CN108218971A - α-芋螺毒素肽TxID新突变体、其药物组合物及用途 - Google Patents

α-芋螺毒素肽TxID新突变体、其药物组合物及用途 Download PDF

Info

Publication number
CN108218971A
CN108218971A CN201611185856.6A CN201611185856A CN108218971A CN 108218971 A CN108218971 A CN 108218971A CN 201611185856 A CN201611185856 A CN 201611185856A CN 108218971 A CN108218971 A CN 108218971A
Authority
CN
China
Prior art keywords
txid
polypeptide
alpha
cysteine
neuralgia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611185856.6A
Other languages
English (en)
Other versions
CN108218971B (zh
Inventor
罗素兰
长孙东亭
朱晓鹏
吴勇
于津鹏
J·迈克尔·麦金托什
戴维·J·克雷克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan University
Original Assignee
Hainan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan University filed Critical Hainan University
Priority to CN201611185856.6A priority Critical patent/CN108218971B/zh
Priority to US16/470,437 priority patent/US20190330275A1/en
Priority to JP2019533655A priority patent/JP2020501584A/ja
Priority to EP17884946.9A priority patent/EP3560950A4/en
Priority to PCT/CN2017/117486 priority patent/WO2018113697A1/zh
Publication of CN108218971A publication Critical patent/CN108218971A/zh
Application granted granted Critical
Publication of CN108218971B publication Critical patent/CN108218971B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/32Alcohol-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/34Tobacco-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/36Opioid-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Addiction (AREA)
  • Psychiatry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychology (AREA)

Abstract

本发明属于生物化学和分子生物学领域,涉及α‑芋螺毒素肽TxID新突变体、其药物组合物及用途。本发明的α‑芋螺毒素肽能够特异地阻断乙酰胆碱受体(nAChRs,例如α3β4nAChRs,或α6β4*nAChRs),并且具有治疗成瘾、神经痛,帕金森症、痴呆、精神***症、抑郁、癌症、恐惧等的活性,具有在制备戒烟戒毒与镇痛药物、有关精神疾病与癌症治疗药物、以及神经科学工具药等方面的良好应用前景。

Description

α-芋螺毒素肽TxID新突变体、其药物组合物及用途
技术领域
本发明属于生物化学和分子生物学领域,涉及α-芋螺毒素肽TxID系列新突变体、其药物组合物及用途。
背景技术
芋螺毒素(Conotoxin,Conopeptide,CTx)是由热带特有的药用海洋生物芋螺分泌产生的,用于捕食和防御的神经肽,具有特异结合动物体内各种离子通道和受体的特殊功能(Terlau,H.,and Olivera,B.M.(2004)Conus venoms:a rich source of novel ionchannel-targeted peptides.Physiological reviews 84,41-68.Schroeder,C.I.,andCraik,D.J.(2012)Therapeutic potential of conopeptides.Future medicinalchemistry 4,1243-1255)。
α-芋螺毒素是目前发现的、选择性最好的烟碱乙酰胆碱受体(nAChRs)亚型特异阻断剂。α-芋螺毒素及其作用靶点nAChRs在多种疾病机理的研究,以及药物研发方面具有极其重要的价值。α-芋螺毒素是人们最早发现的一类芋螺毒素,通常分子量较小,一般由12-19个氨基酸残基组成,富含二硫键。α-芋螺毒素种类繁多,活性多样,结构变化多端。
烟碱乙酰胆碱受体(nAChRs)是动物界普遍存在的具有重要生理作用和临床研究意义的细胞膜蛋白,是人类最早发现的一类受体,可分为两类:肌肉型乙酰胆碱受体和神经型乙酰胆碱受体。nAChRs是细胞膜上的变构膜蛋白,介导众多中枢和外周神经***的生理功能,包括学习、记忆、应答、镇痛和运动控制等。nAChRs激活多巴胺、去甲肾上腺素、五羟色胺、γ-氨基丁酸等多种神经递质的释放(Gotti,C.,and Clementi,F.(2004)Neuronalnicotinic receptors:from structure to pathology.Progress in neurobiology 74,363-396.)。已证实nAChRs是筛选诊断和治疗一大类重要疾病药物的关键靶点,这些疾病包括疼痛、烟酒和毒品成瘾、智障、痴呆、精神***症、中枢神经紊乱、癫痫症、帕金森病、精神病、神经肌肉阻滞、重症肌无力、抑郁症、高血压、心率不齐、哮喘、肌肉松弛、中风、乳腺癌和肺癌等(Gotti,C.,Moretti,M.,Bohr,I.,Ziabreva,I.,Vailati,S.,Longhi,R.,Riganti,L.,Gaimarri,A.,McKeith,I.G.,Perry,R.H.,Aarsland,D.,Larsen,J.P.,Sher,E.,Beattie,R.,Clementi,F.,and Court,J.A.(2006)Selective nicotinic acetylcholinereceptor subunit deficits identified in Alzheimer's disease,Parkinson'sdisease and dementia with Lewy bodies by immunoprecipitation.Neurobiology ofdisease 23,481-489.Lee,C.H.,Huang,C.S.,Chen,C.S.,Tu,S.H.,Wang,Y.J.,Chang,Y.J.,Tam,K.W.,Wei,P.L.,Cheng,T.C.,Chu,J.S.,Chen,L.C.,Wu,C.H.,and Ho,Y.S.(2010)Overexpression and activation of the alpha9-nicotinic receptor duringtumorigenesis in human breast epithelial cells.Journal of the National CancerInstitute 102,1322-1335.Lee,C.H.,Chang,Y.C.,Chen,C.S.,Tu,S.H.,Wang,Y.J.,Chen,L.C.,Chang,Y.J.,Wei,P.L.,Chang,H.W.,Chang,C.H.,Huang,C.S.,Wu,C.H.,and Ho,Y.S.(2011)Crosstalk between nicotine and estrogen-induced estrogen receptoractivation induces alpha 9-nicotinic acetylcholine receptor expression inhuman breast cancer cells.Breast Cancer Res Tr 129,331-345.Rahman,S.(2013)Nicotinic Receptors as Therapeutic Targets for Drug Addictive Disorders.CnsNeurol Disord-Dr 12,633-640)。nAChRs由不同的α和β亚基组装成很多种亚型,每种亚型都有截然不同的药理学特征。开发针对nAChRs各种亚型具有高选择性的配体药物是治疗上述疾病的关键所在(Livett BG,Sandall DW,Keays D,Down J,Gayler KR,SatkunanathanN,Khalil Z.Therapeutic applications of conotoxins that target the neuronalnicotinic acetylcholine receptor.Toxicon,2006,48(7):810-829;Taly A,CorringerPJ,Guedin D,Lestage P,Changeux JP.Nicotinic receptors:allosteric transitionsand therapeutic targets in the nervous system.Nat Rev Drug Discov.2009,8(9):733-50;Layla A,McIntosh JM.Alpha-conotoxins as pharmacological probes ofnicotinic acetylcholine receptors[J].Acta Pharmacol Sin 2009Jun;30(6):771–783.)。然而,要开发这样的药物的前提是,要获得可以特异结合nAChRs各种亚型的选择性化合物,作为工具药来研究和鉴定各种亚型的精细组成和生理功能,或直接作为相关疾病的治疗药物。
药物成瘾既是医疗难题亦是严重的社会问题。烟瘾是由烟草中的烟碱(尼古丁)引起的,其体内受体就是烟碱乙酰胆碱受体(nAChRs)(Azam L,McIntosh JM.Alpha-conotoxins as pharmacological probes of nicotinic acetylcholinereceptors.Acta Pharmacol Sin.2009;30(6):771-783)。研究表明,阻断含有α3β4的nAChRs可有效防止烟瘾、***和***毒瘾的发作,显著抑制吸烟和吸毒的欲望(BrunzellDH,Boschen KE,Hendrick ES,Beardsley PM,McIntosh JM.Alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors in the nucleus accumbens shellregulate progressive ratio responding maintained by nicotine,Neuropsychopharmacology,2010,35(3):665-73)。
α3β4nAChR是感觉的以及自律的神经中枢中主要的乙酰胆碱受体亚型。α3β4nAChRs也是中枢神经***(CNS)神经元的分支,譬如向中枢延伸的松果体缰、背部骨髓,涉及到烟碱及其他滥用药物的成瘾(Millar,N.S.;Gotti,C.,Diversity of vertebratenicotinic acetylcholine receptors.Neuropharmacology 2009,56(1),237-46;Tapper,A.R.;McKinney,S.L.;Nashmi,R.;Schwarz,J.;Deshpande,P.;Labarca,C.;Whiteaker,P.;Marks,M.J.;Collins,A.C.;Lester,H.A.,Nicotine activation of alpha4*receptors:sufficient for reward,tolerance,and sensitization.Science 2004,306(5698),1029-32.)。α3β4nAChR涉及到中枢边缘多巴胺途径,对于滥用某种物质(如尼古丁、毒品等)产生的奖赏效应起着非常重要的作用(Jackson KJ,Sanjakdar SS,Muldoon PP,McIntoshJM,Damaj MI.Theα3β4*nicotinic acetylcholine receptor subtype mediatesnicotine reward and physical nicotine withdrawal signs independently of theα5subunit in the mouse.Neuropharmacology.2013Jul;70:228-35)。α3β4nAChR阻断剂可有效遏制***毒瘾、或***与尼古丁共同产生的毒瘾(Khroyan TV,Yasuda D,Toll L,Polgar WE,Zaveri NT.High affinityα3β4nicotinic acetylcholine receptor ligandsAT-1001and AT-1012attenuate ***einduced conditioned place preference andbehavioral sensitization in mice.Biochem Pharmacol.2015Oct 15;97(4):531-41.)并且在β4亚基敲除的老鼠中,烟碱引起的运动和奖赏效应显著减少,这意味着α3β4nAChR在CNS中烟碱成瘾的重要作用。实验结果显示α3β4nAChR阻断剂也可有效遏制烟瘾、酒瘾的发作(Toll L,Zaveri NT,Polgar WE,Jiang F,Khroyan TV,Zhou W,Xie XS,Stauber GB,Costello MR,Leslie FM.AT-1001:a high affinity and selectiveα3β4nicotinicacetylcholine receptor antagonist blocks nicotine self-administration inrats.Neuropsychopharmacology.2012May;37(6):1367-76.Cippitelli A,Wu J,GaioliniKA,Mercatelli D,Schoch J,Gorman M,Ramirez A,Ciccocioppo R,Khroyan TV,YasudaD,Zaveri NT,Pascual C,Xie XS,Toll L.AT-1001:a high-affinityα3β4nAChR ligandwith novel nicotine-suppressive pharmacology.Br J Pharmacol.2015Apr;172(7):1834-45.Slimak MA,Ables JL,Frahm S,Antolin-Fontes B,Santos-Torres J,MorettiM,Gotti C,I.Habenular expression of rare missense variants oftheβ4nicotinic receptor subunit alters nicotine consumption.Front HumNeurosci.2014Jan 27;8:12.Cippitelli A,Brunori G,Gaiolini KA,Zaveri NT,TollL.Pharmacological stress is required for the anti-alcohol effect of theα3β4*nAChR partial agonist AT-1001.Neuropharmacology.2015Jun;93:229-36.Rahman S,Prendergast MA.Cholinergic receptor system as a target for treating alcoholabuse and dependence.Recent Pat CNS Drug Discov.2012Aug;7(2):145-50.)。
α3β4nAChR在恐惧反应中也起着很重要的作用,对于调节谷氨酸和去甲肾上腺素的释放至关重要(Zhu,P.J.;Stewart,R.R.;McIntosh,J.M.;Weight,F.F.,Activation ofnicotinic acetylcholine receptors increases the frequency of spontaneousGABAergic IPSCs in rat basolateral amygdala neurons.Journal ofneurophysiology 2005,94(5),3081-91.Alkondon,M.;Albuquerque,E.X.,A non-alpha7nicotinic acetylcholine receptor modulates excitatory input tohippocampal CA1interneurons.Journal of neurophysiology 2002,87(3),1651-4.Luo,S.;Kulak,J.M.;Cartier,G.E.;Jacobsen,R.B.;Yoshikami,D.;Olivera,B.M.;McIntosh,J.M.,alpha-conotoxin AuIB selectively blocks alpha3beta4nicotinicacetylcholine receptors and nicotine-evoked norepinephrine release.TheJournal of neuroscience:the official journal of the Society forNeuroscience1998,18(21),8571-9.Kulak,J.M.;McIntosh,J.M.;Yoshikami,D.;Olivera,B.M.,Nicotine-evoked transmitter release from synaptosomes:functionalassociation of specific presynaptic acetylcholine receptors and voltage-gatedcalcium channels.Journal of neurochemistry 2001,77(6),1581-9.)。利用α-芋螺毒素鉴定出,α3β4nAChR在人类肾上腺嗜铬细胞瘤中富集表达(Hone AJ,McIntosh JM,Azam L,Lindstrom J,Lucero L,Whiteaker P,Passas J,Blázquez J,Albillos A.α-ConotoxinsIdentify theα3β4*Subtype as the Predominant Nicotinic Acetylcholine ReceptorExpressed in Human Adrenal Chromaffin Cells.Mol Pharmacol.2015Nov;88(5):881-93.)。α3β4nAChR在嗅觉神经中扮演着重要角色,它介导僧帽细胞应答的筛选过滤作用,通过激活僧帽细胞上的α3β4nAChR引起神经细胞的兴奋(D'Souza RD,VijayaraghavanS.Nicotinic receptor-mediated filtering of mitral cell responses to olfactorynerve inputs involves theα3β4subtype.J Neurosci.2012Feb29;32(9):3261-6)。
含有α3-亚基的nAChRs,包括α3β2与α3β4亚型主要表达在外周神经***,是神经痛药物作用的靶点。阻断α3β2或α3β4nAChRs的α-芋螺毒素在临床前多种顽固性疼痛(chronicpain)模型上显示出很好的镇痛活性,且不成瘾。顽固性疼痛是一个世界性的健康难题,急需新的治疗药物面世(Napier,I.A.;Klimis,H.;Rycroft,B.K.;Jin,A.H.;Alewood,P.F.;Motin,L.;Adams,D.J.;Christie,M.J.,Intrathecalα-conotoxins Vc1.1,AuIB and MIIacting on distinct nicotinic receptor subtypes reverse signs of neuropathicpain.Neuropharmacology 2012,62(7),2202-2207.Blyth,F.M.;March,L.M.;Brnabic,A.J.;Jorm,L.R.;Williamson,M.;Cousins,M.J.,Chronic pain in Australia:aprevalence study.PAIN 2001,89(2-3),127-34.Cousins,M.J.;Brennan,F.;Carr,D.B.,Pain relief:a universal human right.PAIN 2004,112(1-2),1-4.Eisenberg,E.;McNicol,E.D.;Carr,D.B.,Efficacy and safety of opioid agonists in thetreatment of neuropathic pain of nonmalignant origin:systematic review andmeta-analysis of randomized controlled trials.JAMA:the journal of theAmerican Medical Association 2005,293(24),3043-52.)。据调查,疼痛影响几乎1/6的人群,包括关节炎、神经痛、肿痛。其中神经痛影响4-8%的人群,包括酒精中毒、坐骨神经痛、癌症与癌症化疗、糖尿病、三叉神经痛、硬化症、带状疱疹、机械伤和手术伤等都会引起神经痛。
α6/α3β4(α6β4*,*表示其他可能的亚基)nAChR亚型的功能也非常重要,该亚型广泛分布于人类肾上腺嗜铬细胞、大鼠的背根神经节(DRG)神经元、***老鼠海马体的产生去甲肾上腺素神经末端等重要部位。在人类肾上腺嗜铬细胞上是α6β4*nAChRs占主导,而在啮齿类动物的肾上腺嗜铬细胞上是α3β4nAChRs占主导(Hernández-Vivanco A,Hone AJ,Scadden ML,Carmona-Hidalgo B,McIntosh JM,Albillos A.Monkey adrenal chromaffincells expressα6β4*nicotinic acetylcholine receptors.PLoS One.2014Apr 11;9(4):e94142)。存在于背根神经节(DRG)中的乙酰胆碱受体是潜在的镇痛药物作用靶点,研究表明,DRG中的确存在主要表达α6β4*与α3β4nAChRs的神经元(Hone AJ,Meyer EL,McIntyreM,McIntosh JM.Nicotinic acetylcholine receptors in dorsal root ganglionneurons include theα6β4*subtype.FASEB J.2012Feb;26(2):917-26.Smith NJ,HoneAJ,Memon T,Bossi S,Smith TE,McIntosh JM,Olivera BM,Teichert RW.Comparativefunctional expression of nAChR subtypes in rodent DRG neurons.Front CellNeurosci.2013Nov28;7:225)。因而外周神经***DRG中的α6β4*与α3β4nAChRs均是神经痛药物的潜在靶点,这两个亚型的阻断剂有望开发为新型镇痛药。
令人感兴趣的是,α3β4nAChR介导小细胞肺癌(SCLC)细胞的生长,经过该受体进行信号转导促进了肺癌的发生,α3β4nAChR的阻断剂α-芋螺毒素AuIB却能有效抑制SCLC细胞的可变性和生长,这意味着能特异阻断α3β4nAChR的拮抗剂有望开发为治疗小细胞肺癌的新型治疗药物(Improgo MR,Soll LG,Tapper AR,Gardner PD.Nicotinic acetylcholinereceptors mediate lung cancer growth.Front Physiol.2013Sep 17;4:251)。另外,亦有研究表明,特异阻断白血病、肺癌、神经细胞瘤的肿瘤细胞上的α3β4或α6/α3β4nAChRs,有望达到抗癌效果(Improgo MR,Soll LG,Tapper AR,Gardner PD.Nicotinicacetylcholine receptors mediate lung cancer growth.Front Physiol.2013Sep 17;4:251)。
目前,亟需开发新的针对nAChRs不同亚型的高特异性阻断剂。
发明内容
本发明人经过深入的研究和创造性地劳动,发现了一个α-芋螺毒素肽TxID的一系列新突变体,其能够特异性地阻断乙酰胆碱受体,特别是对成瘾、疼痛、小细胞肺癌药物靶点α3β4nAChRs具有选择性强阻断活性的,以及对疼痛药物靶点α6β4*(*表示其他可能的亚基)nAChRs有强阻断活性的,具有在制备戒烟戒毒、镇痛药物、有关小细胞肺癌、抑郁、痴呆、精神***症、帕金森症等治疗药物研发,以及神经科学工具药等方面的极好应用前景。由此提供了下述发明:
本发明的另一方面涉及一种分离的多肽,其氨基酸序列为将SEQ ID NO:1所示序列中第9位的丝氨酸替换为一个不同的L型或D型的氨基酸;优选地,将SEQ ID NO:1所示序列中第9位的丝氨酸替换为丙氨酸、2-氨基丁酸、组氨酸、精氨酸、酪氨酸、苏氨酸、赖氨酸、亮氨酸、苯丙氨酸、D-精氨酸、D-丝氨酸、谷氨酸或天冬氨酸。所述不同的L型或D型的氨基酸是指该氨基酸与第9位的丝氨酸不相同,即替换之后的第9位氨基酸不是L型丝氨酸。
本发明还涉及一种分离的多肽,其氨基酸序列为在SEQ ID NO:1所示序列中第9位的丝氨酸和第10位的之间***一个L型或D型的氨基酸,并且所述L型或D型的氨基酸不是L型丝氨酸;优选地,在SEQ ID NO:1所示序列中第9位和第10位之间***一个丙氨酸、2-氨基丁酸、组氨酸、精氨酸、酪氨酸、苏氨酸、赖氨酸、亮氨酸、苯丙氨酸、D-精氨酸、D-丝氨酸、谷氨酸或天冬氨酸。
本发明的一个方面涉及一种分离的多肽,其氨基酸序列分别如SEQ ID NO:2-3、7、9、11-33中的任一序列所示。
在本发明的一个实施方案中,所述的多肽,其中,所述多肽的N末端的第一个半胱氨酸与第三个半胱氨酸形成二硫键,并且第二个半胱氨酸与第四个半胱氨酸形成二硫键;或所述多肽的N末端的第一个半胱氨酸与第四个半胱氨酸形成二硫键,并且第二个半胱氨酸与第三个半胱氨酸形成二硫键;或所述多肽的N末端的第一个半胱氨酸与第二个半胱氨酸形成二硫键,并且第三个半胱氨酸与第四个半胱氨酸形成二硫键
在本发明的一个实施方案中,所述多肽的羧基末端是酰胺化的。
虽然野生型α-芋螺毒素TxID已经在本发明人之前的专利和文章中公开,但很多研究表明,对于芋螺毒素肽,序列上一个氨基酸的差异就可能产生新的受体特异性,意味着在受体研究中提供了一种新的工具,在新药开发上提供了一种新的候选药物和先导药物(芋螺毒素肽,卢柏松、黄培堂1999年专利,申请号:99106070.9。Halai,R.,Clark,R.J.,Nevin,S.T.,Jensen,J.E.,Adams,D.J.,and Craik,D.J.(2009).Scanning mutagenesis ofalpha-conotoxin Vc1.1reveals residues crucial for activity at thealpha9alpha10nicotinic acetylcholine receptor.The Journal of biologicalchemistry 284,20275-20284.Kompella SN,Hung A,Clark RJ,Mari F,AdamsDJ.2015.Alanine scan of alpha-conotoxin RegIIA reveals a selectivealpha3beta4nicotinic acetylcholine receptor antagonist.J Biol Chem 290:1039-1048.)。本发明的研究结果(表2,表3)更加证实了这个事实。
本发明鉴定出了TxID突变体与α3β4和α6/α3β4nAChR两个亚型之间相互作用的关键氨基酸(如表2),除了维持二硫键连接的半胱氨酸(Cys,C)外,包括第5位的组氨酸(TxID[H5A])、第6位的脯氨酸(TxID[P6A])、第7位的缬氨酸(TxID[V7A])、第11位的甲硫氨酸(TxID[M11A])、第13位的脯氨酸(TxID[P13A]),TxID上的这5个氨基酸对于与α3β4和α6/α3β4nAChR受体相互作用起至关重要的作用,无论哪一个氨基酸被丙氨酸(Ala,A)取代,它们对两个亚型的阻断活性全部丧失,其半阻断剂量(IC50)均在10000nM以上,即在10μM高浓度下,这些突变体对α3β4和α6/α3β4nAChR两个亚型的电流阻断超不过50%,或者完全没有阻断作用。详见表2。
此外,位于TxID上的第9位的丝氨酸(Ser,S)对α6/α3β4nAChR这个亚型的结合也很重要,如果用丙氨酸、精氨酸、或赖氨酸取代该位的丝氨酸(TxID[S9A]、TxID[S9R]、TxID[S9K]),导致与α6/α3β4nAChR的阻断活性大幅度下降,如TxID[S9A]和TxID[S9R]对α6/α3β4nAChR的阻断活性比野生型的TxID,分别下降了5.2和7.8倍,而TxID[S9K]更是下降了534.8倍。这说明了TxID上的第9位的丝氨酸对α6/α3β4nAChR这个亚型的结合的重要性。但是,如果将TxID上的第9位的丝氨酸分别突变为2-氨基丁酸(TxID[S9Abu])、组氨酸(TxID[S9H])、酪氨酸(TxID[S9Y])、苏氨酸(TxID[S9T])、亮氨酸(TxID[S9L])、苯丙氨酸(TxID[S9F]),所产生的这些突变体,基本上保持了对α3β4和α6/α3β4nAChR受体的结合活性,与野生型的TxID活性差异不大。若将TxID上的第9位的丝氨酸分别突变为D-型精氨酸(TxID[S9(D-Arg)])、D-型丝氨酸(TxID[S9(D-Ser)])、谷氨酸(TxID[S9E])、天冬氨酸TxID[S9D],所产生的这些突变体,对α3β4和α6/α3β4nAChR受体的结合活性大幅度下降,至少下降10倍以上,降幅在10-303倍之间(表2)。而TxID[S9E]对α3β4nAChR受体的结合活性急剧减弱100倍以上,并完全丧失了对α6/α3β4nAChR受体的结合(阻断)活性(表2)。因而,TxID上的第9位的丝氨酸对于受体的结合活性也很重要,其突变体的活性变化取决于取代该位置的氨基酸种类。
TxID上的第1位的甘氨酸对于受体的结合活性也较重要,用丙氨酸取代该甘氨酸(TxID[G1A])的突变体活性下降明显,对α3β4和α6/α3β4nAChR受体的结合活性分别下降了17倍和8.2倍。该发明的研究结果证实了芋螺毒素氨基酸序列及其生物活性功能的高度多样性,芋螺毒素序列上一个氨基酸出现差异就可能导致功能的改变。
其中,本发明人还发现了5个TxID新突变体:SEQ ID NO:7即TxID[S9A]、SEQ IDNO:19即TxID[S9R]、SEQ ID NO:24即TxID[S9K]、SEQ ID NO:29即TxID[14D]以及SEQ IDNO:31即TxID[S9E]对α3β4与α6β4*nAChRs这两个亚型有很好的区分度,其区分度范围达到了45倍以上,甚至可以完全区分开,即对α3β4nAChRs有阻断活性,而对α6β4*nAChRs却几乎没有阻断活性(表3)。其中,TxID[S9E]对α3β4nAChR受体表现出很好的选择性,虽然其对α3β4nAChR受体的阻断活性较弱,但完全丧失了对α6/α3β4nAChR受体的结合活性。这种独特的优势,使得上述多肽作为工具药,在区分α3β4和α6/α3β4nAChR相似亚型方面具有重要的科学意义与很高的应用价值。所有这些结果,对于设计和研发针对α3β4和α6/α3β4nAChR亚型结构与功能研究的分子探针、以及新药研发都具有极高的应用价值。
本发明得到了一种新型α-芋螺毒素(命名为α-CTx TxID新突变体),是α3β4nAChR的强阻断剂,也是迄今为止发现的活性最强的α3β4nAChR阻断剂,其对α6/α3β4nAChR也有较强或一定的阻断作用,对其余nAChR亚型的阻断活性没有或极其微弱。能有效区分α3β4与α6β4*nAChRs这两个相似亚型的配体物质极其缺乏。因而α-芋螺毒素TxID系列新突变体是α3β4或α6β4*nAChRs结构与功能研究的新型工具,并有助于开发针对成瘾、疼痛、癌症、恐惧等有关的治疗药物。
在本发明的一个实施方案中,所述的多肽,其用于治疗和/或预防神经***疾病或癌症,或者用于杀灭害虫、镇痛、戒烟或戒毒;
优选地,所述神经***疾病为成瘾、神经痛、帕金森症、痴呆、精神***症和抑郁中的至少一种;
优选地,所述成瘾由如下因素中的至少一种导致:各种精神活性物质例如尼古丁、***、***、甲基***(***)、***、***、***或酒精;
优选地,所述神经痛选自如下的至少一种:坐骨神经痛、三叉神经痛、淋巴神经痛、多点运动神经痛、急性剧烈自发性神经痛、挤压神经痛以及复合神经痛;
优选地,所述神经痛由如下因素中的至少一种导致:癌症、癌症化疗、酒精中毒、糖尿病、硬化症、带状疱疹、机械伤、手术伤、艾滋病、头部神经瘫痪、药物中毒、工业污染中毒、骨髓瘤、慢性先天性感觉神经病、脉管炎、血管炎、局部缺血、***、儿童胆汁肝脏疾病、慢性呼吸障碍、多器官衰竭、脓毒病/脓血症、肝炎、卟啉症、维生素缺乏、慢性肝脏病、原生胆汁硬化、高血脂症、麻疯病、莱姆关节炎、感觉神经束膜炎或过敏症;
优选地,所述癌症为肺癌例如小细胞肺癌、卵巢癌或者乳腺癌。
上述多肽可以化学合成氨基酸序列(例如参考实施例1中的方法);或者通过基因重组的手段表达其核苷酸(核苷酸序列的制备可以参考分子生物学的常规方法),得到多肽。也可以参考下面的方法:
本发明的多肽的制备方法,包括下述步骤:
1)通过多肽合成仪或者手工方法合成线性多肽,Fmoc氨基酸的侧链保护基为:Pmc(Arg)、But(Thr、Ser、Tyr)、OBut(Asp)、Boc(Lys);半胱氨酸用Trt或Acm保护基团;
2)将步骤1)中得到的线性多肽从树脂上切割下来,并用冰***沉淀和洗涤回收线性多肽粗品,用制备型反向HPLC C18柱(Vydac)纯化;
3)将步骤2)中得到的产物进行两步氧化折叠。
本发明的再一方面涉及一种分离的融合蛋白,其包含至少一种本发明的多肽。
本发明还包括在本发明α-芋螺毒素肽的N-末端和/或C末端融合了其它肽/多肽的融合多肽或可裂解的融合多肽。产生融合多肽的技术为本领域内已知,包括连接编码本发明肽的编码序列与编码所述其它肽/多肽的编码序列,使它们在同一读框中,并且融合多肽的表达受控于相同的启动子和终止子。
本发明的再一方面涉及一种分离的多核苷酸,其编码本发明的多肽。
本发明的再一方面涉及一种核酸构建体,其含有本发明的多核苷酸;优选地,所述核酸构建体为重组载体;优选地,所述核酸构建体为重组表达载体。
本发明的再一方面涉及一种转化的细胞,其含有本发明的多核苷酸,或者本发明的核酸构建体。
本发明的再一方面涉及一种药物组合物,其含有至少一种本发明的多肽;可选地,其还包含药学上可接受的辅料。
所述药物组合物可用于研究、诊断、缓解或治疗与成瘾、神经痛、癌症、智障、疼痛、帕金森症、精神病、抑郁、重症肌无力等有关的疾病或病症。在一个实施方案中,含有治疗有效量的本发明肽的药物组合物以利于药用的方式配制和给药,并需考虑到个体病人的临床状况、运送位点、给药方法、给药日程安排和医生已知的其它因素。因此用于本文目的的“有效量”由这些方面的考虑决定。
含治疗有效量的本发明多肽的药物组合物非肠道给药、口服、脑池内给药、鞘内给药等。“药学可接受载体”指无毒的固体、半固体或液体填充物、稀释液、胶囊材料或任何类型的配方辅助物。本文所用术语“非肠道的”表示的给药方式包括静脉内、肌肉内、腹膜内、胸骨内、皮下、鞘内和关节内注射和输注。本发明多肽还可通过缓释***恰当地给药。
本发明的再一方面涉及本发明的多肽在制备阻断乙酰胆碱受体的药物中的用途;优选地,所述乙酰胆碱受体是α3β4乙酰胆碱受体,或α6β4*乙酰胆碱受体例如α6/α3β4乙酰胆碱受体。
本发明的再一方面涉及本发明的多肽或者药物组合物在制备治疗和/或预防神经***疾病或癌症的药物中的用途,或者在制备杀灭害虫、镇痛、戒烟或戒毒的药物中的用途;
优选地,所述神经***疾病为成瘾、神经痛、帕金森症、痴呆、精神***症和抑郁中的至少一种;
优选地,所述成瘾由如下因素中的至少一种导致:各种精神活性物质例如尼古丁、***、***、甲基***(***)、***、***、***或酒精;
优选地,所述神经痛选自如下的至少一种:坐骨神经痛、三叉神经痛、淋巴神经痛、多点运动神经痛、急性剧烈自发性神经痛、挤压神经痛以及复合神经痛;
优选地,所述神经痛由如下因素中的至少一种导致:癌症、癌症化疗、酒精中毒、糖尿病、硬化症、带状疱疹、机械伤、手术伤、艾滋病、头部神经瘫痪、药物中毒、工业污染中毒、骨髓瘤、慢性先天性感觉神经病、脉管炎、血管炎、局部缺血、***、儿童胆汁肝脏疾病、慢性呼吸障碍、多器官衰竭、脓毒病/脓血症、肝炎、卟啉症、维生素缺乏、慢性肝脏病、原生胆汁硬化、高血脂症、麻疯病、莱姆关节炎、感觉神经束膜炎或过敏症;
优选地,所述癌症为肺癌例如小细胞肺癌、卵巢癌、白血病、神经细胞瘤或者乳腺癌。
现有技术研究表明,α3β4nAChR是治疗神经精神疾病,如烟碱、***与***等的成瘾、神经痛、小细胞肺癌、帕金森病、痴呆、精神***症、抑郁、恐惧等的药物作用靶点,α6β4*nAChRs也是诸多疾病的潜在靶点,也是疼痛药物的作用靶点等(参见背景技术中的相关文献)。因此,本发明的新的α-芋螺毒素TxID突变体在上述疾病的机理研究、诊断、治疗方面具有极高的应用价值。
本发明的再一方面涉及一种在体内或体外阻断乙酰胆碱受体或者调节乙酰胆碱水平的方法,包括给予受试者或者施加给细胞有效量的本发明的多肽或者药物组合物的步骤;优选地,所述乙酰胆碱受体是α3β4乙酰胆碱受体或α6β4*乙酰胆碱受体例如α6/α3β4乙酰胆碱受体。
本发明的再一方面涉及一种治疗和/或预防神经***疾病或癌症的方法,或者一种杀灭害虫、镇痛、戒烟或戒毒的方法,包括给予受试者有效量的本发明的多肽或者药物组合物的步骤;
优选地,所述神经***疾病为成瘾、神经痛、帕金森症、痴呆、精神***症和抑郁中的至少一种;
优选地,所述成瘾由如下因素中的至少一种导致:各种精神活性物质例如尼古丁、***、***、甲基***(***)、***、***、***或酒精;
优选地,所述神经痛选自如下的至少一种:坐骨神经痛、三叉神经痛、淋巴神经痛、多点运动神经痛、急性剧烈自发性神经痛、挤压神经痛以及复合神经痛;
优选地,所述神经痛由如下因素中的至少一种导致:癌症、癌症化疗、酒精中毒、糖尿病、硬化症、带状疱疹、机械伤、手术伤、艾滋病、头部神经瘫痪、药物中毒、工业污染中毒、骨髓瘤、慢性先天性感觉神经病、脉管炎、血管炎、局部缺血、***、儿童胆汁肝脏疾病、慢性呼吸障碍、多器官衰竭、脓毒病/脓血症、肝炎、卟啉症、维生素缺乏、慢性肝脏病、原生胆汁硬化、高血脂症、麻疯病、莱姆关节炎、感觉神经束膜炎或过敏症;
优选地,所述癌症为肺癌例如小细胞肺癌、卵巢癌、白血病、神经细胞瘤或者乳腺癌。
给药剂量取决于许多因素,例如所治疗病况的严重程度,患者或动物的性别、年龄、体重及个体反应,以及待治疗患者的病况和既往病史来选定。本领域通常的做法是,剂量从低于为得到所需治疗效果而要求的水平开始,逐渐增加剂量,直到得到所需的效果。
本发明中,
术语“成瘾(addiction)”,是指反复使用精神活性物质者处于周期性或慢性中毒状态。精神活性物质指尼古丁、***、***、甲基***(***)、***、***、***以及国家规定管制的其他能够使人形成瘾癖的***品和***等。成瘾与大脑中大量产生的多巴胺(Dopamine)有关。表现为不可遏制地应用偏爱的物质和难以自制或难以矫正使用行为,为获取精神活性物质达到感觉良好或避免戒断痛苦之目的,可以不择手段。典型情况是耐受性增高,并在物质使用中断后常出现戒断症状。成瘾者的生活可能完全由物质使用主宰,因而严重影响,甚至抛弃了其他重要活动和一切责任。因此,物质使用既给个人,也给社会带来损害。当用于酒精使用时,与慢性酒精中毒的概念等同。成瘾一词还涵盖躯体及心理两方面的内容。心理成瘾强调对饮酒、服药的自控力受损体验,而躯体成瘾指耐受和戒断症状。
术语“核酸构建体”,在文中定义为单链或双链核酸分子,优选是指人工构建的核酸分子。可选地,所述核酸构建体还包含有可操作地连接的1个或多个调控序列。
在本发明中,术语“可操作地连接”是指两个或多个核苷酸区域或核酸序列的功能性的空间排列。所述“可操作地连接”可以通过基因重组的手段实现。
在本发明中,术语“载体”指的是,可将抑制某蛋白的多核苷酸***其中的一种核酸运载工具。举例来说,载体包括:质粒;噬菌粒;柯斯质粒;人工染色体如酵母人工染色体(YAC)、细菌人工染色体(BAC)或P1来源的人工染色体(PAC);噬菌体如λ噬菌体或M13噬菌体及动物病毒等。用作载体的动物病毒种类有逆转录酶病毒(包括慢病毒)、腺病毒、腺相关病毒、疱疹病毒(如单纯疱疹病毒)、痘病毒、杆状病毒、***瘤病毒、***多瘤空泡病毒(如SV40)。一种载体可能含有多种控制表达的元件。
在本发明中,术语“宿主细胞”指的是导入载体的细胞,包括如下许多细胞类型,如大肠杆菌或枯草菌等原核细胞,如酵母细胞或曲霉菌等真菌细胞,如S2果蝇细胞或Sf9等昆虫细胞,或者如纤维原细胞,CHO细胞,COS细胞,NSO细胞,HeLa细胞,BHK细胞,HEK 293细胞或人细胞的动物细胞。
术语“有效量”是指可在受试者中实现治疗、预防、减轻和/或缓解本发明所述疾病或病症的剂量。
术语“疾病和/或病症”是指所述受试者的一种身体状态,该身体状态与本发明所述疾病和/或病症有关。
术语“受试者”可以指患者或者其它接受本发明药物组合物以治疗、预防、减轻和/或缓解本发明所述疾病或病症的动物,特别是哺乳动物,例如人、狗、猴、牛、马等。
本发明中,如果没有特别说明,浓度单位μM表示μmol/L,mM表示mmol/L,nM表示nmol/L。
本发明中,提到细胞中的加药量时,如果没有特别说明,一般是指加药后药物的终浓度。
本发明中提到术语“氨基酸”或者具体的氨基酸名称时,如果没有特别说明,是指L型的氨基酸。
发明的有益效果
本发明得到了一种新型α-芋螺毒素(命名为α-CTx TxID新突变体),是α3β4nAChR的强阻断剂,也是迄今为止发现的活性最强的α3β4nAChR阻断剂,其对α6/α3β4nAChR也有较强或一定的阻断作用,对其余nAChR亚型的阻断活性没有或极其微弱。能有效区分α3β4与α6β4*nAChRs这两个相似亚型的配体物质极其缺乏。本发明中的有些TxID新突变体对α3β4与α6β4*nAChRs这两个亚型具有很好的区分度(45倍以上,甚至完全能区分),如表1-3中的SEQID NO:7,19,24,29,即7.TxID[S9A]、19.TxID[S9R]、24.TxID[S9K]与29.TxID[14D]。因而α-芋螺毒素TxID系列新突变体是α3β4或α6β4*nAChRs结构与功能研究的新型工具,并有助于开发针对成瘾、疼痛、癌症、抑郁、恐惧等有关的治疗药物。
附图说明
图1:TxID与TxID[S9A]的HPLC色谱图与质谱图。图1A,TxID的HPLC色谱图,出峰时间为23.31min。图1B,TxID的ESI-MS质谱图,其实测分子量为1488.56Da,与理论值一致。图1C,TxID[S9A]的HPLC色谱图,出峰时间为25.08min。图1D,TxID[S9A]的ESI-MS质谱图,其实测分子量为1472.56Da,与理论值一致。
图2:图2A-2D,分别显示了1μM的TxID、TxID[S9H]、TxID[S9L]或TxID[S9Y]对大鼠α3β4nAChRs电流的强阻断作用。
在非洲爪蟾***中表达大鼠α3β4nAChRs,细胞膜的钳制电压为-70mV,每隔分钟给1s的Ach脉冲。每个图中显示的是1个多肽在1个***上的代表性电流轨迹。获得对照电流后,加入1μM的毒素肽,温育5min之后的第一个Ach脉冲电流即是该多肽对受体产生影响的电流轨迹,图上用箭头标示。然后对多肽进行洗脱,洗脱过程中对Ach脉冲产生的电流大小及其轨迹也被同时测定。图中的“C”表示ACh激发产生的对照电流。下面的后续电流轨迹图中的标识,与此说明相同。
图3:图3A-3D,分别显示了1μM的TxID[14D]、TxID[14H]、TxID[I14L]或TxID[S9(D-Arg)]对大鼠α3β4nAChRs电流的阻断作用。
图4:图4A-4D,分别显示了1μM的TxID[S9(D-Ser)]、TxID[S9A]、TxID[S9Abu]或TxID[S9F]对大鼠α3β4nAChRs电流的阻断作用。
图5:图5A-5D,分别显示了1μM的TxID[S9K]、TxID[S9T]、TxID[S12Y]或TxID[S9R]对大鼠α3β4nAChRs电流的阻断作用。
图6:图6A-6E,分别显示了10μM的TxID[10R]、TxID[H5W,S9A]、TxID[H5W]、TxID[M11H]或TxID[10R]对大鼠α3β4nAChRs的电流没有阻断作用。
图7:图7A-7D,分别显示了1μM的TxID[S9Abu]、TxID[S9F]、TxID或TxID[I14L]对大鼠α6/α3β4nAChRs电流的阻断作用。
图8:图8A-8D,分别显示了1μM的TxID[S9(D-Arg)]、TxID[S9A]、TxID[S7H]或TxID[S9L]对大鼠α6/α3β4nAChRs电流的阻断作用。
图9:图9A-9D,分别显示了1μM的TxID[S9R)]、TxID[S9T]、TxID[S9Y]或TxID[S12Y]对大鼠α6/α3β4nAChRs电流的阻断作用。
图10:图10A-10D,分别显示了10μM的TxID[9R]、TxID[10R]、TxID[H5W,S9A]、或TxID[H5W]对大鼠α6/α3β4nAChRs的电流没有阻断作用。
图11:图11A-11C,分别显示了10μM的TxID[S9D]、TxID[S9E]或TxID[S9K]对大鼠α6/α3β4nAChRs的电流没有阻断作用。
图12:100nM或10nM的TxID或TxID[S9A]对大鼠α3β4和α6/α3β4nAChRs的电流影响情况,二者显示出不同的区分度。在非洲爪蟾***中表达大鼠α3β4和α6/α3β4nAChRs,细胞膜的钳制电压为-70mV,每隔分钟给1s的Ach脉冲。图中显示的是1个多肽在1个***上的代表性电流轨迹。获得对照电流后,加入100nM或10nM的毒素肽,温育5min之后的第一个Ach脉冲电流即是该多肽对受体产生影响的电流轨迹,图上用箭头标示。然后对多肽进行洗脱,洗脱过程中对Ach脉冲产生的电流大小及其轨迹也被同时测定。图中的“C”表示ACh激发产生的对照电流。
图12A,100nM的TxID对大鼠α3β4nAChRs的电流影响情况。
图12B,100nM的TxID对大鼠α6/α3β4nAChRs的电流影响情况。
图12C,100nM的TxID[S9A]对大鼠α3β4nAChRs的电流影响情况。
图12D,100nM的TxID[S9A]对大鼠α6/α3β4nAChRs的电流影响情况。
图12E,10nM的TxID对大鼠α3β4nAChRs的电流影响情况。
图12F,10nM的TxID对大鼠α6/α3β4nAChRs的电流影响情况。
图12G,10nM的TxID[S9A]对大鼠α3β4nAChRs的电流影响情况。
图12H,10nM的TxID[S9A]对大鼠α6/α3β4nAChRs的电流影响情况。
图13:TxID或TxID[S9A]对大鼠α3β4和α6/α3β4nAChRs的浓度反应曲线。图中横坐标为所用多肽的摩尔浓度(M)的对数值;纵坐标为剂量反应百分数(%Response),是相应浓度的毒素作用下乙酰胆碱受体电流与对照电流的比值百分数。相应的半阻断剂量(IC50)见表2。图中各个数值是取自5-21个非洲爪蟾***的电流平均值。图13A,TxID对α3β4nAChRs或α6/α3β4nAChRs两种亚型的浓度剂量反应曲线。图13B,TxID[S9A]对α3β4nAChRs与α6/α3β4nAChRs两种亚型的浓度剂量反应曲线。
图14:图14A,1μM的TxID[S9K]对大鼠α3β4nAChRs的电流影响情况。图14B,10μM的TxID[S9K]对大鼠α6/α3β4nAChRs的电流影响情况。图14A和图14B显示了TxID[S9K]对极其相似的α3β4与α6/α3β4nAChRs这两个亚型之间的区分度极高。
图15:TxID[S9A](isomer 1)和TxID(isomer 1)的二级化学位移(纵坐标)分析比较。
图上显示了TxID[S9A]以及TxID的氨基酸序列,括号中的氨基酸S表示TxID的第9位的丝氨酸(Ser)用丙氨酸(Ala,A)取代后就突变为突变体TxID[S9A]。图中黑色柱条代表TxID[S9A],灰色柱条代表TxID。
图16:图16A,TxID与α3β4乙酰胆碱受体的分子结合模型。
图16B,TxID与α6β49乙酰胆碱受体的分子结合模型。
其中图16A和16B中,α3亚基用粉红色显示,α6亚基用蓝色显示,β4亚基用绿色显示。在Ser-9与Lys-81之间形成了氢键,用虚线表示。β4亚基上的氨基酸序号是根据大鼠β4亚基前体序列的全长进行编号的(UniProt identifier P12392)。
图16C,TxID在50ns内进行的分子动力学(MD)模拟结果。显示了TxID的Ser-9侧链羟基与β4Lys-81侧链氮原子之间随时间变化的距离。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述。本领域技术人员将会理解,下面的实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件(例如参考J.萨姆布鲁克等著,黄培堂等译的《分子克隆实验指南》,第三版,科学出版社)或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1:α-芋螺毒素TxID新突变体的序列设计及其人工合成
在α-芋螺毒素TxID成熟肽(其氨基酸序列如下面表1中的SEQ ID NO:1所示,并且C末端酰胺化)的基础上,本发明人创造性地设计了一系列新的多肽突变体,其氨基酸序列如下面的表1中的SEQ ID NO:2-37所示。
采用Fmoc方法人工合成表1中所列多肽的线性肽。具体方法如下:
树脂肽采用Fmoc化学方法进行人工合成,可用多肽合成仪或手工合成法合成树脂肽。除了半胱氨酸外,其余氨基酸用标准的侧链保护基团。每个多肽的第1和第3个半胱氨酸(Cys)的-SH用Trt(S-trityl)保护,第2和第4个半胱氨酸的-SH用Acm(S-acetamidomethyl)成对保护,氧化折叠后的二硫键连接方式为Cys1-Cys3和Cys2-Cys4,即Cys(1-3,2-4)。其合成步骤为:采用固相合成法中的Fmoc与FastMoc方法,在ABI Prism 433a多肽合成仪上合成了线性肽。Fmoc氨基酸的侧链保护基为:Pmc(Arg)、Trt(Cys)、But(Thr、Ser、Tyr)、OBut(Asp)、Boc(Lys).采用Fmoc HOBT DCC方法,Rink酰胺化树脂及Fmoc氨基酸,合成步骤参考仪器合成手册进行。为反应完全,在哌啶脱保护及偶合时间上分别适当延长,对难接氨基酸采用双偶合,获得树脂肽。用reagent K(trifluoroacetic acid/water/ethanedithiol/phenol/thioanisole;90:5:2.5:7.5:5,v/v/v/v/v)将线性肽从树脂上切割下来,并用冰***沉淀和洗涤回收线性肽粗品,
用制备型反向HPLC C18柱(Vydac)纯化,洗脱梯度为在0-20min内10-40%B90。溶剂B90是90%ACN(acetonitrile),0.5%TFA(trifluoroacetic acid),其余的是纯水;溶剂A是0.65%TFA的水溶液。紫外吸收值分析在214nm波长下进行。纯化后的线性肽用分析型的HPLC C18柱(Vydac)进行纯度检测,洗脱梯度同上。其纯度达95%以上,用于氧化折叠。
参照文献(Dowell,C.;Olivera,B.M.;Garrett,J.E.;Staheli,S.T.;Watkins,M.;Kuryatov,A.;Yoshikami,D.;Lindstrom,J.M.;McIntosh,J.M.,Alpha-conotoxin PIA isselective for alpha6subunit-containing nicotinic acetylcholine receptors.TheJournal of neuroscience 2003,23(24),8445-52.)对上述线性肽进行两步氧化折叠反应,过程简述如下:
首先通过铁***氧化法(20mM potassium ferricyanide,0.1M Tris,pH 7.5,30min)在Trt保护基团的两个半胱氨酸之间形成第一对二硫键。单环肽经反相HPLC C18柱(Vydac)纯化后,进行碘氧化(10mM iodine in H2O:trifluoroacetic acid:acetonitrile(78:2:20by volume,10min),移去另外2个半胱氨酸上的Acm,同时在这2个半胱氨酸之间形成第二对二硫键。二环肽再经反相HPLC C18柱(Vydac)纯化,洗脱线性梯度仍为在0-20min内10-40%B90。紫外吸收值分析在214nm波长下进行。即获得按照从N端至C端的顺序在相应的半胱氨酸之间定向形成二硫键的α-芋螺毒素。
纯化后的带有2对二硫键的多肽经HPLC和质谱进行纯度和分子量检测,结果均为正确。HPLC色谱分析条件为:用Vydac C18HPLC反相分析柱,在20分钟内进行梯度洗脱,B液从10%到40%,A液从90%到60%,A液是0.65%的三氟乙酸(trifluoroacetic acid,TFA),B是0.5%TFA与90%乙腈(acetonitrile)的水溶液。紫外分析波长为214nm,TxIC的出峰时间,即保留时间是23.366分钟。
例如,图1A-图1D显示了TxID与TxID[S9A]的HPLC色谱图与质谱图。TxID的出峰时间为23.31min(图1A),并通过质谱(ESI-MS)鉴定为正确(图1B)。氧化折叠后的TxID的理论分子量(monoisotopic mass)与测定分子量一致:TxID的理论分子量为1488.559Da,TxID的测定分子量为1488.56Da。TxID[S9A]的出峰时间为25.08min(图1C),并通过ESI-MS质谱鉴定亦为正确(图1D)。氧化折叠后的TxID[S9A]的理论分子量(monoisotopic mass)也与测定分子量一致:TxID[S9A]的理论分子量为1472.564Da,TxID[S9A]的测定分子量为1472.56Da。
经过上述步骤,表1中所列的37个多肽全部正确合成,并形成了二硫键连接方式为Cys(1-3,2-4)的氧化折叠肽,可用于后续活性研究与结构分析。
多肽浓度用280nm波长下比色测定,根据Beer-Lambert方程(equation)计算多肽浓度和质量,用于下面实施例中的各项实验。
实施例2:α-芋螺毒素TxID新突变体特异阻断α3β4 nAChR亚型的实验
参照文献(Luo S,Zhangsun D,Zhu X,Wu Y,Hu Y,Christensen S,Harvey PJ,Akcan M,Craik DJ,McIntosh JM.Characterization of a novelα-conotoxin TxID fromConus textile that potently blocks rateα3β4nicotinic acetylcholinereceptors.Journal of Medicinal Chemistry.2013,56:9655-9663.Azam L,YoshikamiD,McIntosh JM.Amino acid residues that confer high selectivity of thealpha6nicotinic acetylcholine receptor subunit to alpha-conotoxin MII[S4A,E11A,L15A].J Biol Chem.2008;283(17):11625-32.)中的方法,以及体外转录试剂盒(mMessage mMachine in vitro transcription kit(Ambion,Austin,TX))说明书,制备各种大鼠神经型nAChRs亚型(α3β4,α6/α3β4,α9α10,α4β2,α4β4,α3β4,α2β2,α2β4,α7)、人类α3β4、α6/α3β4,以及小鼠肌肉型nAChRs(α1β1δε)的cRNA,其浓度用UV 260nm下的OD值进行测算。解剖收集非洲爪蟾(Xenopus laveis)***(蛙卵),将cRNA注射入蛙卵中,每个亚基的注射量为5-10ng cRNA。蛙卵在ND-96中培养。蛙卵收集后的1-2天内注射cRNA,注射后1-4天内用于nAChRs的电压钳记录。
将1个注射过cRNA的蛙卵置于30μL的Sylgard记录槽中(直径4mm×深度2mm),重力灌注含有0.1mg/ml BSA(bovine serum albumin)的ND96灌流液(96.0mM NaCl,2.0mM KCl,1.8mM CaCl2,1.0mM MgCl2,5mM HEPES,pH 7.1-7.5)或含有1mM atropine的ND96(ND96A),流速为1ml/min。所有的芋螺毒素溶液也含有0.1mg/ml BSA以减少毒素的非特异性吸附,用转换阀(SmartValve,Cavro Scientific Instruments,Sunnyvale,CA)可以在灌注毒素或乙酰胆碱(ACh)之间进行自由切换,以及一系列三通螺线阀(solenoid valves,model161TO31,Neptune Research,Northboro,MA)使灌注ND96与ACh等之间进行自由切换。Ach门控的电流由双电极电压箝放大器(model OC-725B,Warner Instrument Corp.,Hamden,CT)设置在“慢”箝,以及clamp gain在最大值(×2000)位置时进行在线记录。用1mm外径×0.75内径mm的玻璃毛细管(fiber-filled borosilicate capillaries,WPI Inc.,Sarasota,FL)拉制玻璃电极,并充满3M KCl作为电压和电流电极。膜电压箝制在-70mV.整个***均由电脑控制和记录数据。ACh脉冲为每隔5min自动灌注1s的ACh。ACh的浓度分别为,表达肌肉型的nAChRs和神经型α9α10nAChRs卵为10μM;表达神经型的nAChRs之α7为200μM,其它的亚型都为100μM。至少记录5个卵表达某个亚型对不同毒素浓度的电流反应情况,以及电流轨迹。
测试的电流数据用GraphPad Prism软件(San Diego,CA)进行统计分析,绘制剂量反应曲线,计算芋螺毒素的半阻滞浓度IC50等多种有关毒素阻断nAChRs的各种参数。
实验结果如下面的表2所示。这些突变体对α3β4nAChR的阻断活性与TxID相比的比值也总结在表2中。
结果表明:
SEQ ID NO:2-3、7、9、11-32所示的26个突变体(实施例1制备)对大鼠α3β4nAChR均有纳摩尔级的阻断作用(请参见表2,以及图2A-2D、图3A-3D、图4A-4D和图5A-5D),其半阻断剂量(IC50)从1.87nM到379.5nM不等(表2)。其中,绝大部分的突变体(共23个多肽),都保持了对α3β4nAChR的强阻断活性,其IC50均在100nM以下;有19个多肽对α3β4nAChR有更强的阻断活性,其IC50均在36nM以下。
大多数突变体对α3β4nAChR的阻断活性极强,其IC50与TxID接近,均在10nM以下,有的甚至比TxID的阻断活性(IC50,3.6nM)还要强,如SEQ ID NO:17TxID[S9Abu]和SEQ ID NO:18TxID[S9H]的IC50分别仅为1.87nM与2.61nM(表2),是迄今发现的对α3β4nAChR阻断活性最强的特异阻断剂。
TxID及其新突变体对α3β4nAChR电流阻断后的洗脱速率有所不同(图2A-2D,图3A-3D,图4A-4D,图5A-5D)。如图2A-2D中,1μM新突变体TxID[S9H]、TxID[S9L]与TxID[S9Y]阻断α3β4nAChR电流后,洗脱非常缓慢,洗脱2min后的电流几乎还是0nA。但是,1μM野生型TxID阻断后,其电流在洗脱2min内就可恢复到对照电流“C”的水平。还有TxID[S9Abu]与TxID[S9F](4A-4D)阻断α3β4nAChR电流后,洗脱也非常缓慢。其余多肽的洗脱速率相对较快,但各自的洗脱快慢有所不同(图3A-3D,图4A-4D,图5A-5D)。洗脱速率反应了多肽与受体之间结合的一个重要特征,即反应结合解离的速率。
只有SEQ ID NO:30TxID[S9(D-Ser)],SEQ ID NO:31TxID[S9E],SEQ ID NO:32TxID[S9D]三个突变体多肽的IC50在115-380nM之间。还有10个多肽SEQ ID NO:4、5、6、8、10以及33-37对α3β4nAChR失去了阻断活性(表2,图6A-6E),在10μM高浓度下,它们对α3β4nAChR电流的阻断不到50%,其IC50大于10000nM(请参见表2,以及图6A-6E)。
此外,本发明人还测定了TxID及其新突变体(如表1)对人类α3β4nAChR的阻断活性,其活性均与对大鼠的α3β4nAChR的活性相似,两个物种之间没有显著性差异。
实施例3:α-芋螺毒素TxID新突变体特异阻断α6/α3β4nAChR亚型的实验
参照实施例2中的电生理学方法,测定了TxID及其新突变体表1中的所有多肽对α6/α3β4(等同于α6β4*,*代表其余可能的亚基)nAChR的阻断活性,结果如表2和图7A-7D,图8A-8D,图9A-9D,图10A-10D,以及图11A-11C所示。这些突变体对α6/α3β4nAChR的阻断活性与TxID相比的比值也总结在表2中。
结果表明:
SEQ ID NO:2-3、7、9、11-23、25-30以及33(实施例1制备),共24个新多肽对大鼠α6/α3β4nAChR均有不同程度的阻断作用(请参见表2,以及图7A-7D,图8A-8D和图9A-9D),其半阻断剂量(IC50)从4.91nM到3492.82nM不等(表2)。
其中,大部分的突变体,共22个多肽,都保持了对α6/α3β4nAChR的阻断活性,其IC50均在1000nM以下,其中有7个多肽,即SEQ ID NO:2、7、13、19、27、28和30对α6/α3β4nAChR的IC50均在100-1000nM之间。15个突变体对α6/α3β4nAChR的阻断活性较强,其IC50与TxID接近,均在100nM以下,有的比TxID对α6/α3β4nAChR的阻断活性(IC50,33.9nM)还要强,如SEQID NO:20、23、25和26它们的IC50分别为17.76nM、28.98nM、16.18nM和7.11nM(表2)。有两个突变体多肽SEQ ID NO:29和SEQ ID NO:33的IC50在1μM-10μM之间。
此外,有12个多肽SEQ ID NO:4-6,8,10,24,31-32,34-37对α6/α3β4nAChR几乎失去了阻断活性(表2,图10A-10D,以及图11A-11C),其IC50大于10000nM(即10μM)。
TxID及其新突变体对α6/α3β4nAChR电流阻断后的洗脱速率有所不同(图7A-7D,图8A-8D,图9A-9D)。如图7A-7D中的TxID[S9F]的洗脱速率明显比其他多肽的洗脱要慢。但总体来说,它们与野生型TxID阻断α6/α3β4nAChR电流后的洗脱速率和峰型类似(图7A-7D,图8A-8D,图9A-9D),一般情况下洗脱2min就可恢复到对照电流“C”的水平。
此外,本发明人还测定了TxID及其新突变体(如表1)对人类α6/α3β4nAChR的阻断活性,其活性与对大鼠的α6/α3β4nAChR的活性相似,两个物种之间没有显著性差异。
实施例4:α-芋螺毒素TxID新突变体对α3β4与α6/α3β4nAChR两个亚型的活性比较
本发明人根据前面的表2中的实验数据,将α-芋螺毒素TxID新突变体对α3β4与α6/α3β4nAChR两个亚型的活性比较,比较结果用区分度表示,区分度=(突变体对大鼠α6/α3β4的IC50)/突变体对大鼠α3β4的IC50),其中的单位均为nM。结果如下面的表3。此外,本发明人还通过文献调研,将目前已知的作用于α3β4nAChRs的芋螺毒素,以及它们对α3β4与α6/α3β4nAChR这两个极其相似亚型的区分度等数据亦列于下面的表3中。
alpha-conotoxin AuIB selectively blocks alpha3 beta4 nicotinicacetylcholine receptors and nicotine-evoked norepinephrine release.J Neurosci18:8571-8579.
Franco et al.2012:Franco A,Kompella SN,Akondi KB,Melaun C,Daly NL,Luetje CW,Alewood PF,Craik DJ,Adams DJ,Mari F.2012.RegIIA:an alpha4/7-conotoxin from the venom of Conus regius that potently blocks alpha3beta4nAChRs.Biochem Pharmacol 83:419-426.
Kompella et al.2015:Kompella SN,Hung A,Clark RJ,Mari F,AdamsDJ.2015.Alanine scan of alpha-conotoxin RegIIA reveals a selectivealpha3beta4 nicotinic acetylcholine receptor antagonist.J Biol Chem 290:1039-1048.
McIntosh et al.2005:McIntosh JM,Plazas PV,Watkins M,Gomez-Casati ME,Olivera BM,Elgoyhen AB.2005.A novel alpha-conotoxin,PeIA,cloned from Conuspergrandis,discriminates between rat alpha9alpha10 and alpha7nicotiniccholinergic receptors.J Biol Chem 280:30107-30112.
Dowell et al.2003:Dowell C,Olivera BM,Garrett JE,Staheli ST,WatkinsM,Kuryatov A,Yoshikami D,Lindstrom JM,McIntosh JM.2003.Alpha-conotoxin PIA isselective for alpha6 subunit-containing nicotinic acetylcholine receptors.JNeurosci 23:8445-8452.
Azam et al.2005:Azam L,Dowell C,Watkins M,Stitzel JA,Olivera BM,McIntosh JM.2005.Alpha-conotoxin BuIA,a novel peptide from Conus bullatus,distinguishes among neuronal nicotinic acetylcholine receptors.J Biol Chem280:80-87.
由表2和表3可见:
α-芋螺毒素TxID新突变体中的大多数保持了对α3β4与α6β4*nAChRs这两个相似亚型的阻断活性(表2),对二者之间的区分度大多在10倍以内。野生型TxID对α3β4与α6β4*nAChRs这两个相似亚型的区分度只有9.3倍(表3)。
但有5个TxID新突变体对α3β4与α6β4*nAChRs这两个亚型却显示出很好的区分度,包括表2-3中的SEQ ID NO:7即TxID[S9A]、SEQ ID NO:19即TxID[S9R]、SEQ ID NO:24即TxID[S9K]、SEQ ID NO:29即TxID[14D]和SEQ ID NO:31即TxID[S9E]。其中,SEQ ID NO:7、19与29的多肽对α3β4与α6β4*nAChRs这两个相似亚型已有很高的区分度,且它们3个多肽的区分度较接近,其区分度范围为45-50倍。
特别值得注意的是,本发明人发现的新突变体SEQ ID NO:24即TxID[S9K]对这两个亚型的区分度最好,是迄今发现的对α3β4与α6β4*nAChRs这两个相似亚型区分度最高的配体物质。TxID[S9K]对α3β4nAChR的活性很强,其半阻断剂量只有10.13nM,而对α6β4*nAChR的阻断活性却丧失了,在10μM高浓度下的阻断电流少于50%,其半阻断剂量>10000nM(表2,表3,图11C)。SEQ ID NO:31即TxID[S9E]对α3β4nAChR的活性相对较弱,其半阻断剂量为307.61nM,却对α6β4*nAChR丧失了阻断活性,在10μM高浓度下对α6β4*nAChR没有阻断作用(图11B,表2,表3),该突变肽对α3β4与α6β4*nAChRs这两个相似亚型的区分度还是很好的。
而目前现有技术中发现的所有芋螺毒素对这两个亚型的区分度都在20倍以下(表3),如RegIIA,RegIIA[N11,12A],PeIA,PIA,BuIA对这两个亚型的区分度范围在3.1-17.3倍之间。
此外,本发明人还详细分析了不同浓度的野生型TxID、突变体TxID[S9A]以及突变体TxID[S9K]分别对大鼠的α3β4与α6β4*nAChRs这两个亚型的电流阻断情况,结果如图12-14所示。具体实验步骤参考前面的实施例2-3。
图12与图13比较了野生型TxID与突变体TxID[S9A]分别对α3β4与α6β4*nAChRs这两个亚型的电流阻断情况(图12A-12H),以及浓度剂量反应曲线(图13A-13B)。
100nM或10nM的TxID对这两个亚型的电流阻断强度类似(图12A、12B、12E、12F)。100nM TxID对α3β4与α6β4*nAChRs这两个亚型的电流分别阻断了97%和85%(图12A-12B)。10nM TxID对α3β4与α6β4*nAChRs这两个亚型的电流分别阻断了67%和46%(图12E-12F)。
而100nM或10nM的TxID[S9A]对这两个受体亚型的电流阻断情况则很不相同,可以将它们区分开(图12C、12D、12G、12H)。100nM TxID[S9A]对α3β4与α6β4*nAChRs这两个亚型的电流分别阻断了98%和26%(图12C-12D),二者之间差异很显著。10nM TxID[S9A]对α3β4nAChRs亚型的电流阻断了75%(图12G),10nM TxID[S9A]对α6β4*nAChRs亚型却完全失去了阻断活性(图12H),其电流与对照电流大小一样。
图13A-13B的浓度剂量反应曲线也反应了TxID[S9A]对α3β4与α6β4*nAChRs这两个亚型的良好区分度。
1μM TxID[S9K]可以完全阻断α3β4nAChR的电流(图14A-14B),而10μM高浓度的TxID[S9K]对α6/α3β4nAChR的阻断活性很微弱,阻断不到对照电流的1/4(图14A-14B)。
实施例5:TxID与TxID[S9A]的核磁共振(NMR)空间结构解析
本发明人进一步对TxID与TxID[S9A]的核磁共振(NMR)空间结构进行了解析,具体方法参照Luo S,Zhangsun D,Zhu X,Wu Y,Hu Y,Christensen S,Harvey PJ,Akcan M,Craik DJ,McIntosh JM.2013a.Characterization of a novelα-conotoxin TxID fromConus textile that potently blocks ratα3β4nicotinic acetylcholinereceptors.Journal of Medicinal Chemistry 56:9655-9663。图15显示了TxID[S9A](isomer 1)与TxID(isomer 1)的二级化学位移(纵坐标)分析结果。
NMR结构分析显示,TxID[S9A]在水溶液中存在两种构象异构体,分别称为isomer1(反-反异构体,反式异构体,trans-trans isomer)与isomer 2(顺-反异构体,cis-transisomer)。在308K的条件下,两个空间异构体的比例为70:30。这种空间异构体是由于第6位和第13位的脯氨酸(Pro,P)前面的肽键发生了顺反异构而形成的。二级αH化学位移若比无规卷曲值大0.1ppm,则表明多肽拥有典型的结构特征,正向偏移代表β-type折叠结构,负向偏移代表α-螺旋结构(Wishart DS,Bigam CG,Holm A,Hodges RS,Sykes BD.1995.1H,13Cand 15N random coil NMR chemical shifts of the common aminoacids.1.Investigations of nearest-neighbor effects.Journal of BiomolecularNMR 5:67-81)。图15显示,TxID[S9A]的反式异构体(isomer 1)与TxID的反式异构体相比,其二级结构特征没有明显的差异。TxID的第9位的丝氨酸(Ser-9)突变为丙氨酸(Ala-9)增强了多肽中间部位的α-螺旋结构。对于顺反异构体,TxID与TxID[S9A]都倾向于采取无规卷曲的结构(数据未显示)。
参照文献Yu et al.2012(Yu,R.,Kaas,Q.,and Craik,D.J.(2012).Delineationof the unbinding pathway of alpha-conotoxin ImI from the alpha7nicotinicacetylcholine receptor.The Journal of Physical Chemistry B 116,6097-6105)的方法,进行了α-芋螺毒素TxID与大鼠α3β4或α6β4nAChRs的配体结合域相互作用分子对接分析。用Modeller9v13(Sali and Blundell 1993)软件和2个分子模板,构建了最初的同源模型。这两个分子模板分别是乙酰胆碱结合蛋白(AChBP)与α-芋螺毒素TxIA变体(PDBidentifier 2uz6)相互结合的晶体结构(Dutertre,S.,Ulens,C.,Buttner,R.,Fish,A.,van Elk,R.,Kendel,Y.,Hopping,G.,Alewood,P.F.,Schroeder,C.,Nicke,A.,et al.(2007).AChBP-targeted alpha-conotoxin correlates distinct bindingorientations with nAChR subtype selectivity.The EMBO Journal 26,3858-3867),以及分离的人类α9亚基的晶体结构(PDB identifier 4d01,(Zouridakis et al.2014)。假定α3β4与α6β4nAChRs是由2个α-亚基和3个β亚基组成的五聚体,芋螺毒素与受体的结合部位是在α(正面)和β(互补面)亚基之间形成的交界面。用带有amber ff99SB-ILDN(Lindorff-Larsen,K.,Piana,S.,Palmo,K.,Maragakis,P.,Klepeis,J.L.,Dror,R.O.,and Shaw,D.E.(2010).Improved side-chain torsion potentials for the Amber ff99SB proteinforce field.Proteins 78,1950-1958)分子力场和Gromacs 5.1MD发动机(Pronk,S.,Pall,S.,Schulz,R.,Larsson,P.,Bjelkmar,P.,Apostolov,R.,Shirts,M.R.,Smith,J.C.,Kasson,P.M.,van der Spoel,D.,et al.(2013).GROMACS4.5:a high-throughput andhighly parallel open source molecular simulation toolkit.Bioinformatics 29,845-854)的分子动力学(MD)模拟软件和方法,精制TxID分别与大鼠α3β4或α6β4nAChRs相互作用的分子对接结合模型,获得了3个分子动力学(MD)模拟结果(图16)。
TxID与α3β4和α6β4*nAChRs的分子对接结合模型(图16A-16B)显示,虽然二者之间总体上的差异很小,但还是存在差异,主要起因于结合位点的形状不同,是由于α3与α6亚基上结合位点附近的氨基酸种类不同引起的。50ns内进行的分子动力学(MD)模拟结果显示,在与α6β4*nAChRs的结合位点处,TxID的Ser-9与β4Lys-81之间形成了一个弱的氢键(图16B),而在与α3β4nAChRs的结合位点处就没有这个氢键(图16A)。
TxID的Ser-9侧链羟基与β4Lys-81侧链氮原子之间随时间变化的距离如图16C所示。用丙氨酸取代Ser-9,则破坏了这个氢键相互作用。实验结果发现,TxID[S9A]对α6β4*nAChRs的阻断活性比TxID减少了5倍,可归因于在300K条件下,这个点突变引起了约~1kcal/mol的能量下降,这与丢失一个氢键的能量大小一致(Bowie JU.2011.Membraneprotein folding:how important are hydrogen bonds?Curr Opin Struct Biol 21:42-49)。相比之下,在与α3β4nAChRs的结合位点处,TxID的Ser-9与受体之间没有任何相互作用,因而S9A的取代对α3β4nAChRs的阻断活性没有影响,这也与实验结果一致(表2-3,图16A)。
TxID的第1位甘氨酸(Gly-1)被丙氨酸取代后(G1A),导致对α3β4和α6/α3β4nAChRs的阻断活性分别下降了17倍和8倍。根据图16的分子对接结合模型,可能在β4亚基上的带负电的Asp-192与TxID的第1位甘氨酸之间存在电荷相互作用。与野生型的α-芋螺毒素TxID相比,这种相互作用可被TxID[G1A]的骨架构象发生变化而削弱。TxID的第11位甲硫氨酸(Met-11)被异亮氨酸(Ile)取代后(M11I),导致对α3β4nAChRs的阻断活性下降了20倍,但对α6/α3β4nAChRs的阻断活性却没有下降。根据该分子对接模型,Met-11与α3亚基的C-loop上的Cys-218之间相接触,M11A的取代可能引起了结合方式的改变,这是因为更大的侧链造成了空间位阻,M11A的突变使得对α3β4和α6/α3β4nAChRs的阻断活性全部丧失,其半阻断剂量均大于10000nM(表2)。相比之下,在与α6β4的结合模型中,Met-11可被Ile取代,不会造成与α6亚基上结合位点之间的空间位阻,从而不会影响野生型TxID与点突变TxID[M11I]对α6/α3β4nAChRs的阻断活性(图16A-16B,表2)。
尽管本发明的具体实施方式已经得到详细的描述,本领域技术人员将会理解。根据已经公开的所有教导,可以对那些细节进行各种修改和替换,这些改变均在本发明的保护范围之内。本发明的全部范围由所附权利要求及其任何等同物给出。
SEQUENCE LISTING
<110> 海南大学
<120> α-芋螺毒素肽TxID新突变体、其药物组合物及用途
<130> IDC160154
<160> 44
<170> PatentIn version 3.2
<210> 1
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID
<400> 1
Gly Cys Cys Ser His Pro Val Cys Ser Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 2
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID[G1A]
<400> 2
Ala Cys Cys Ser His Pro Val Cys Ser Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 3
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID[S4A]
<400> 3
Gly Cys Cys Ala His Pro Val Cys Ser Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 4
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID[H5A]
<400> 4
Gly Cys Cys Ser Ala Pro Val Cys Ser Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 5
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID[P6A]
<400> 5
Gly Cys Cys Ser His Ala Val Cys Ser Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 6
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID[V7A]
<400> 6
Gly Cys Cys Ser His Pro Ala Cys Ser Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 7
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID[S9A]
<400> 7
Gly Cys Cys Ser His Pro Val Cys Ala Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 8
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID[M11A]
<400> 8
Gly Cys Cys Ser His Pro Val Cys Ser Ala Ala Ser Pro Ile Cys
1 5 10 15
<210> 9
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID[S12A]
<400> 9
Gly Cys Cys Ser His Pro Val Cys Ser Ala Met Ala Pro Ile Cys
1 5 10 15
<210> 10
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID[P13A]
<400> 10
Gly Cys Cys Ser His Pro Val Cys Ser Ala Met Ser Ala Ile Cys
1 5 10 15
<210> 11
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID[I14A]
<400> 11
Gly Cys Cys Ser His Pro Val Cys Ser Ala Met Ser Pro Ala Cys
1 5 10 15
<210> 12
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID[M11I]
<400> 12
Gly Cys Cys Ser His Pro Val Cys Ser Ala Ile Ser Pro Ile Cys
1 5 10 15
<210> 13
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID[S9A,M11L]
<400> 13
Gly Cys Cys Ser His Pro Val Cys Ala Ala Leu Ser Pro Ile Cys
1 5 10 15
<210> 14
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID[I14R]
<400> 14
Gly Cys Cys Ser His Pro Val Cys Ser Ala Met Ser Pro Arg Cys
1 5 10 15
<210> 15
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID[I14Y]
<400> 15
Gly Cys Cys Ser His Pro Val Cys Ser Ala Met Ser Pro Tyr Cys
1 5 10 15
<210> 16
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID[I14D]
<400> 16
Gly Cys Cys Ser His Pro Val Cys Ser Ala Met Ser Pro Asp Cys
1 5 10 15
<210> 17
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID-[S9Abu]
<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> B is Abu
<400> 17
Gly Cys Cys Ser His Pro Val Cys Asx Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 18
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID-[S9H]
<400> 18
Gly Cys Cys Ser His Pro Val Cys His Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 19
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID-[S9R]
<400> 19
Gly Cys Cys Ser His Pro Val Cys Arg Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 20
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID-[S9Y]
<400> 20
Gly Cys Cys Ser His Pro Val Cys Tyr Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 21
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID-[S9T]
<400> 21
Gly Cys Cys Ser His Pro Val Cys Thr Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 22
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID-[S12Y]
<400> 22
Gly Cys Cys Ser His Pro Val Cys Ser Ala Met Tyr Pro Ile Cys
1 5 10 15
<210> 23
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID-[I14L]
<400> 23
Gly Cys Cys Ser His Pro Val Cys Ser Ala Met Ser Pro Leu Cys
1 5 10 15
<210> 24
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID-[S9K]
<400> 24
Gly Cys Cys Ser His Pro Val Cys Lys Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 25
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID-[S9L]
<400> 25
Gly Cys Cys Ser His Pro Val Cys Leu Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 26
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID-[S9F]
<400> 26
Gly Cys Cys Ser His Pro Val Cys Phe Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 27
<211> 16
<212> PRT
<213> Artificial
<220>
<223> TxID-[14H]
<400> 27
Gly Cys Cys Ser His Pro Val Cys Ser Ala Met Ser Pro His Ile Cys
1 5 10 15
<210> 28
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID-[S9(D-Arg)]
<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> X is D-Arg
<400> 28
Gly Cys Cys Ser His Pro Val Cys Xaa Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 29
<211> 16
<212> PRT
<213> Artificial
<220>
<223> TxID-[14D]
<400> 29
Gly Cys Cys Ser His Pro Val Cys Ser Ala Met Ser Pro Asp Ile Cys
1 5 10 15
<210> 30
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID-[S9(D-Ser)]
<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> X is D-Ser
<400> 30
Gly Cys Cys Ser His Pro Val Cys Xaa Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 31
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID-[S9E]
<400> 31
Gly Cys Cys Ser His Pro Val Cys Glu Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 32
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID-[S9D]
<400> 32
Gly Cys Cys Ser His Pro Val Cys Asp Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 33
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID-[M11H]
<400> 33
Gly Cys Cys Ser His Pro Val Cys Ser Ala His Ser Pro Ile Cys
1 5 10 15
<210> 34
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID-[H5W,S9A]
<400> 34
Gly Cys Cys Ser Trp Pro Val Cys Ala Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 35
<211> 15
<212> PRT
<213> Artificial
<220>
<223> TxID-[H5W]
<400> 35
Gly Cys Cys Ser Trp Pro Val Cys Ser Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 36
<211> 16
<212> PRT
<213> Artificial
<220>
<223> TxID-[9R]
<400> 36
Gly Cys Cys Ser His Pro Val Cys Arg Ser Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 37
<211> 16
<212> PRT
<213> Artificial
<220>
<223> TxID-[10R]
<400> 37
Gly Cys Cys Ser His Pro Val Cys Ser Arg Ala Met Ser Pro Ile Cys
1 5 10 15
<210> 38
<211> 13
<212> PRT
<213> Artificial
<220>
<223> TP-2212-59
<400> 38
Gly Cys Cys Ser His Pro Asx Cys Phe Asx Glx Tyr Cys
1 5 10
<210> 39
<211> 15
<212> PRT
<213> C. aulicus
<400> 39
Gly Cys Cys Ser Tyr Pro Pro Cys Phe Ala Thr Asn Pro Asp Cys
1 5 10 15
<210> 40
<211> 16
<212> PRT
<213> C. regius
<400> 40
Gly Cys Cys Ser His Pro Ala Cys Asn Val Asn Asn Pro His Ile Cys
1 5 10 15
<210> 41
<211> 16
<212> PRT
<213> Artificial
<220>
<223> RegIIA[N11,12A]
<400> 41
Gly Cys Cys Ser His Pro Ala Cys Asn Val Ala Ala Pro His Ile Cys
1 5 10 15
<210> 42
<211> 16
<212> PRT
<213> C. pergrandis
<400> 42
Gly Cys Cys Ser His Pro Ala Cys Ser Val Asn His Pro Glu Leu Cys
1 5 10 15
<210> 43
<211> 18
<212> PRT
<213> C. purpurascens
<400> 43
Arg Asp Pro Cys Cys Ser Asn Pro Val Cys Thr Val His Asn Pro Gln
1 5 10 15
Ile Cys
<210> 44
<211> 13
<212> PRT
<213> C. bullatus
<400> 44
Gly Cys Cys Ser Thr Pro Pro Cys Ala Val Leu Tyr Cys
1 5 10

Claims (11)

1.一种分离的多肽,其氨基酸序列为将SEQ ID NO:1所示序列中第9位的丝氨酸替换为一个不同的L型或D型的氨基酸;优选地,将SEQ ID NO:1所示序列中第9位的丝氨酸替换为丙氨酸、2-氨基丁酸、组氨酸、精氨酸、酪氨酸、苏氨酸、赖氨酸、亮氨酸、苯丙氨酸、D-精氨酸、D-丝氨酸、谷氨酸或天冬氨酸。
2.一种分离的多肽,其氨基酸序列分别如SEQ ID NO:2-3、7、9、11-33中的任一序列所示。
3.根据权利要求1或2所述的多肽,其中,所述多肽的N末端的第一个半胱氨酸与第三个半胱氨酸形成二硫键,并且第二个半胱氨酸与第四个半胱氨酸形成二硫键;或所述多肽的N末端的第一个半胱氨酸与第四个半胱氨酸形成二硫键,并且第二个半胱氨酸与第三个半胱氨酸形成二硫键;或所述多肽的N末端的第一个半胱氨酸与第二个半胱氨酸形成二硫键,并且第三个半胱氨酸与第四个半胱氨酸形成二硫键;优选地,所述多肽的羧基末端是酰胺化的。
4.一种分离的融合蛋白,其包含至少一种权利要求1至3中任一权利要求所述的多肽。
5.一种分离的多核苷酸,其编码权利要求1至3中任一权利要求所述的多肽。
6.一种核酸构建体,其含有权利要求5所述的多核苷酸;优选地,所述核酸构建体为重组载体;优选地,所述核酸构建体为重组表达载体。
7.一种转化的细胞,其含有权利要求5所述的多核苷酸,或者权利要求6所述的核酸构建体。
8.一种药物组合物,其含有至少一种权利要求1至3中任一权利要求所述的多肽;可选地,其还包含药学上可接受的辅料。
9.权利要求1至3中任一权利要求所述的多肽在制备阻断乙酰胆碱受体的药物中的用途;优选地,所述乙酰胆碱受体是α3β4乙酰胆碱受体,或α6β4*乙酰胆碱受体例如α6/α3β4乙酰胆碱受体。
10.权利要求1至3中任一权利要求所述的多肽在制备治疗和/或预防神经***疾病或癌症的药物中的用途,或者在制备杀灭害虫、镇痛、戒烟或戒毒的药物中的用途;
优选地,所述神经***疾病为成瘾、神经痛、帕金森症、痴呆、精神***症和抑郁中的至少一种;
优选地,所述成瘾由如下因素中的至少一种导致:各种精神活性物质例如尼古丁、***、***、甲基***(***)、***、***、***或酒精;
优选地,所述神经痛选自如下的至少一种:坐骨神经痛、三叉神经痛、淋巴神经痛、多点运动神经痛、急性剧烈自发性神经痛、挤压神经痛以及复合神经痛;
优选地,所述神经痛由如下因素中的至少一种导致:癌症、癌症化疗、酒精中毒、糖尿病、硬化症、带状疱疹、机械伤、手术伤、艾滋病、头部神经瘫痪、药物中毒、工业污染中毒、骨髓瘤、慢性先天性感觉神经病、脉管炎、血管炎、局部缺血、***、儿童胆汁肝脏疾病、慢性呼吸障碍、多器官衰竭、脓毒病/脓血症、肝炎、卟啉症、维生素缺乏、慢性肝脏病、原生胆汁硬化、高血脂症、麻疯病、莱姆关节炎、感觉神经束膜炎或过敏症;
优选地,所述癌症为肺癌例如小细胞肺癌、卵巢癌、白血病、神经细胞瘤或者乳腺癌。
11.一种在体内或体外阻断乙酰胆碱受体或者调节乙酰胆碱水平的方法,包括给予受试者或者施加给细胞有效量的权利要求1至3中任一权利要求所述的多肽的步骤;优选地,所述乙酰胆碱受体是α3β4乙酰胆碱受体或α6β4*乙酰胆碱受体例如α6/α3β4乙酰胆碱受体。
CN201611185856.6A 2016-12-21 2016-12-21 α-芋螺毒素肽TxID新突变体、其药物组合物及用途 Active CN108218971B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201611185856.6A CN108218971B (zh) 2016-12-21 2016-12-21 α-芋螺毒素肽TxID新突变体、其药物组合物及用途
US16/470,437 US20190330275A1 (en) 2016-12-21 2017-12-20 NOVEL MUTANT OF a-CONOTOXIN PEPTIDE TxID, PHARMACEUTICAL COMPOSITION AND USE THEREOF
JP2019533655A JP2020501584A (ja) 2016-12-21 2017-12-20 α−コノトキシンペプチドTxIDの新規変異体、医薬組成物、およびその使用
EP17884946.9A EP3560950A4 (en) 2016-12-21 2017-12-20 NOVEL MUTANT OF ALFA-CONOTOXIN-PEPTIDE-TXID, PHARMACEUTICAL COMPOSITION AND USE OF IT
PCT/CN2017/117486 WO2018113697A1 (zh) 2016-12-21 2017-12-20 α-芋螺毒素肽TxID新突变体、其药物组合物及用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611185856.6A CN108218971B (zh) 2016-12-21 2016-12-21 α-芋螺毒素肽TxID新突变体、其药物组合物及用途

Publications (2)

Publication Number Publication Date
CN108218971A true CN108218971A (zh) 2018-06-29
CN108218971B CN108218971B (zh) 2021-01-22

Family

ID=62624542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611185856.6A Active CN108218971B (zh) 2016-12-21 2016-12-21 α-芋螺毒素肽TxID新突变体、其药物组合物及用途

Country Status (5)

Country Link
US (1) US20190330275A1 (zh)
EP (1) EP3560950A4 (zh)
JP (1) JP2020501584A (zh)
CN (1) CN108218971B (zh)
WO (1) WO2018113697A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108359001A (zh) * 2018-04-11 2018-08-03 华南农业大学 芋螺毒素突变体多肽lv1c-AA及应用和制备方法
CN112010959A (zh) * 2019-05-31 2020-12-01 海南大学 αO-芋螺毒素肽GeXIVA新突变体、其药物组合物及用途
CN113493502A (zh) * 2020-04-01 2021-10-12 广西大学 α-芋螺毒素肽TxIE、其药物组合物及用途
CN114573674A (zh) * 2020-12-01 2022-06-03 中国海洋大学 一种α9α10 nAChR抑制活性肽及其应用
CN114751959A (zh) * 2021-01-11 2022-07-15 广西大学 α-芋螺毒素肽LvIC及其突变体、其药物组合物及用途
CN115246872A (zh) * 2021-04-27 2022-10-28 中国海洋大学 一种芋螺毒素突变体及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111454992B (zh) * 2019-05-17 2022-02-15 中国科学院水生生物研究所 一种促进鱼类生长性状改良的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102875653B (zh) * 2011-07-15 2015-04-01 海南大学 α-芋螺毒素肽、其药物组合物、其制备方法及用途
CN103665130B (zh) * 2012-09-06 2016-11-02 海南大学 α-芋螺毒素肽TxIC/Txd1、其药物组合物及用途
US9469674B2 (en) * 2012-08-07 2016-10-18 Hainan University α-conotoxin peptide, pharmaceutical composition and use thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108359001A (zh) * 2018-04-11 2018-08-03 华南农业大学 芋螺毒素突变体多肽lv1c-AA及应用和制备方法
CN108359001B (zh) * 2018-04-11 2020-03-13 华南农业大学 芋螺毒素突变体多肽lv1c-AA及应用和制备方法
CN112010959A (zh) * 2019-05-31 2020-12-01 海南大学 αO-芋螺毒素肽GeXIVA新突变体、其药物组合物及用途
CN112010959B (zh) * 2019-05-31 2022-04-08 海南大学 αO-芋螺毒素肽GeXIVA新突变体、其药物组合物及用途
CN113493502A (zh) * 2020-04-01 2021-10-12 广西大学 α-芋螺毒素肽TxIE、其药物组合物及用途
CN113493502B (zh) * 2020-04-01 2023-09-12 广西大学 α-芋螺毒素肽TxIE、其药物组合物及用途
CN114573674A (zh) * 2020-12-01 2022-06-03 中国海洋大学 一种α9α10 nAChR抑制活性肽及其应用
CN114573674B (zh) * 2020-12-01 2023-11-14 中国海洋大学 一种α9α10nAChR抑制活性肽及其应用
CN114751959A (zh) * 2021-01-11 2022-07-15 广西大学 α-芋螺毒素肽LvIC及其突变体、其药物组合物及用途
CN115246872A (zh) * 2021-04-27 2022-10-28 中国海洋大学 一种芋螺毒素突变体及其制备方法和应用

Also Published As

Publication number Publication date
CN108218971B (zh) 2021-01-22
EP3560950A1 (en) 2019-10-30
US20190330275A1 (en) 2019-10-31
WO2018113697A1 (zh) 2018-06-28
EP3560950A4 (en) 2020-12-16
JP2020501584A (ja) 2020-01-23

Similar Documents

Publication Publication Date Title
CN108218971A (zh) α-芋螺毒素肽TxID新突变体、其药物组合物及用途
JP6324952B2 (ja) αO−スーパーファミリーコノトキシンペプチド、これらの医薬組成物及びこれらの使用
Luo et al. Characterization of a novel α-conotoxin from conus textile that selectively targets α6/α3β2β3 nicotinic acetylcholine receptors
AU2021212006B2 (en) Modifications and uses of conotoxin peptides
Li et al. Medicinal chemistry, pharmacology, and therapeutic potential of α-conotoxins antagonizing the α9α10 nicotinic acetylcholine receptor
CN101745097A (zh) 特异阻断乙酰胆碱受体的海南产α-芋螺毒素及其用途
JP6336979B2 (ja) α−コノトキシンペプチド、その医薬組成物及びそれらの使用
US6958323B2 (en) Uses of α-conotoxin peptides
WO2020238692A1 (zh) αO-芋螺毒素肽GeXIVA新突变体、其药物组合物及用途
Xu et al. Structure and activity studies of disulfide-deficient analogues of αO-conotoxin GeXIVA
Zheng et al. Discovery of methylene thioacetal-incorporated α-RgIA analogues as potent and stable antagonists of the human α9α10 nicotinic acetylcholine receptor for the treatment of neuropathic pain
Muratspahić et al. Plant-derived cyclotides modulate κ-opioid receptor signaling
CN102190708B (zh) 一种桶形α芋螺多肽Bt1.3及其应用
CN103570808A (zh) α-芋螺毒素肽TxIB/Txd4、其药物组合物及用途
Wang et al. Engineered conotoxin differentially blocks and discriminates rat and human α7 nicotinic acetylcholine receptors
US5866682A (en) Conopeptides AuIA, AuIB and AuIC
CN103665130B (zh) α-芋螺毒素肽TxIC/Txd1、其药物组合物及用途
CN103665133A (zh) α-芋螺毒素肽LvIA/LvD21、其药物组合物及用途
CN113493502B (zh) α-芋螺毒素肽TxIE、其药物组合物及用途
CN114478733B (zh) α-芋螺毒素肽LvID和LvIB、其药物组合物及用途
Hoggard Characterization of Disulfide Constrained Natural Peptides
CN115433265A (zh) α-芋螺毒素肽LvIE和LvIF、其药物组合物及用途
Kompella α-Conotoxins targeting neuronal nAChRs: understanding molecular pharmacology and potential therapeutics.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant