温度和供水温度。
由于空调***的输出响应速度较慢,为防止控制输出出现大幅度的震荡,需要拉长***调频的周期,如果采样周期与变频周期一致,则变频周期中的环境变化会被忽略,此时根据采样结果计算的冷负荷就会产生失真。
因此,采用在每一个变频周期中进行多次采样的办法,尽可能减小冷负荷的计算误差。
实际n次采样的总冷负荷计算式为:
Figure GDA0002528068290000071
式中F(i)、Tsup(i)、Tret(i)分别为第i次采样的流量、供水温度和回水温度,tsample为采样周期,C为热容。
(7)计算使***供冷与负荷平衡的水泵工作频率,输出频率表征量;
(7.1)供冷量的计算
冷冻循环泵的符号定义:如表1所示:
表1
N<sub>0</sub> 工频转速
N<sub>(t)</sub> t时刻变频转速
P<sub>0</sub> 工频功率
P<sub>(t)</sub> t时刻变频功率
ω<sub>0</sub> 工频频率
ω<sub>(t)</sub> t时刻变频频率
F<sub>0</sub> 工频流量
F<sub>(t)</sub> t时刻变频流量
则有以下关系:
Figure GDA0002528068290000081
根据对冷冻循环子***的分析,可知供冷量Q与水泵频率的关系:
Figure GDA0002528068290000082
当T为一个周期时间时,上式简化为:
Figure GDA0002528068290000083
(7.2)计算平衡频率
根据算法原理有:
Q=W
于是有:
Figure GDA0002528068290000084
式中ωt为当前测量条件下的变频目标频率,Tsup和Tret分别为主机的供水温度和回水温度。
由上式可以发现水泵频率ωt和主机供水温度度Tsup均可成为控制供冷量的控制量。控制Tsup需要对主机进行控制,在实际工程中较为困难,因此假定主机设置给定了供回水温差ΔT,在此仅通过水泵频率ωt控制供冷量,原式变为:
Figure GDA0002528068290000091
则有:
Figure GDA0002528068290000092
化简得:
Figure GDA0002528068290000093
(8)输出逆变单元完成频率表征量ωt的D/A转换,输出频率控制电传信号;
(9)变频器根据频率控制电传信号调节供电频率,实现水泵变频运行。
以上仅为本发明的具体实施例,但本发明的技术特征并不局限于此。任何以本发明为基础,为解决基本相同的技术问题,实现基本相同的技术效果,所作出地简单变化、等同替换或者修饰等,皆涵盖于本发明的保护范围之中。

Claims (5)

1.基于实时负荷跟踪的暖通循环水***节能控制方法,包括传感器组、采样单元、变频控制单元、输出逆变单元和变频器,所述传感器组连接所述采样单元,所述采样单元连接所述变频控制单元,所述变频控制单元连接所述输出逆变单元,所述输出逆变单元连接所述变频器,所述变频器连接有循环水泵;
传感器组,完成***供水温度、回水温度、供水流量的电信信号变送;
采样单元,完成传感器电传信号的A/D转换,输出***工况参数集;
变频控制单元,根据工况参数集完成采样管理和变频计算,输出频率表征量;
输出逆变单元,完成频率表征量的D/A转换,输出频率控制电传信号;
变频器,根据频率控制电传信号调节供电频率,控制水泵变频运行;
其特征在于包括以下工作步骤:
(1)传感器组进行***供水温度、回水温度、供水流量的电信信号变送;
(2)采样单元进行传感器组电传信号的A/D转换,输出***工况参数集;
(3)变频控制单元过滤异常数据;
(4)创建采样样本;
(5)周期控制单元在每个采样周期发起新的采样,并检查样本等待队列中的样本;
(6)计算冷负荷;所述冷负荷W的计算原理:
W=F(t)·C·(Tretl-Tsupl)
式中F(t)为t时刻流量,C为热容,Tretl和Tsupl分别为回水温度和供水温度;
由于空调***的输出响应速度较慢,为防止控制输出出现大幅度的震荡,需要拉长***调频的周期,如果采样周期与变频周期一致,则变频周期中的环境变化会被忽略,此时根据采样结果计算的冷负荷就会产生失真;
因此,采用在每一个变频周期中进行多次采样的办法,尽可能减小冷负荷的计算误差;
实际n次采样的总冷负荷计算式为:
Figure FDA0002528068280000021
式中F(i)、Tsup(i)、Tret(i)分别为第i次采样的流量、供水温度和回水温度,tsample为采样周期,C为热容。
(7)计算使***供冷与负荷平衡的水泵工作频率,输出频率表征量;计算使***供冷与负荷平衡的水泵工作频率包括:
(7.1)供冷量的计算;所述供冷量的计算的具体步骤如下:
冷冻循环泵的符号定义:N0为工频转速,N(t)为t时刻变频转速,P0为工频功率,P(t)为t时刻变频功率,ω0为工频频率,ω(t)为t时刻变频频率,F0为工频流量,F(t)为t时刻变频流量;
则有以下关系:
Figure FDA0002528068280000022
然后根据对冷冻循环子***的分析,可知供冷量Q与水泵频率的关系:
Figure FDA0002528068280000023
当T为一个周期时间时,上式简化为:
Figure FDA0002528068280000024
(7.2)平衡频率的计算,所述平衡频率的计算的具体步骤如下:
根据算法原理有:Q=W
于是有:
Figure FDA0002528068280000025
式中ωt为当前测量条件下的变频目标频率,Tsup和Tret分别为主机的供水温度和回水温度;
由上式可以发现水泵频率ωt和主机供水温度度Tsup均可成为控制供冷量的控制量;控制Tsup需要对主机进行控制,在实际工程中较为困难,因此假定主机设置给定了供回水温差ΔT,在此仅通过水泵频率ωt控制供冷量,原式变为:
Figure FDA0002528068280000031
则有:
Figure FDA0002528068280000032
化简得:
Figure FDA0002528068280000033
(8)输出逆变单元完成频率表征量ωt的D/A转换,输出频率控制电传信号;
(9)变频器根据频率控制电传信号调节供电频率,实现水泵变频运行。
2.根据权利要求1所述的基于实时负荷跟踪的暖通循环水***节能控制方法,其特征在于:在所述步骤(4)中,所述样本数据包括供水温度数据、回水温度数据、采样起始流量数据、采样终末流量数据、采样时间偏移,其中所述供水温度数据和所述采样起始流量数据在当前时间进行采集工作,所述回水温度数据和所述采样终末流量数据不能在当前时间直接采集得到,需要等待一段时间后才能采集,这段等待时间设为采样时间偏移。
3.根据权利要求2所述的基于实时负荷跟踪的暖通循环水***节能控制方法,其特征在于:所述采样时间偏移的计算方法为:
设使用侧冷冻供水管路长度为L,流量计安装处的管路截面积为S,冷冻水流速为V,时差为Δt,则有:
Figure FDA0002528068280000041
Figure FDA0002528068280000042
合并两式即有:
Figure FDA0002528068280000043
此为t时刻测定供水温度时,回水温度测定时刻的偏移量;
未完成的样本送入样本等待队列中。
4.根据权利要求1所述的基于实时负荷跟踪的暖通循环水***节能控制方法,其特征在于:在所述步骤(5)中,对于等待时间已经归0的样本,填入当前采集的回水温度数据和终末流量数据完成采样,完成的样本送入样本列表中;对于等待时间尚未归0的样本,根据当前流速重新计算并更新尚未归0的样本剩余等待时间。
5.根据权利要求4所述的基于实时负荷跟踪的暖通循环水***节能控制方法,其特征在于:在所述步骤(5)中,更新尚未归0的样本的剩余等待时间后需要修正剩余等待时间偏移量。
CN201810155982.XA 2018-02-24 2018-02-24 基于实时负荷跟踪的暖通循环水***节能控制***及方法 Active CN108332388B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810155982.XA CN108332388B (zh) 2018-02-24 2018-02-24 基于实时负荷跟踪的暖通循环水***节能控制***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810155982.XA CN108332388B (zh) 2018-02-24 2018-02-24 基于实时负荷跟踪的暖通循环水***节能控制***及方法

Publications (2)

Publication Number Publication Date
CN108332388A CN108332388A (zh) 2018-07-27
CN108332388B true CN108332388B (zh) 2020-10-13

Family

ID=62929825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810155982.XA Active CN108332388B (zh) 2018-02-24 2018-02-24 基于实时负荷跟踪的暖通循环水***节能控制***及方法

Country Status (1)

Country Link
CN (1) CN108332388B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598428A (zh) * 2004-09-09 2005-03-23 贵州汇诚科技有限公司 中央空调冷却水***自适应优化控制方法及装置
CN101737899A (zh) * 2009-12-14 2010-06-16 浙江大学 基于无线传感网的中央空调控制***及方法
CN102052739A (zh) * 2010-12-27 2011-05-11 重庆大学 基于无线传感器网络的中央空调智能控制***及方法
JP5246118B2 (ja) * 2009-09-18 2013-07-24 日立電線株式会社 冷水循環システム
JP5399948B2 (ja) * 2010-03-01 2014-01-29 株式会社Nttファシリティーズ 冷水循環システム
CN104359195A (zh) * 2014-12-31 2015-02-18 江苏联宏自动化***工程有限公司 基于动态响应末端总负荷变化的中央空调冷冻水控制方法
CN105571073A (zh) * 2016-01-15 2016-05-11 北京工业大学 一种地铁站空调水***变频控制节能方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598428A (zh) * 2004-09-09 2005-03-23 贵州汇诚科技有限公司 中央空调冷却水***自适应优化控制方法及装置
JP5246118B2 (ja) * 2009-09-18 2013-07-24 日立電線株式会社 冷水循環システム
CN101737899A (zh) * 2009-12-14 2010-06-16 浙江大学 基于无线传感网的中央空调控制***及方法
JP5399948B2 (ja) * 2010-03-01 2014-01-29 株式会社Nttファシリティーズ 冷水循環システム
CN102052739A (zh) * 2010-12-27 2011-05-11 重庆大学 基于无线传感器网络的中央空调智能控制***及方法
CN104359195A (zh) * 2014-12-31 2015-02-18 江苏联宏自动化***工程有限公司 基于动态响应末端总负荷变化的中央空调冷冻水控制方法
CN105571073A (zh) * 2016-01-15 2016-05-11 北京工业大学 一种地铁站空调水***变频控制节能方法

Also Published As

Publication number Publication date
CN108332388A (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
CN109708258B (zh) 一种基于负荷动态变化的冷库温度前馈-模糊控制***及控制方法
EP3480535B1 (en) Method of controlling electronic expansion valve of air-conditioner
CN108626923B (zh) 一种空调***的控制结构以及控制方法
CN105352109B (zh) 基于气候补偿的变风量空调末端温度控制***及方法
CN104359195B (zh) 基于动态响应末端总负荷变化的中央空调冷冻水控制方法
CN108709287B (zh) 一种空调***冷负荷预测方法及冷水机组群控的策略
CN107255347B (zh) 一种空调器压缩机运行功率检测方法和空调器
WO2014203311A1 (ja) 空調システム制御装置及び空調システム制御方法
WO2019057036A1 (zh) 一种空调器温湿度控制方法及空调器
CN105972896B (zh) 一种制冷***的控制方法
CN104990222A (zh) 空调控制方法及装置
CN112556098B (zh) 一种动态水力平衡控制方法
CN109990445B (zh) 一种变风量空调***节能控制器及方法
CN113701321B (zh) 一种中央空调水泵节能变频控制方法
CN101922783A (zh) 一种基于焓值控制的空调节能控制方法及***
CN203396032U (zh) 基于模糊自适应pid的室温控制装置
CN110398030A (zh) 空调送风量调节方法、装置、设备及空调***
CN107917516A (zh) 一种空调室外风机转速的控制方法及装置
CN206669841U (zh) 自吸平衡供热***
CN104677180A (zh) 冷却塔节能***及方法
CN108332388B (zh) 基于实时负荷跟踪的暖通循环水***节能控制***及方法
CN209341528U (zh) 一种中央空调节能控制***
CN108332362B (zh) 基于向量化分析的暖通循环水***节能控制***及方法
CN114963447B (zh) 一种冷水机组智能控制***及方法
CN105571089A (zh) 一种节能型智能生态中央空调装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant