CN108321205B - Based on gold-nano cuprous oxide wire reticular structure phasmon FET and preparation method - Google Patents

Based on gold-nano cuprous oxide wire reticular structure phasmon FET and preparation method Download PDF

Info

Publication number
CN108321205B
CN108321205B CN201810059011.5A CN201810059011A CN108321205B CN 108321205 B CN108321205 B CN 108321205B CN 201810059011 A CN201810059011 A CN 201810059011A CN 108321205 B CN108321205 B CN 108321205B
Authority
CN
China
Prior art keywords
nano
fet
solution
composite structure
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810059011.5A
Other languages
Chinese (zh)
Other versions
CN108321205A (en
Inventor
朱亚太
赵新宏
吕柳
段永胜
刘永旺
李凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201810059011.5A priority Critical patent/CN108321205B/en
Publication of CN108321205A publication Critical patent/CN108321205A/en
Application granted granted Critical
Publication of CN108321205B publication Critical patent/CN108321205B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer

Abstract

The present invention, which provides, is based on gold-nano cuprous oxide wire reticular structure phasmon FET and preparation method.The following steps are included: production nano cuprous oxide wire;Surfactant and weak reductant are dissolved into distilled water, heated, and keep constant temperature, then nano cuprous oxide wire is poured into solution, stirs, obtains mixed solution;Adjust tetra chlorauric acid solution pH value arrive alkalescent, by tetra chlorauric acid solution be slowly added in mixed solution, formation Au-Cu2O nano composite structure;By Au-Cu2O nano composite structure is dissolved in water and the small solvent mixed liquor of surface tension, obtains Au-Cu2O nano composite structure solution;By Au-Cu2O nano composite structure solution is uniformly taped against on FET substrate, forms nano wire reticular structure, low temperature naturally dry;Low temperature thermal annealing, it is ensured that the gold thread Ohmic contact on nano composite structure and substrate is produced with Au-Cu2The FET of O nano wire reticular structure.Production method of the present invention have it is simple, quickly, it is low in cost the features such as, sensitiveer than traditional FET, investigative range is also wider.

Description

Based on gold-nano cuprous oxide wire reticular structure phasmon FET and preparation method
Technical field
The invention belongs to Nanosemiconductor Device technical fields, more particularly to one kind to be based on gold-cuprous oxide (Au- Cu2O) the phasmon FET and preparation method thereof of nano wire reticular structure.
Background technique
Cuprous oxide is typical p-type semiconductor material, and direct band gap width is about 2.17eV, it is seen that the absorption model of light It encloses relatively extensively, and having good hole mobility at room temperature is about 100cm2/ (V.s), is widely used photocatalysis, Photovoltaic, the fields such as optical detection.But the light absorption length of cuprous oxide is about 10 μm, is far longer than its minority carrier Diffusion length, so cuprous oxide is better than planar structure using nanowire structure.
Gold nano grain chemical property is more stable, in visible light region hypersorption, can be formed etc. on surface from swashing under illumination Member has Surface enhanced Raman scattering, biocompatibility etc..
The light of all wave bands can be absorbed in metal, and semiconductor can only absorb the light that energy is greater than its forbidden bandwidth.Gold-oxygen Change the performance that cuprous nanostructure is not only provided simultaneously with metal nanoparticle and nanometer semiconductor structure, semiconductor can also be made up Characteristic in photoelectricity.Metal-semiconductor nanostructure is excited by illumination, metal surface phasmon, generates thermoelectricity Son.When thermoelectron at metal and interface has sufficiently large energy, metal can be crossed and semiconductor directly contacts shape At Schottky barrier, reach in the conduction band of semiconductor.This will lead to the photoelectric current enhancing of metal-semiconductor device.Metal- Direct electric charge transfer between semiconductor improves the energy transfer efficiency from metal to semiconductor.Currently, field effect on the market Should manage all is traditional technotron and Metal-oxide-semicondutor field-effect tube, but utilizes metal-semiconductor etc. The field-effect tube device manufactured from excimer thermoelectron transfer has not been reported.
Summary of the invention
It is a kind of based on gold-cuprous oxide (Au-Cu the purpose of the present invention is providing regarding to the issue above2O) nano wire is netted Phasmon FET of structure and preparation method thereof.Metal-semiconductor nano composite structure field-effect tube is directly electric using thermoelectron Lotus transfer increases the characteristic of semiconductor light electric current, so that it is sensitiveer than traditional field-effect tube in terms of optical detection, visits It is also wider to survey range, preparation method is simple, and technological parameter is controllable, and repeatability is high.
The invention mainly includes steps: production nano cuprous oxide wire;Surfactant and weak reductant are dissolved Into distilled water, it is heated to 85-95 DEG C, and keep constant temperature, then nano cuprous oxide wire is poured into solution, stirs, mixed Close solution;The pH value of adjusting tetra chlorauric acid solution is molten by the tetra chlorauric acid of 0.25-1ml after solution stirring to be mixed to alkalescent Liquid is slowly added in mixed solution, forms Au-Cu2O nano composite structure;By the Au-Cu2O nano composite structure be dissolved in water with In the small solvent mixed liquor of surface tension, Au-Cu is obtained2O nano composite structure solution;Using liquid technology by Au-Cu2O nanometers Composite construction solution is uniformly taped against on pectination backgate FET substrate, forms nano wire reticular structure, low temperature naturally dry;It is rare Under gas, low temperature thermal annealing, it is ensured that the gold thread Ohmic contact on nano composite structure and substrate is produced with the Au- Cu2The pectination backgate FET of O nano wire reticular structure.Production method of the present invention have it is simple, quickly, it is low in cost the features such as, than Traditional FET is sensitiveer, and investigative range is also wider.
Technical solution of the present invention is specifically: one kind being based on gold-nano cuprous oxide wire reticular structure phasmon FET system Preparation Method, comprising the following steps:
Production nano cuprous oxide wire: the Salicylaldoxime of 0.15g is completely dissolved in the distilled water of 40ml, then takes 69 μ l Pyrroles be completely dissolved in the distilled water of 10ml, after then both solution are mixed evenly, pour into 50ml autoclave, 180 DEG C of heating 10h, then cool to room temperature, and clean impurity, take out the nano cuprous oxide wire of yellow green;
Surfactant and weak reductant are added in the distilled water of 10ml, stirs to being completely dissolved, is subsequently heated to 85-95 DEG C, and constant temperature is kept, then nano cuprous oxide wire is poured into solution, and be filled with rare gas, such as argon gas, It keeps stirring, obtains mixed solution;
The pH value for adjusting tetra chlorauric acid solution arrives alkalescent, and solution to be mixed stirs ten minutes later, by the four of 0.25-1ml Chlorauric acid solution drop is slowly added in heating water bath and the mixed solution that keeps stirring, after 1-2.5h, take out using liquid phase from Heart isolation technics separates nano composite structure with reaction solution, obtains pure Au-Cu2O nano composite structure;
By the Au-Cu2O nano composite structure is dissolved in water and the small solvent mixed liquor of surface tension, obtains Au-Cu2O Nano composite structure solution;
Using liquid technology by Au-Cu2O nano composite structure solution is uniformly taped against pectination back gate field-effect transistor substrate On, nano wire reticular structure is formed, low temperature naturally dry is repeated several times;Under rare gas, low temperature thermal annealing, it is ensured that nanometer is multiple The gold thread Ohmic contact on structure and substrate is closed, is produced with the Au-Cu2The pectination backgate of O nano wire reticular structure FET。
In above scheme, the surfactant is the k value of the polyvinylpyrrolidone PVP, PVP of 0.0106-0.0318g It is 30000, the weak reductant is the ascorbic acid of 0.033-0.1g.Surfactant holds that nano cuprous oxide wire more After easily growth gold particle, there is PVP good dissolubility to be not only dissolved in water but also can be dissolved in alcohols, easy to clean, and PVP is dissolved in water It forms colloid and protects cuprous oxide crystal face.Cuprous oxide can be prevented to be reduced using weak reductant.
In above scheme, the concentration of the tetra chlorauric acid solution is 0.5-1mM, and pH value adjustment is to 7~8, tetra chlorauric acid In gold ion can be restored by weak reductant.The tetra chlorauric acid solution pH value adjustment to 7~8, receive by one side cuprous oxide Rice noodles are easy to be dissolved under acidic environment, can exist under alkaline environment without being destroyed structure, ascorbic acid is in alkalinity It cannot be stabilized under environment, pH value adjustment to 7~8 can make nano cuprous oxide wire and ascorbic acid in tetra chlorauric acid solution In be stabilized simultaneously.
In above scheme, the pH value usable concentration of the tetra chlorauric acid solution is not less than the sodium hydroxide solution tune of 1mol/L It saves to 8.The pH value adjustment of solution to 8 be can be prevented from into cuprous oxide by acid dissolution, with the big sodium hydroxide solution tune of concentration Section can prevent the change of tetra chlorauric acid solution concentration.
In above scheme, tetra chlorauric acid solution is slowly added in mixed solution, after 1~2.5h, forms Au-Cu2O nanometers Composite construction.Time is longer, and the gold nano grain of growth is more, and size is also bigger.Restore the size of gold particle generated and close Collection degree is by time effects, and the time is longer, and the gold particle size of generation is bigger, also more intensive.
In above scheme, the small solvent mixed liquor of the surface tension is ethyl alcohol;First by Au-Cu2O nano composite structure is molten In the small ethyl alcohol of surface tension, under low-power after sonic oscillation 15s, the distilled water with ethyl alcohol volume ratio 1:2~1:3 is then taken It pours into after wherein stirring and low power ultrasound vibrates 10s, obtain Au-Cu2O nano composite structure solution;By distilled water and solution Mixing can reduce evaporation rate, reduce uneven caused by reuniting.
In above scheme, liquid technology is to use drop pendant method or natural sedimentation by Au-Cu2O nano composite structure solution Uniformly it is taped against on field-effect tube substrate.
Further, the drop pendant method is at low temperature, slowly to be dripped micro liquid close to substrate transverse with liquid-transfering gun Onto substrate, making liquid uniformly by little airflow with super soft air-blowing is in membranaceous distribution, naturally dry.
The natural sedimentation is to place the substrate into nano composite structure ethanol solution, and keep horizontality, In A period of time is stood under low temperature, until liquid level is lower than upper surface of substrate, then slow smooth vertical takes out substrate.
It is a kind of using described based on the production of gold-nano cuprous oxide wire reticular structure phasmon FET preparation method Pectination backgate FET, pectination backgate field FET include the Au-Cu2O nano composite structure and substrate;The Au-Cu2O is nano combined Structure is uniformly taped against the upper of substrate, forms Au-Cu2O nano wire reticular structure.
The substrate includes Au/Ti electrode, the SiO that the pectination being sequentially arranged from top to bottom is intersected2Insulating layer, p-type are heavily doped Miscellaneous Si layer and back-gate electrode;
The Au-Cu2O nano composite structure is uniformly taped against the upper of substrate, reticulates directly with the Au/Ti electrode on substrate Contact forms Au-Cu2O nano wire reticular structure;Source electrode and drain electrode and the Au/Ti electrode extended bilateral symmetry and it is in Pectination is intersected, and the groove formed between the adjacent line of the Au/Ti electrode that pectination is intersected, source electrode and drain electrode is drawn by conductor in parallel respectively Out, back-gate electrode is drawn also by conducting wire, is then fixed respectively with conductive silver glue, then packaged with insulating materials.
Compared with prior art, the beneficial effects of the present invention are: the present invention is in the solution with organic reducing agent by copper acetate Reduction generates Cu2O nano wire;With weak reductant in Cu2By chlorauric acid solution in-situ reducing at Au nano particle on O nano wire.It adopts Nano composite structure is tiled onto pectination back gate field-effect transistor substrate with liquid technology;Using Low Temperature Thermal under inert gas atmosphere Annealing technology carries out structure optimization;External circuit and encapsulation.Nano composite structure and phasmon thermoelectron provided by the invention turns The production method of the field-effect tube device of shifter mechanism have it is simple, quickly, it is low in cost the features such as, and the New Type Field produced Effect tube device is sensitiveer than traditional, and investigative range is also wider.Preparation method of the invention can be simple, quick, stable Prepare gold-nano cuprous oxide wire structure, the chemicals used is all environmental protection and the drug easily bought, the condition of preparation Mildly, technological parameter is controllable, and repeatability is high.Field-effect tube device prepared by the present invention is based on metal-semiconductor etc. from sharp First thermoelectron metastasis, metal-semiconductor nanostructure cause the optical absorption peak of semiconductor left from 480nm red shift to 650nm The right side, so that detectable range is also more wide.In the prepared field-effect tube device based on the transfer of phasmon thermoelectron of the invention The phasmon energy transfer thermoelectron of metal shifts so that the signal code of device enhances 10 times or so, and field-effect tube lining Bottom uses backgate pectinate texture, and source-drain electrode is formed in parallel by many small source electrodes and many small drain electrodes respectively, increases electric current, Keep device sensitiveer for detection optical signal.
Detailed description of the invention
Fig. 1 is the Au-Cu grown in the embodiment of the present invention three2O nano composite structure scanning electron microscope (SEM) photograph.
Fig. 2 is the pectination back gate field-effect transistor sectional view of the invention based on phasmon thermoelectron metastasis.
Fig. 3 is the top view of the pectination back gate field-effect transistor of the invention based on phasmon thermoelectron metastasis.
In figure, 1, gold-cuprous nano composite construction, 2, Au/Ti electrode, 3, SiO2Insulating layer, 4, p-type heavy doping Si Layer, 5, back grid, 6, groove, 7, source electrode, 8, drain electrode, 9, copper wire.
Specific embodiment
Invention is further described in detail with reference to the accompanying drawings and detailed description, but protection scope of the present invention It is not limited to this.
The present invention prepares gold-cuprous oxide Au-Cu2Reagent source used in the method for O nanostructure is as follows: nothing Water acetic acid copper, pyrroles, tetra chlorauric acid, sodium hydroxide, ascorbic acid, PVP (K=30000) is bought to be tried in Chinese medicines group chemistry Agent Co., Ltd, distilled water are then purchase Watson distilled water.
Embodiment one:
(1) firstly, the Salicylaldoxime that will weigh 0.15g, is poured into the distilled water of 40ml, magnetic agitation is used 30min makes it completely dissolved.It is injected in the distilled water of 20ml with the pyrroles that liquid-transfering gun takes out 140 microlitres, stirs 20min, make it It is completely dissolved.Then the chromium solution of 10ml is instilled dropwise in acetic acid copper solution while stirring, then proceedes to stir 40min, until mixed solution color becomes olive green.Finally, the mixed solution by 80% pours into the autoclave of 50ml, roasting In case at 180 DEG C, 10h is heated, then takes out and is rapidly cooled to room temperature.Liner is opened, black liquor is poured out, is subsequently poured into distillation Water cleans 5 times, then with washes of absolute alcohol 3 times, the inside black impurity is eliminated, and is subsequently poured into ethyl alcohol for the yellow green on inner wall Nano wire dissolution, takes out.
(2) ascorbic acid of the PVP of 0.0106g and 0.033g is dissolved in the distilled water of 10ml, stirring keeps it completely molten Solution, then seals heating water bath to 85 DEG C for the solution, allows the gas in solution to be discharged, then the cuprous oxide of above-mentioned preparation is received Rice noodles pour into wherein, argon gas are being passed through into solution, and in the state of being stirred continuously for 90 DEG C, stir 10min always.
(3) sodium hydroxide solution of 0.5mol/L and the tetra chlorauric acid solution of 0.5mM are first prepared, a few drop hydroxides are then dripped Sodium solution is by the pH value adjustment of tetra chlorauric acid solution to 8.Then with liquid-transfering gun take the tetra chlorauric acid solution of 0.25ml slowly by Drop instills in above-mentioned solution, and solution starts red occur, implies initially forming for gold particle.The growth course of gold particle is all At 85 DEG C, carried out in the state of keeping stirring.After 1h, solution is taken out.Finally at 3000rmp, skill is centrifugated using liquid phase Art separates nano composite structure with liquid, is then dissolved in 5ml ethyl alcohol.
(4) it is cleaned by ultrasonic FET substrate with ethyl alcohol and distilled water, with two fine copper wires by the source electrode of FET substrate two sides and leakage Pole is connected in parallel respectively, is fixed with elargol, then with epoxy resin that electrode package is good.Because ethanol evaporation is fast, Au- Cu2O nano composite structure is easy to reunite during evaporation due to surface tension, and Au-Cu2O nano composite structure exists It is easy to reunite in water.The distilled water of 1ml is added to 3mlAu-Cu2In the ethanol solution of O nanostructure, after mixing evenly, obtain To mixed solution, then take mixed solution when pipette soon encounters substrate with liquid-transfering gun using drop pendant method, it is vertical slow It slowly drips in the substrate in the heart, making liquid uniformly by little airflow with super soft air-blowing is in membranaceous distribution, Au-Cu2O nanometers multiple It closes structure to be taped against on packaged FET substrate, forms Au-Cu2O nano wire reticular structure slowly dries at 10 DEG C of vacuum, then In the environment of argon gas, 200 DEG C of annealing 30min make Au-Cu2Gold thread on O nano composite structure and substrate forms Ohmic contact. Copper wire is connected with elargol again with the grid of bottom finally, is packaged with epoxy resin.
Embodiment two:
(1) firstly, the Salicylaldoxime that will weigh 0.15g, is poured into the distilled water of 40ml, magnetic agitation is used 30min makes it completely dissolved.It is injected in the distilled water of 20ml with the pyrroles that liquid-transfering gun takes out 140 microlitres, stirs 20min, make it It is completely dissolved.Then the chromium solution of 10ml is instilled dropwise in acetic acid copper solution while stirring, then proceedes to stir 40min, until mixed solution color becomes olive green.Finally, the mixed solution by 80% pours into the autoclave of 50ml, roasting In case at 180 DEG C, 10h is heated, then takes out and is rapidly cooled to room temperature.Liner is opened, black liquor is poured out, is subsequently poured into distillation Water cleans 5 times, then with washes of absolute alcohol 3 times, the inside black impurity is eliminated, and is subsequently poured into ethyl alcohol for the yellow green on inner wall Nano wire dissolution, takes out.
(2) ascorbic acid of the PVP of 0.0318g and 0.1g to be dissolved in the distilled water of 10ml, stirring makes it completely dissolved, Then the solution is sealed into heating water bath to 95 DEG C, allows gas discharge in solution, then by the cuprous nano of above-mentioned preparation Line pours into wherein, argon gas is being passed through into solution, and in the state of being stirred continuously for 95 DEG C, stir 10min always.
(3) sodium hydroxide solution of 1mol/L and the tetra chlorauric acid solution of 1mM are first prepared, it is molten then to drip a few drop sodium hydroxides Liquid is by the pH value adjustment of tetra chlorauric acid solution to 8.Then the tetra chlorauric acid solution of 1ml is taken slowly to instill dropwise with liquid-transfering gun It states in solution, solution starts red occur, implies initially forming for gold particle.The growth course of gold particle be all at 90 DEG C, It is carried out in the state of keeping stirring.After 2.5h, solution is taken out.Finally at 3000rmp, it will be received using liquid phase centrifugal separation technology Rice composite construction is separated with liquid, is then dissolved in 5ml ethyl alcohol.
(4) it is cleaned by ultrasonic FET substrate with ethyl alcohol and distilled water, with two fine copper wires by the source electrode of FET substrate two sides and leakage Pole is connected in parallel respectively, is fixed with elargol, then with epoxy resin that electrode package is good.Because ethanol evaporation is fast, Au- Cu2O nano composite structure is easy to reunite during evaporation, and Au-Cu2O nano composite structure is easy to reunite in water. The distilled water of 1ml is added to 3mlAu-Cu2In the ethanol solution of O nanostructure, after mixing evenly, then used using drop pendant method Liquid-transfering gun takes mixed solution when pipette soon encounters substrate, vertically slowly drips in the substrate in the heart, with super It is in membranaceous distribution that soft air-blowing, which makes liquid uniformly by little airflow, by Au-Cu2O nano composite structure is taped against packaged FET substrate On, form Au-Cu2O nano wire reticular structure slowly dries at 10 DEG C of vacuum, then in the environment of argon gas, 200 DEG C of annealing 30min makes Au-Cu2Gold thread on O nano composite structure and substrate forms Ohmic contact.Finally again with elargol by copper wire and bottom The grid in portion connects, and is packaged with epoxy resin.
Embodiment three:
(1) firstly, the Salicylaldoxime that will weigh 0.15g, is poured into the distilled water of 40ml, magnetic agitation is used 30min makes it completely dissolved.It is injected in the distilled water of 20ml with the pyrroles that liquid-transfering gun takes out 140 microlitres, stirs 20min, make it It is completely dissolved.Then the chromium solution of 10ml is instilled dropwise in acetic acid copper solution while stirring, then proceedes to stir 40min, until mixed solution color becomes olive green.Finally, the mixed solution by 80% pours into the autoclave of 50ml, roasting In case at 180 DEG C, 10h is heated, then takes out and is rapidly cooled to room temperature.Liner is opened, black liquor is poured out, is subsequently poured into distillation Water cleans 5 times, then with washes of absolute alcohol 3 times, the inside black impurity is eliminated, and is subsequently poured into ethyl alcohol for the yellow green on inner wall Nano wire dissolution, takes out.
(2) ascorbic acid of the PVP of 0.0318g and 0.1g to be dissolved in the distilled water of 10ml, stirring makes it completely dissolved, Then the solution is sealed into heating water bath to 90 DEG C, allows gas discharge in solution, then by the cuprous nano of above-mentioned preparation Line pours into wherein, argon gas is being passed through into solution, and in the state of being stirred continuously for 90 DEG C, stir 10min always.
(3) sodium hydroxide solution of 1mol/L and the tetra chlorauric acid solution of 1mM are first prepared, it is molten then to drip a few drop sodium hydroxides Liquid is by the pH value adjustment of tetra chlorauric acid solution to 8.Then the tetra chlorauric acid solution of 0.5ml is taken slowly to instill dropwise with liquid-transfering gun In above-mentioned solution, solution starts red occur, implies initially forming for gold particle.The growth course of gold particle is all 90 DEG C, it is carried out in the state of keeping stirring.After 1.5h, solution is taken out.Finally at 3000rmp, using liquid phase centrifugal separation technology Nano composite structure is separated with liquid, is then dissolved in 5ml ethyl alcohol.
(4) it is cleaned by ultrasonic FET substrate with ethyl alcohol and distilled water, with two fine copper wires by the source electrode of FET substrate two sides and leakage Pole is connected in parallel respectively, is fixed with elargol, then with epoxy resin that electrode package is good.Because ethanol evaporation is fast, Au- Cu2O nano composite structure is easy to reunite during evaporation, and Au-Cu2O nano composite structure is easy to reunite in water. The distilled water of 1ml is added to 3mlAu-Cu2In the ethanol solution of O nanostructure, after mixing evenly, then used using drop pendant method Liquid-transfering gun takes mixed solution when pipette soon encounters substrate, vertically slowly drips in the substrate in the heart, with super It is in membranaceous distribution that soft air-blowing, which makes liquid uniformly by little airflow, by Au-Cu2O nano composite structure is taped against packaged FET substrate On, form Au-Cu2O nano wire reticular structure slowly dries at 10 DEG C of vacuum, then in the environment of argon gas, 200 DEG C of annealing 30min makes Au-Cu2Gold thread on O nano composite structure and substrate forms Ohmic contact.Finally again with elargol by copper wire and bottom The grid in portion connects, and is packaged with epoxy resin.
Fig. 1 is the Au-Cu grown in specific embodiment three2O nano composite structure scanning electron microscope (SEM) photograph.Three specific implementations In scheme, embodiment three prepares that nano composite structure is more uniform, and concentration is more appropriate.And when tetra chlorauric acid solution adds The amount entered in growth-promoting media is much longer with the time of heating reaction, and the gold particle concentration grown is also just big, and size is also got over Greatly.
Fig. 2 is the Au-Cu based on phasmon thermoelectron metastasis2The sectional view of O Nanostructure Network FET.Substrate It is made of four parts: the Au/Ti electrode 2 that pectination is intersected, the SiO of 300nm or so2Insulating layer 3,4 He of Si layer of p-type heavy doping Back-gate electrode 5.
Fig. 3 is the Au-Cu based on phasmon thermoelectron metastasis2The top view of O Nanostructure Network FET.It is a kind of It is described to be based on Au-Cu2The pectination backgate FET of the phasmon FET preparation method production of O nano wire reticular structure, the pectination Backgate FET includes Au-Cu2O nano composite structure 1 and substrate;The substrate includes Au/Ti electrode 2, the SiO that pectination is intersected2Absolutely Edge layer 3, p-type heavy doping Si layer 4 and back-gate electrode 5.
The Au-Cu2O nano composite structure 1 is uniformly taped against the upper of substrate, reticulates with the Au/Ti electrode 2 on substrate Directly contact.1cm2Square p-type heavy doping Si layer 4 be equipped with a layer thickness be 300nmSiO2Insulating layer 3, Au/Ti electricity Pole 2 is to plate Ti and Au as the source electrode 7 and drain electrode 8, source electrode 7 and 8 bilateral symmetry of drain electrode on substrate and intersect in pectination, pectination The groove 6 formed between the adjacent line of the Au/Ti electrode 2 of intersection, groove width are 8 μm or so.Source electrode 7 and drain electrode 8 respectively by Conductor in parallel is drawn, and 4 lower section of Si layer of p-type heavy doping sets back-gate electrode 5, and back-gate electrode 5 is fixed by conductive silver glue, uses conducting wire It draws, then packaged with insulating materials.
Although not each embodiment only includes one it should be appreciated that this specification describes according to various embodiments A independent technical solution, this description of the specification is merely for the sake of clarity, and those skilled in the art should will say As a whole, the technical solutions in the various embodiments may also be suitably combined for bright book, and forming those skilled in the art can be with The other embodiments of understanding.
The series of detailed descriptions listed above are illustrated only for possible embodiments of the invention, The protection scope that they are not intended to limit the invention, it is all without departing from equivalent embodiment made by technical spirit of the present invention or change It should all be included in the protection scope of the present invention.

Claims (10)

1. being based on gold-nano cuprous oxide wire reticular structure phasmon FET preparation method, which is characterized in that including following step It is rapid: production nano cuprous oxide wire;
Surfactant and weak reductant are dissolved into distilled water, are heated to 85-95 DEG C, and keep constant temperature, then will oxidation Asia Copper nano-wire pours into solution, and stirring obtains mixed solution;The surfactant is polyvinylpyrrolidone PVP, described weak Reducing agent is ascorbic acid;
The pH value of tetra chlorauric acid solution is adjusted to alkalescent, after solution stirring to be mixed, by the tetra chlorauric acid solution of 0.25-1ml It is slowly added in mixed solution, forms Au-Cu2O nano composite structure;
By the Au-Cu2O nano composite structure is dissolved in water and the small solvent mixed liquor of surface tension, obtains Au-Cu2O nanometers Composite construction solution;
Use drop pendant method or natural sedimentation by Au-Cu using liquid technology2O nano composite structure solution is uniformly taped against pectination On backgate FET substrate, nano wire reticular structure, low temperature naturally dry are formed;Under rare gas, low temperature thermal annealing, it is ensured that nanometer Gold thread Ohmic contact on composite construction and substrate, is produced with the Au-Cu2The pectination backgate of O nano wire reticular structure FET。
2. according to claim 1 be based on gold-nano cuprous oxide wire reticular structure phasmon FET preparation method, It is characterized in that, the surfactant is that the k value of the polyvinylpyrrolidone PVP, PVP of 0.0106-0.0318g is 30000, institute State the ascorbic acid that weak reductant is 0.033-0.1g.
3. according to claim 1 be based on gold-nano cuprous oxide wire reticular structure phasmon FET preparation method, It is characterized in that, the concentration of the tetra chlorauric acid solution is 0.5-1mM, and pH value adjustment is to 7~8.
4. according to claim 1 be based on gold-nano cuprous oxide wire reticular structure phasmon FET preparation method, It is characterized in that, tetra chlorauric acid solution is slowly added in mixed solution, after 1~2.5h, form Au-Cu2O nano composite structure.
5. according to claim 1 be based on gold-nano cuprous oxide wire reticular structure phasmon FET preparation method, It is characterized in that, the small solvent mixed liquor of the surface tension is ethyl alcohol;First by Au-Cu2O nano composite structure is dissolved in surface tension In small ethyl alcohol, sonic oscillation after a certain period of time, takes and pours into wherein with the distilled water of ethyl alcohol volume ratio 1:2~1:3 under low-power After stirring and low power ultrasound vibrates certain time, obtains Au-Cu2O nano composite structure solution.
6. according to claim 1 be based on gold-nano cuprous oxide wire reticular structure phasmon FET preparation method, It is characterized in that, the liquid technology is to use drop pendant method or natural sedimentation by Au-Cu2O nano composite structure solution is uniform It is taped against on pectination backgate FET substrate.
7. according to claim 6 be based on gold-nano cuprous oxide wire reticular structure phasmon FET preparation method, It is characterized in that, the drop pendant method is at low temperature, to take Au-Cu2O nano composite structure solution is slowly dripped to close to substrate transverse On pectination backgate FET, making liquid uniformly with little airflow is in membranaceous distribution, naturally dry.
8. according to claim 6 be based on gold-nano cuprous oxide wire reticular structure phasmon FET preparation method, It is characterized in that, the natural sedimentation is to place the substrate into nano composite structure ethanol solution, and keep horizontality, In A period of time is stood under low temperature, until liquid level is lower than pectination backgate FET upper surface, then slow smooth vertical takes substrate Out.
9. a kind of utilize is based on gold-nano cuprous oxide wire reticular structure phasmon FET described in claim 1-8 any one The FET of preparation method production, which is characterized in that the FET includes Au-Cu described in claim 12O nano composite structure (1) And substrate;
The Au-Cu2O nano composite structure (1) is uniformly taped against the upper of pectination backgate FET substrate, forms Au-Cu2O nano wire Reticular structure.
10. according to claim 9 based on gold-nano cuprous oxide wire reticular structure phasmon FET preparation method production FET, which is characterized in that the substrate includes Au/Ti electrode (2), the SiO that the pectination that is sequentially arranged from top to bottom is intersected2Absolutely Edge layer (3), p-type heavy doping Si layer (4) and back-gate electrode (5);
The Au-Cu2O nano composite structure (1) is uniformly taped against the upper of pectination backgate FET substrate, with the Au/Ti electricity on substrate Pole (2) reticulates direct contact, forms Au-Cu2O nano wire reticular structure;The Au/Ti electrode that source electrode (7) and drain electrode (8) are stretched out (2) symmetrically and in pectination intersect, the groove (6) formed between the adjacent line of the Au/Ti electrode (2) that pectination is intersected, source Pole (7) and drain electrode (8) are drawn by conductor in parallel respectively, and back-gate electrode (5) is drawn by conducting wire, and conductive silver glue is fixed.
CN201810059011.5A 2018-01-22 2018-01-22 Based on gold-nano cuprous oxide wire reticular structure phasmon FET and preparation method Expired - Fee Related CN108321205B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810059011.5A CN108321205B (en) 2018-01-22 2018-01-22 Based on gold-nano cuprous oxide wire reticular structure phasmon FET and preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810059011.5A CN108321205B (en) 2018-01-22 2018-01-22 Based on gold-nano cuprous oxide wire reticular structure phasmon FET and preparation method

Publications (2)

Publication Number Publication Date
CN108321205A CN108321205A (en) 2018-07-24
CN108321205B true CN108321205B (en) 2019-12-03

Family

ID=62887530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810059011.5A Expired - Fee Related CN108321205B (en) 2018-01-22 2018-01-22 Based on gold-nano cuprous oxide wire reticular structure phasmon FET and preparation method

Country Status (1)

Country Link
CN (1) CN108321205B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882383A (en) * 2015-05-28 2015-09-02 福州大学 Light-operated quantum dot film transistor preparation method based on plasma excimer enhancing
CN105664966A (en) * 2015-12-31 2016-06-15 丽王化工(南通)有限公司 Preparation method and application of metal/cuprous oxide composite nano material
CN106299391A (en) * 2016-08-10 2017-01-04 上海师范大学 A kind of palladium Red copper oxide mesh nano catalysis material and preparation thereof and application

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882383A (en) * 2015-05-28 2015-09-02 福州大学 Light-operated quantum dot film transistor preparation method based on plasma excimer enhancing
CN105664966A (en) * 2015-12-31 2016-06-15 丽王化工(南通)有限公司 Preparation method and application of metal/cuprous oxide composite nano material
CN106299391A (en) * 2016-08-10 2017-01-04 上海师范大学 A kind of palladium Red copper oxide mesh nano catalysis material and preparation thereof and application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Plasmon Field Effect Transistor for Plasmon to Electric Conversion and Amplification;Hossein Shokri Kojori等;《Nano Letters》;20151210;全文 *
Plasmon-Enhanced Photocatalytic Properties of Cu2O Nanowire-Au Nanoparticle Assemblies;Yanlin Pan等;《Langmuir》;20120719;全文 *

Also Published As

Publication number Publication date
CN108321205A (en) 2018-07-24

Similar Documents

Publication Publication Date Title
Jang et al. Solution-processed transistors using colloidal nanocrystals with composition-matched molecular “solders”: approaching single crystal mobility
Syu et al. Silicon nanowire/organic hybrid solar cell with efficiency of 8.40%
CN104277852B (en) Multiple heterostructures nano particle, its preparation method and the product comprising the nano particle
Zhuang et al. Indium hydroxides, oxyhydroxides, and oxides nanocrystals series
Yu et al. Photoresponse and field-emission properties of bismuth sulfide nanoflowers
CN104046359B (en) Multi-heterojunction Nanoparticles, Metheods Of Manufacture Thereof And Articles Comprising The Same
CN101318703A (en) Tungstic oxide nano-wire and method for preparing tungstic oxide nano-wire ammonia sensitive sensor
CN104051275B (en) A kind of preparation method of FET based on quantum dot film layer conducting channel
US20060284218A1 (en) Nanoelectonic devices based on nanowire networks
Hsieh et al. Observing growth of nanostructured ZnO in liquid
CN104882383A (en) Light-operated quantum dot film transistor preparation method based on plasma excimer enhancing
CN110364616A (en) A kind of telluride silver nanowires flexible thermal conductive film and preparation method thereof welded at room temperature
CN105097994A (en) Solar cell and manufacturing method thereof
CN107819076A (en) A kind of Cu2O/GaOOH nano core-shell pn-junction photodetectors and preparation method thereof
CN104882542A (en) Light-operated film transistor preparation method based on metal/organic shell-core quantum dot-semiconductor quantum dot composite structure
CN110244476A (en) A kind of Terahertz modulator and preparation method thereof based on silicon micro-nano structure
CN108321205B (en) Based on gold-nano cuprous oxide wire reticular structure phasmon FET and preparation method
CN106058059B (en) A kind of complementary type plasma resonance organic solar batteries and preparation method thereof based on active layer doping and transport layer modification
CN104319320B (en) A kind of LED chip with composite transparent electrode and preparation method thereof
Zhao et al. Morphology control of c-Si via facile copper-assisted chemical etching: Managements on etch end-points
CN103219439B (en) A kind of polarized light-emitting diode of nano-grain array
CN107887281B (en) A kind of manufacturing method and high voltage silicon rectifier stack of low-power consumption high-speed switch plastic sealed high-voltage silicon stack
CN107452821B (en) A kind of multifunctional light thin film transistor and preparation method thereof of p-type SnO/Ag schottky junction nuclear shell structure nano wire channel
CN103489753B (en) A kind of preparation method of large-area small-size core-shell structure silicon nanowire array
CN101941738B (en) Method for preparing Cd1-xCoxS dilute magnetic semiconductor nanoparticles by gas-liquid surface reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191203

Termination date: 20220122