CN108155798B - The control method of electric car and its DC-DC converter and DC-DC converter - Google Patents

The control method of electric car and its DC-DC converter and DC-DC converter Download PDF

Info

Publication number
CN108155798B
CN108155798B CN201611106398.2A CN201611106398A CN108155798B CN 108155798 B CN108155798 B CN 108155798B CN 201611106398 A CN201611106398 A CN 201611106398A CN 108155798 B CN108155798 B CN 108155798B
Authority
CN
China
Prior art keywords
bridge
control
tube
switch
switching tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611106398.2A
Other languages
Chinese (zh)
Other versions
CN108155798A (en
Inventor
张妮
王兴辉
王超
沈晓峰
邬白贺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CN201611106398.2A priority Critical patent/CN108155798B/en
Publication of CN108155798A publication Critical patent/CN108155798A/en
Application granted granted Critical
Publication of CN108155798B publication Critical patent/CN108155798B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The invention discloses a kind of electric car and its control methods of DC-DC converter and DC-DC converter, wherein, DC-DC converter includes H bridge, H bridge includes first switch tube, second switch, third switching tube and the 4th switching tube, control method is the following steps are included: in the whole life cycle of DC-DC converter, using phase shift modulation control mode and down tube modulate control mode alternately, it is selected in the first way when using the control mode of phase shift modulation based on total time TA and total time TB or second method controls H bridge, and it is alternately worked based on setting time Tm and Ti to control H bridge with Third Way and fourth way in the control mode for using down tube to modulate, to first switch tube, second switch, third switching tube and the 4th switching tube carry out temperature Balance route is spent, so that the fever relative equilibrium of first to fourth switching tube in H bridge, improves the working life of switching tube in H bridge.

Description

The control method of electric car and its DC-DC converter and DC-DC converter
Technical field
The present invention relates to electric vehicle engineering field, in particular to a kind of control method of DC-DC converter, a kind of DC- DC converter and a kind of electric car.
Background technique
DC-DC converter is always the important component part of field of power electronics, along with the commercialized hair of electric car Exhibition, DC-DC converter also have become one of important spare part on electric car.The topological structure of DC-DC converter has very much, In Medium-and-large-sized power domain, full bridge PWM converter are a kind of most commonly used topologys.
Wherein, the control mode of full bridge PWM converter has very much, and mostly uses the control of phase shift modulation greatly in the related technology The control mode of mode and down tube modulation.However, using phase shift modulation control mode when, leading arm Sofe Switch easy to accomplish, And lagging leg is not easy to realize Sofe Switch, so that lagging leg is more serious than leading arm fever;When the control mode modulated using down tube, on Sofe Switch easy to accomplish is managed, and down tube is not easy to realize Sofe Switch, so that down tube is more serious than upper tube fever.
Therefore, both the above control mode will lead to switching tube fever serious problems, influence the working life of switching tube.
Summary of the invention
The present invention is directed to solve one of the technical problem in above-mentioned technology at least to a certain extent.For this purpose, of the invention First purpose be to propose a kind of control method of DC-DC converter, enables to first to fourth switching tube in H bridge Fever relative equilibrium, improves the working life of switching tube in H bridge.
Second object of the present invention is to propose a kind of DC-DC converter.Third object of the present invention is to propose A kind of electric car.
In order to achieve the above objectives, one aspect of the present invention embodiment proposes a kind of control method of DC-DC converter, In, the DC-DC converter includes H bridge, and the H bridge includes that first switch tube, second switch, third switching tube and the 4th are opened Guan Guan, wherein the first switch tube and the second switch constitute the first bridge arm, the third switching tube and the described 4th Switching tube constitutes the second bridge arm, and the control method obtains the following steps are included: when the DC-DC converter is worked The DC-DC converter last time work when control mode, and according to the DC-DC converter last time work when control Mode selects control mode when this task, wherein the control mode of the DC-DC converter includes the control of phase shift modulation The control mode of mode and down tube modulation;Control mode when selecting this work for the phase shift modulation control mode When, acquisition controls total time TA of the H bridge in the first way and controls the total time TB of the H bridge in a second manner, and leads to It crosses and judges relationship between the total time TA and the total time TB in a manner of selecting to control the H bridge, with right The first switch tube, second switch, third switching tube and the 4th switching tube carry out temperature equalization control, wherein with described When first method controls the H bridge, using first bridge arm as leading-bridge, and using second bridge arm as lag bridge Arm;When controlling the H bridge with the second method, using second bridge arm as leading-bridge, and first bridge arm is made For lagging leg;When the control mode that the control mode when selecting this work is modulated for the down tube, obtain with third party Formula is controlled setting time Ti of the H bridge and is controlled the setting time Tm of the H bridge with fourth way, and when according to the setting Between the Ti and setting time Tm to the H bridge carry out alternately control to open the first switch tube, second switch, third It closes pipe and the 4th switching tube carries out temperature equalization control, wherein when controlling the H bridge with the Third Way, by described first Switching tube and the third switching tube as upper tube and using the second switch and the 4th switching tube as down tube, and The first switch tube to the 4th switching tube is controlled using the control mode that down tube is modulated;With the fourth way When controlling the H bridge, using the first switch tube and the third switching tube as down tube and by the second switch and 4th switching tube switchs the first switch tube to the described 4th as upper tube, and using the control mode of down tube modulation Pipe is controlled.
The control method of DC-DC converter according to an embodiment of the present invention is obtained when DC-DC converter is worked The DC-DC converter last time work when control mode, and according to the DC-DC converter last time work when control mode select Control mode when this task, so that the control mode of phase shift modulation and down tube tune in DC-DC converter whole life cycle The control mode of system is alternately.Wherein, the control mode when selecting this work for phase shift modulation control mode when, obtain Take in the first way control H bridge total time TA and in a second manner control H bridge total time TB, then judge total time TA and Relationship between total time TB finally selects the side controlled H bridge according to the relationship between total time TA and total time TB Formula, to carry out temperature equalization control to first switch tube, second switch, third switching tube and the 4th switching tube;When selection sheet When control mode when task is the control mode of down tube modulation, obtain with the setting time Ti of Third Way control H bridge and With fourth way control H bridge setting time Tm, then according to Ti and Tm to H bridge carry out alternately control with to first switch tube, Second switch, third switching tube and the 4th switching tube carry out temperature equalization control, thus in whole life cycle, DC-DC Converter uses total time TA and total time TB when the control mode of phase shift modulation equal as far as possible, under DC-DC converter use The control mode of pipe modulation when being worked Third Way and fourth way alternately so that the fever of each switching tube is opposite Balance improves the working life of switching tube in H bridge, in the case where not increasing cost so as to extend the life of DC-DC converter Order the period.
In order to achieve the above objectives, a kind of DC-DC converter that another aspect of the present invention embodiment proposes, comprising: H bridge, institute Stating H bridge includes first switch tube, second switch, third switching tube and the 4th switching tube, wherein the first switch tube and institute It states second switch and constitutes the first bridge arm, the third switching tube and the 4th switching tube constitute the second bridge arm;Control module, The control module when the DC-DC converter is worked for obtaining when once working in the DC-DC converter Control mode, and control mode when control mode when being worked according to the DC-DC converter last time selects this task, The control mode of the DC-DC converter includes the control mode of phase shift modulation and the control mode of down tube modulation, wherein elected When control mode when selecting this task is the control mode of the phase shift modulation, the control module acquisition is controlled in the first way Make total time TA of the H bridge and control the total time TB of the H bridge in a second manner, and by judge the total time TA and Relationship between the total time TB is in a manner of selecting to control the H bridge, to open the first switch tube, second Guan Guan, third switching tube and the 4th switching tube carry out temperature equalization control, wherein when controlling the H bridge with the first method, Using first bridge arm as leading-bridge, and using second bridge arm as lagging leg;Institute is controlled with the second method When stating H bridge, using second bridge arm as leading-bridge, and using first bridge arm as lagging leg;When this work of selection When control mode when making is the control mode of down tube modulation, the control module, which is obtained, controls the H with Third Way Setting time Ti of bridge and the setting time Tm that the H bridge is controlled with fourth way, and according to the setting time Ti and described Setting time Tm alternately control to the first switch tube, second switch, third switching tube and the 4th to the H bridge Switching tube carries out temperature equalization control, wherein when controlling the H bridge with the Third Way, by the first switch tube and institute Third switching tube is stated as upper tube and using the second switch and the 4th switching tube as down tube, and uses down tube tune The control mode of system controls the first switch tube to the 4th switching tube;The H is controlled with the fourth way When bridge, the first switch tube and the third switching tube are opened as down tube and by the second switch and the described 4th Pipe is closed as upper tube, and the first switch tube to the 4th switching tube is controlled using the control mode of down tube modulation System.
DC-DC converter according to an embodiment of the present invention obtains DC-DC by control module when being actuated for work The converter last time work when control mode, and according to the DC-DC converter last time work when control mode select this Control mode when work so that in DC-DC converter whole life cycle the control mode of phase shift modulation and down tube modulation Control mode is alternately.Wherein, the control mode when selecting this work for phase shift modulation control mode when, pass through control Molding block obtains total time TA for controlling H bridge in the first way and controls the total time TB of H bridge in a second manner, and then judgement is total Relationship between time TA and total time TB finally carries out H bridge according to the relationship selection between total time TA and total time TB The mode of control, to carry out temperature equalization control to first switch tube, second switch, third switching tube and the 4th switching tube; When the control mode that the control mode when selecting this work is modulated for down tube, obtained by control module with Third Way control The setting time Ti of the H bridge processed and setting time Tm that H bridge is controlled with fourth way, then replaces H bridge according to Ti and Tm Control is to carry out temperature equalization control to first switch tube, second switch, third switching tube and the 4th switching tube, thus whole In a life cycle, using phase shift modulation control mode when total time TA and total time TB it is equal as far as possible, and use down tube When the control mode of modulation is worked Third Way and fourth way alternately so that the fever of each switching tube is relatively flat Weighing apparatus improves the working life of switching tube in H bridge, in the case where not increasing cost so as to extend life cycle.
In addition, the embodiment of the present invention also proposed a kind of electric car comprising above-mentioned DC-DC converter.
The electric car of the embodiment of the present invention can control DC-DC converter in whole life cycle using phase shift tune System control mode and down tube modulation control mode alternately, and using phase shift modulation control mode when total time TA and total time TB are equal as far as possible, using down tube modulate control mode worked when Third Way and fourth way alternately into Row can be realized and carry out temperature equalization to first switch tube, second switch, third switching tube and the 4th switching tube in H bridge Control, so that the fever relative equilibrium of each switching tube improves the work of switching tube in H bridge in the case where not increasing cost Service life, to extend the life cycle of DC-DC converter.
Detailed description of the invention
Fig. 1 is the circuit diagram according to the DC-DC converter of one embodiment of the invention;
Fig. 2 is the flow chart according to the control method of the DC-DC converter of the embodiment of the present invention;
Fig. 3 A is four when being controlled using first method the H bridge switching tube according to one embodiment of the invention Drive waveforms schematic diagram;
Fig. 3 B is four when being controlled using second method the H bridge switching tube according to one embodiment of the invention Drive waveforms schematic diagram;
Fig. 4 A is four when being controlled using Third Way the H bridge switching tube according to one embodiment of the invention Drive waveforms schematic diagram;
Fig. 4 B is four when being controlled using fourth way the H bridge switching tube according to one embodiment of the invention Drive waveforms schematic diagram;
Fig. 5 is the flow chart according to the control method of the DC-DC converter of a specific embodiment of the invention;
Fig. 6 is the block diagram according to the electric car of the embodiment of the present invention.
Specific embodiment
The embodiment of the present invention is described below in detail, examples of the embodiments are shown in the accompanying drawings, wherein from beginning to end Same or similar label indicates same or similar element or element with the same or similar functions.Below with reference to attached The embodiment of figure description is exemplary, it is intended to is used to explain the present invention, and is not considered as limiting the invention.
With reference to the accompanying drawings come describe the embodiment of the present invention proposition DC-DC converter control method, DC-DC converter And the electric car with the DC-DC converter.
As shown in Figure 1, DC-DC converter according to an embodiment of the invention includes H bridge, H bridge includes first switch tube Q1, second switch Q2, third switching tube Q3 and the 4th switching tube Q4.Wherein, first switch tube Q1 and second switch Q2 structure At the first bridge arm, third switching tube Q3 and the 4th switching tube Q4 constitute the second bridge arm, first switch tube Q1 and second switch Q2 Between have first node A, between third switching tube Q3 and the 4th switching tube Q4 have second node B.
Also, as shown in Figure 1, the DC-DC converter further includes transformer, the first inductance L1, first capacitor C1, the second electricity Sense L2 and the second capacitor C2, the 5th switching tube Q5, the 6th switching tube Q6, one end of the first inductance L1 are connected with first node A, the The other end of one inductance L1 is connected with one end of first capacitor C1, the armature winding of the other end and transformer of first capacitor C1 One end is connected, and the other end of the armature winding of transformer is connected with second node B.The secondary windings of transformer is separately connected the 5th Switching tube Q5 and the 6th switching tube Q6, the second inductance L2 and the second capacitor C2 are connected to the output end of DC-DC converter.
In an embodiment of the present invention, as shown in Fig. 2, the control method of above-mentioned DC-DC converter the following steps are included:
S1 obtains the control mode when work of DC-DC converter last time, and root when DC-DC converter is worked Control mode when working according to the DC-DC converter last time selects control mode when this task, wherein DC-DC converter Control mode include phase shift modulation control mode and down tube modulation control mode.
In other words, the every task of DC-DC converter starts, and reads control mode used by the last time, if last work Control mode used by making is the control mode of phase shift modulation, then this task of DC-DC converter will be using down tube modulation Control mode;If last time work used by control mode be down tube modulation control mode, DC-DC converter this Work will be using the control mode of phase shift modulation.In this way, in the whole life cycle of DC-DC converter, the control of phase shift modulation The control mode of mode and down tube modulation processed is alternately.
S2, control mode when selecting this work for phase shift modulation control mode when, acquisition is controlled in the first way Total time TA of H bridge processed and the total time TB for controlling H bridge in a second manner, and by judging between total time TA and total time TB Relationship in a manner of selecting to control H bridge, to open first switch tube, second switch, third switching tube and the 4th It closes pipe and carries out temperature equalization control.
Wherein, when controlling the H bridge with the first method, using first bridge arm as leading-bridge, and will be described Second bridge arm is as lagging leg;When controlling the H bridge with the second method, using second bridge arm as leading-bridge, And using first bridge arm as lagging leg.
According to one embodiment of present invention, when controlling the H bridge with the first method, output to first switch tube Q1 Control signal with output to second switch Q2 control signal it is complementary and export to third switching tube Q3 control signal It is complementary with the control signal of output to the 4th switching tube Q4, and the previous phase angle super than the 4th switching tube Q4 first switch tube Q1 It opens and the previous phase angle super than third switching tube Q3 second switch Q2 is open-minded.
Specifically, the drive of the drive waveforms of first switch tube Q1, the drive waveforms of second switch Q2, third switching tube Q3 Voltage U between two bridge arms of dynamic waveform, the drive waveforms of the 4th switching tube Q4 and H bridgeABWaveform is as shown in Figure 3A.From figure 3A it can be concluded that, the control signal of Q1, Q2 are complementary in four switching tubes of H bridge, and the control signal of Q3, Q4 are complementary, and diagonal line is opened The pass super previous phase angle pipe Q1 ratio Q4 is open-minded, and Q2 ratio Q3 is super, and previous phase angle is open-minded.Also, by adjusting the phase angle Size adjusts output voltage.
Also, when controlling the H bridge with the second method, exports to the control signal of first switch tube Q1 and export extremely The control signal and output to the 4th switching tube that the control signal of second switch Q2 is complementary and output is to third switching tube Q3 The control signal of Q4 is complementary, and the previous phase angle super than first switch tube Q1 the 4th switching tube Q4 is opened and third switch Pipe Q3 is super than second switch Q2, and previous phase angle is open-minded.
Specifically, the drive of the drive waveforms of first switch tube Q1, the drive waveforms of second switch Q2, third switching tube Q3 Voltage U between two bridge arms of dynamic waveform, the drive waveforms of the 4th switching tube Q4 and H bridgeABWaveform is as shown in Figure 3B.From figure 4 it can be concluded that, the control signal of Q1, Q2 are complementary in four switching tubes of H bridge, and the control signal of Q3, Q4 are complementary, diagonal wiretap The super previous phase angle pipe Q4 ratio Q1 is open-minded, and Q3 ratio Q2 is super, and previous phase angle is open-minded.Equally, by adjusting the big of the phase angle It is small to adjust output voltage.
Wherein, it should be noted that in the course of work that DC-DC converter is carried out using the control mode of phase shift modulation In, if controlled only with first method A H bridge, Sofe Switch is difficult to realize as switching tube Q3, Q4 in lagging leg That is zero voltage switch, therefore the switching loss of switching tube Q3, Q4 are big, cause to overheat.
Similarly, in the course of work that DC-DC converter is carried out using the control mode of phase shift modulation, if only with Second method B controls H bridge, is difficult to realize Sofe Switch, that is, zero voltage switch as switching tube Q1, Q2 in lagging leg, Therefore the switching loss of switching tube Q1, Q2 are big, cause to overheat.
Therefore, in one embodiment of the invention, DC-DC converter is worked using the control mode of phase shift modulation When, when being controlled using first method A H bridge, the time that record controls H bridge using first method A, so as to To the total time TA for controlling H bridge in the first way, then stored;When being controlled using second method B H bridge, record The time that H bridge is controlled using second method B, thus the available total time TB for controlling H bridge in a second manner, then into Row storage.Total time TA and total is judged when DC-DC converter uses the control mode of phase shift modulation to be worked every time in this way Relationship between time TB, and the mode controlled H bridge is selected according to the relationship between total time TA and total time TB, Temperature equalization control is carried out to first switch tube, second switch, third switching tube and the 4th switching tube so as to realize.
Wherein, the H bridge is controlled according to the relationship selection between the total time TA and the total time TB Mode specifically includes: when the total time TA is greater than the total time TB, the second method being selected to carry out the H bridge Control;When the total time TA is less than the total time TB, the first method is selected to control the H bridge;Work as institute When stating total time TA equal to the total time TB, the first method or the second method is selected to control the H bridge.
That is, being obtained before DC-DC converter is started to work using the control mode of phase shift modulation from storage region It takes total time TA for controlling H bridge in the first way and controls the total time TB of H bridge in a second manner, then to total time TA and always Time, TB was judged, is determined according to judging result using first method and is controlled H bridge or controlled using second method H bridge processed.Wherein, DC-DC converter chooses mode later just during being worked using the control mode of phase shift modulation H bridge is controlled according to fixed form, that is, first method or second method, work total time is recorded when DC-DC converter stops working, For example, the total time recorded when stopping working is this when DC-DC converter this task is using first method control H bridge The total time obtained when task starts from storage region adds this working time, i.e., wants after the every task of DC-DC converter Total time is updated, to select which kind of mode when convenient lower task to control H bridge.
It should be noted that in an embodiment of the present invention, controlling H bridge, or in the first way either with second Mode controls H bridge, and what DC-DC converter used is all the control mode of phase shift modulation.Wherein, first to fourth switching tube is equal It is driven using 50% duty ratio, the driving voltage of same bridge arm is complementary, phase phase difference 180 degree, and leading-bridge and lagging leg Between differ a phase angle, adjust output voltage by adjusting the size at the phase angle.
In conclusion when DC-DC converter is worked using the control mode of phase shift modulation, by recording DC-DC Converter is to be controlled using first method or second method H bridge, and total time TA when recording using first method and adopt Total time TB when with second method, then judges the relationship between TA and TB, so that the mode of control H bridge is selected, The fever of switching tube Q1, Q2, Q3 and Q4 in H bridge can be realized in control mode of the DC-DC converter using phase shift modulation Relative equilibrium is measured, is not necessarily to increase additional component in this way, reduces cost, and the working life of DC-DC converter can be increased, Reduce failure rate.
S3 when the control mode that the control mode when selecting this work is modulated for down tube, is obtained with Third Way control The setting time Ti of the H bridge processed and setting time Tm that H bridge is controlled with fourth way, and according to setting time Ti and setting time Tm H bridge alternately control to carry out temperature equalization to first switch tube, second switch, third switching tube and the 4th switching tube Control.
Wherein, when controlling the H bridge with the Third Way, using first switch tube Q1 and third switching tube Q3 as upper tube And using second switch Q2 and the 4th switching tube Q4 as down tube, and using the control mode of down tube modulation to first switch tube It is controlled to the 4th switching tube;When controlling the H bridge with the fourth way, by first switch tube Q1 and third switching tube Q3 As down tube and using second switch Q2 and the 4th switching tube Q4 as upper tube, and using the control mode of down tube modulation to the One switching tube to the 4th switching tube is controlled.
According to one embodiment of present invention, when controlling the H bridge with the Third Way, output to first switch tube Q1 Control signal it is complementary with the control signal of output to third switching tube Q3 and for fixed duty cycle, and to exporting to second switch The failing edge of the control signal of pipe Q2 and the 4th switching tube Q4 carries out PWM control.
Specifically, the drive of the drive waveforms of first switch tube Q1, the drive waveforms of second switch Q2, third switching tube Q3 Voltage U between two bridge arms of dynamic waveform, the drive waveforms of the 4th switching tube Q4 and H bridgeABWaveform is as shown in Figure 4 A.From figure 4A it can be concluded that, the control signal of Q1, Q3 are complementary and to fix 50% duty ratio, the decline of Q2, Q4 in four switching tubes of H bridge Edge is modulated by PWM rule, and is to adjust output voltage by adjusting the driving voltage failing edge of down tube.
Also, when controlling the H bridge with the fourth way, exports to the control signal of second switch Q2 and export extremely The control signal of 4th switching tube Q4 is complementary and is fixed duty cycle, and to output to first switch tube Q1 and third switching tube Q3 Control signal failing edge carry out PWM control.
Specifically, the drive of the drive waveforms of first switch tube Q1, the drive waveforms of second switch Q2, third switching tube Q3 Voltage U between two bridge arms of dynamic waveform, the drive waveforms of the 4th switching tube Q4 and H bridgeABWaveform is as shown in Figure 4 B.From figure 4B it can be concluded that, the control signal of Q2, Q4 are complementary and to fix 50% duty ratio, the decline of Q1, Q3 in four switching tubes of H bridge Edge is modulated by PWM rule, and is to adjust output voltage by adjusting the driving voltage failing edge of down tube.
Wherein, it should be noted that in the course of work that DC-DC converter is carried out using the control mode of down tube modulation In, if controlled only with Third Way C H bridge, since the resonant discharge stage can only utilize primary side resonant inductance, because This is difficult to realize Sofe Switch, that is, zero voltage switch as switching tube Q2, Q4 of down tube, thus the switching loss of switching tube Q2, Q4 Greatly, cause to overheat.
Similarly, in the course of work that DC-DC converter is carried out using the control mode of down tube modulation, if only with Fourth way D controls H bridge, since the resonant discharge stage can only utilize primary side resonant inductance, as down tube Switching tube Q1, Q3 are difficult to realize Sofe Switch, that is, zero voltage switch, so that the switching loss of switching tube Q1, Q3 are big, cause to overheat.
Therefore, in one embodiment of the invention, the control mode that DC-DC converter uses down tube to modulate every time carries out When work, Ti and Tm is first set, then in the course of work of DC-DC converter, first H bridge can be carried out using Third Way C It controls so that DC-DC converter works, until reaching Ti using the time that Third Way C controls H bridge, is switched to DC-DC converter, which works, to be controlled such that H bridge using fourth way D, until carrying out using fourth way D to H bridge The time of control reaches Tm, so completes a working cycles (i.e. a net cycle time=Ti+Tm), then be switched to use Third Way C is controlled such that DC-DC converter works to H bridge, until being controlled using Third Way C H bridge Time reach Ti, then switch to and DC-DC converter, which works, to be controlled such that H bridge using fourth way D, until Tm is reached using the time that fourth way D controls H bridge ... ..., carried out repeatedly, realized and alternately control is carried out to H bridge System carries out temperature equalization control to first switch tube, second switch, third switching tube and the 4th switching tube to realize.When So, in the course of work of DC-DC converter, DC-DC converter first can also be controlled such that H bridge using fourth way D It works, until reaching Tm using the time that fourth way D controls H bridge, is switched to using Third Way C to H bridge It is controlled such that DC-DC converter works, until reaching Ti using the time that Third Way C controls H bridge, such as This completes a working cycles, and is repeated according to such working cycles, until DC-DC converter stops this task.
In other words, alternately control is carried out to the H bridge according to setting time Ti and setting time Tm, comprising: described in use When the time that Third Way controls the H bridge reaches Ti, the H bridge is controlled using the fourth way, until using The time that the fourth way controls the H bridge reaches Tm;Or when the time for controlling the H bridge using the fourth way reaches When to Tm, the H bridge is controlled using the Third Way, until using the Third Way control the H bridge when Between reach Ti.
It should be noted that in an embodiment of the present invention, H bridge is either controlled with Third Way, or with the 4th Mode controls H bridge, and what DC-DC converter used is all the control mode of down tube modulation.Wherein, the control modulated using down tube When mode, two switching tubes of upper tube be it is open-minded in turn by 50% duty ratio, there is no dead time, pass through and adjust the two of down tube The failing edge of a switching tube driving voltage, realizes the adjusting of output voltage.
Also, in the control mode of down tube modulation, two switching tubes Sofe Switch, that is, no-voltage easy to accomplish of upper tube is opened It closes, corresponding to the leading-bridge in the control mode of phase shift modulation, and two switching tubes of down tube correspond to the control of phase shift modulation Lagging leg in mode processed is difficult to realize zero voltage switch.
In one embodiment of the present of invention, DC-DC converter is in whole life cycle using the controlling party of down tube modulation When formula, it can make by first to fourth switching tube alternately as top tube and down tube, that is, Q1, Q3 and Q2, Q4 alternate play upper tube, down tube Temperature stress is equivalent in four switching tubes of H bridge to be uniformly distributed, so that the fever relative equilibrium of each switching tube, is realized whole The thermal balance of body extends the service life of DC-DC converter.
It according to one embodiment of present invention, can with the setting time Ti that the Third Way controls the H bridge Equal to the setting time Tm controlled with the fourth way the H bridge, can guarantee with Third Way and the 4th in this way Mode guarantees first switch tube Q1, second switch Q2, third switching tube Q3 and the 4th switching tube Q4 fever when alternately controlling H bridge Relative equilibrium.
It is, of course, understood that in other embodiments of the invention, being carried out with the Third Way to the H bridge Setting time Ti of control can also be unequal with the setting time Tm controlled with the fourth way the H bridge.
Specifically, according to one embodiment of present invention, as shown in figure 5, the control method of above-mentioned DC-DC converter The following steps are included:
S501, work start, i.e., when DC-DC converter starts and starts to work, need to export control waveform and come in H bridge Switching tube controlled.
S5011 reads used control mode when the work of DC-DC converter last time.
S5011 judges the last time using no for the control mode of phase shift modulation.If so, executing step S517;Such as Fruit is no, executes step S502.
In other words, if the last used control mode that works is the control mode of phase shift modulation, DC-DC converter This task will be using the control mode of down tube modulation;If control mode used by the last time works is not phase shift modulation Control mode, then this task of DC-DC converter will be using the control mode of phase shift modulation.
S502 reads total time TA of A control H bridge in the first way and B controls the total time TB of H bridge in a second manner.
S503, judges whether TA is greater than TB.If so, executing step S504;If not, executing step S508.
S504 selects second method B to control H bridge.
S505, DC-DC converter are in the course of work.
S506, judges whether this course of work of DC-DC converter terminates.If so, executing step S507;If It is no, return step S505.
S507 records this working time of DC-DC converter, thus when being started according to DC-DC converter this task Total time TB obtained from storage region updates total time TB plus this working time.
S508, judges whether TA is less than TB.If so, executing step S509;If not, executing step S513.
S509 selects first method A to control H bridge.
S510, DC-DC converter are in the course of work.
S511, judges whether this course of work of DC-DC converter terminates.If so, executing step S512;If It is no, return step S510.
S512 records this working time of DC-DC converter, thus when being started according to DC-DC converter this task Total time TA obtained from storage region updates total time TA plus this working time.
S513 selects first method A or second method B to control H bridge.
S514, DC-DC converter are in the course of work.
S515, judges whether this course of work of DC-DC converter terminates.If so, executing step S516;If It is no, return step S514.
S516 records this working time of DC-DC converter.Wherein, H bridge is controlled if it is selection first method A, Total time TA obtained when to be started according to DC-DC converter this task from storage region is plus this working time come more New total time TA;H bridge is controlled if it is selection second method B, so that this task starts Shi Congcun according to DC-DC converter Total time TB that storage area domain obtains updates total time TB plus this working time.
Ti and Tm is arranged in S517.
S518 is controlled such that DC-DC converter works to H bridge using Third Way C, and converts in DC-DC Judge whether this task of DC-DC converter terminates in the course of work of device, if so, terminating process, continues if not, returning Judgement.
S519 judges whether reach Ti using the time of Third Way C control H bridge.If so, executing step S520;Such as Fruit is no, return step S518.
S520 is controlled such that DC-DC converter works to H bridge using fourth way D, and converts in DC-DC Judge whether this task of DC-DC converter terminates in the course of work of device, if so, terminating process, continues if not, returning Judgement.
S521 judges whether reach Tm using the time of fourth way D control H bridge.If so, returning to step S518;If not, return step S520.
Therefore, in an embodiment of the present invention, in the whole life cycle of DC-DC converter, using phase shift modulation Control mode and the control mode of down tube modulation alternately, and are based on total time TA when using the control mode of phase shift modulation It is selected with total time TB in the first way or second method controls H bridge, and set when using the control mode of down tube modulation Time Tm and Ti control H bridge is set to work alternatively with Third Way and fourth way, thus in whole life cycle, so that DC- DC converter uses that total time TA and total time TB when the control mode of phase shift modulation are equal as far as possible and DC-DC converter is adopted With down tube modulate control mode when Third Way and fourth way alternately, it is ensured that the fever of each switching tube is relatively flat Weighing apparatus, substantially increases the working life of DC-DC converter.
The control method of DC-DC converter according to an embodiment of the present invention is obtained when DC-DC converter is worked The DC-DC converter last time work when control mode, and according to the DC-DC converter last time work when control mode select Control mode when this task, so that the control mode of phase shift modulation and down tube tune in DC-DC converter whole life cycle The control mode of system is alternately.Wherein, the control mode when selecting this work for phase shift modulation control mode when, obtain Take in the first way control H bridge total time TA and in a second manner control H bridge total time TB, then judge total time TA and Relationship between total time TB finally selects the side controlled H bridge according to the relationship between total time TA and total time TB Formula, to carry out temperature equalization control to first switch tube, second switch, third switching tube and the 4th switching tube;When selection sheet When control mode when task is the control mode of down tube modulation, obtain with the setting time Ti of Third Way control H bridge and With fourth way control H bridge setting time Tm, then according to Ti and Tm to H bridge carry out alternately control with to first switch tube, Second switch, third switching tube and the 4th switching tube carry out temperature equalization control, thus in whole life cycle, DC-DC Converter uses total time TA and total time TB when the control mode of phase shift modulation equal as far as possible, under DC-DC converter use The control mode of pipe modulation when being worked Third Way and fourth way alternately so that the fever of each switching tube is opposite Balance improves the working life of switching tube in H bridge, in the case where not increasing cost so as to extend the life of DC-DC converter Order the period.
As shown in Figure 1, DC-DC converter according to an embodiment of the present invention includes H bridge and such as MCU of control module 100 (Micro Control Unit, microcontroller).Wherein, H bridge includes first switch tube Q1, second switch Q2, third switch Pipe Q3 and the 4th switching tube Q4, first switch tube Q1 and second switch Q2 constitute the first bridge arm, third switching tube Q3 and the 4th Switching tube Q4 constitutes the second bridge arm, has first node A, third switching tube Q3 between first switch tube Q1 and second switch Q2 There is second node B between the 4th switching tube Q4.
Control module 100 is for obtaining primary work in the DC-DC converter when the DC-DC converter is worked Control mode when making, and control when control mode when being worked according to the DC-DC converter last time selects this task Mode processed, wherein the control mode of the DC-DC converter includes the control mode of phase shift modulation and the controlling party of down tube modulation Formula.
Also, the control mode when selecting this work for the phase shift modulation control mode when, control module 100 Acquisition controls total time TA of the H bridge in the first way and controls the total time TB of the H bridge in a second manner, and by sentencing The relationship broken between the total time TA and the total time TB is in a manner of selecting to control the H bridge, to described First switch tube, second switch, third switching tube and the 4th switching tube carry out temperature equalization control, wherein with described first When mode controls the H bridge, using first bridge arm as leading-bridge, and using second bridge arm as lagging leg;With When the second method controls the H bridge, using second bridge arm as leading-bridge, and using first bridge arm as lag Bridge arm.When the control mode that the control mode when selecting this work is modulated for the down tube, control module 100 is obtained with the Three modes are controlled setting time Ti of the H bridge and are controlled the setting time Tm of the H bridge with fourth way, and are set according to described It sets time Ti and the setting time Tm and the H bridge alternately control to the first switch tube, second switch, the Three switching tubes and the 4th switching tube carry out temperature equalization control, wherein, will be described when controlling the H bridge with the Third Way First switch tube and the third switching tube are as upper tube and using the second switch and the 4th switching tube as under Pipe, and the first switch tube to the 4th switching tube is controlled using the control mode of down tube modulation;With described When four modes control the H bridge, the first switch tube and the third switching tube are opened as down tube and by described second 4th switching tube described in Guan Guanhe is as upper tube, and using the control mode of down tube modulation to the first switch tube to described the Four switching tubes are controlled.
According to one embodiment of present invention, the control module is according between the total time TA and the total time TB Relationship selection the H bridge is controlled mode when, wherein when the total time TA is greater than the total time TB, institute Stating control module selects the second method to control the H bridge;When the total time TA is less than the total time TB, The control module selects the first method to control the H bridge;When the total time TA is equal to the total time TB When, the control module selects the first method or the second method to control the H bridge.
That is, in one embodiment of the invention, DC-DC converter is carried out using the control mode of phase shift modulation When work, when control module controls H bridge using first method A, what record controlled H bridge using first method A Time, so that the available total time TA for controlling H bridge in the first way, is then stored;Control module uses second method B When controlling H bridge, the time that record controls H bridge using second method B, to be controlled in a second manner The total time TB of H bridge, is then stored.The control mode of phase shift modulation is used to carry out work every time in DC-DC converter in this way Control module judges the relationship between total time TA and total time TB when making, finally according between total time TA and total time TB Relationship selects the mode controlled H bridge, to realize to first switch tube, second switch, third switching tube and the 4th Switching tube carries out temperature equalization control.
According to one embodiment of present invention, with the first method control the H bridge when, the control module export to The control signal of the first switch tube is complementary with the control signal of output to the second switch and exports to described the The control signal of three switching tubes is complementary with the control signal of output to the 4th switching tube, and described in first switch tube ratio The super previous phase angle of 4th switching tube is opened and the second switch previous phase angle super than the third switching tube It is open-minded.
Also, when controlling the H bridge with the second method, the control module is exported to the control of the first switch tube Signal processed is complementary with the control signal of output to the second switch and exports to the control signal of the third switching tube It is complementary with the control signal of output to the 4th switching tube, and the 4th switching tube is super than the first switch tube previous Phase angle is opened and the third switching tube previous phase angle super than the second switch is open-minded.
According to one embodiment of present invention, the control module is according to setting time Ti and setting time Tm to the H When bridge alternately control, wherein when the time for controlling the H bridge using the Third Way reaching Ti, the control mould Block controls the H bridge using the fourth way, until being reached using the time that the fourth way controls the H bridge Tm;Or when the time for controlling the H bridge using the fourth way reaching Tm, the control module uses the third party Formula controls the H bridge, until reaching Ti using the time that the Third Way controls the H bridge.
That is, in an embodiment of the present invention, the control mode that DC-DC converter uses down tube to modulate every time carries out When work, Ti and Tm is first arranged in control module, then in the course of work of DC-DC converter, can first use C pairs of Third Way H bridge is controlled such that DC-DC converter works, until being reached using the time that Third Way C controls H bridge Ti is switched to and is controlled such that DC-DC converter works to H bridge using fourth way D, until using fourth way D The time controlled H bridge reaches Tm, so completes a working cycles (i.e. a net cycle time=Ti+Tm), then It is switched to and DC-DC converter, which works, to be controlled such that H bridge using Third Way C, until using Third Way C to H The time that bridge is controlled reaches Ti, then switch to using fourth way D to H bridge be controlled such that DC-DC converter into Row work carries out repeatedly until reaching Tm using the time that fourth way D controls H bridge ... ..., realizes to H bridge Alternately control is carried out, to realize equal to first switch tube, second switch, third switching tube and the 4th switching tube progress temperature Weighing apparatus control.Certainly, in the course of work of DC-DC converter, control module can also first be controlled H bridge using fourth way D It makes so that DC-DC converter works, until reaching Tm using the time that fourth way D controls H bridge, is switched to and adopts DC-DC converter, which works, to be controlled such that H bridge with Third Way C, until controlling using Third Way C to H bridge The time of system reaches Ti, so completes a working cycles, and be repeated according to such working cycles, until DC-DC becomes Parallel operation stops this task.
Wherein, in a preferred embodiment of the invention, the setting H bridge controlled with the Third Way Time Ti can be equal to the setting time Tm controlled with the fourth way the H bridge.It can guarantee with third party in this way Formula and fourth way guarantee first switch tube Q1, second switch Q2, the switch of third switching tube Q3 and the 4th when alternately controlling H bridge Pipe Q4 fever relative equilibrium.
It is, of course, understood that in other embodiments of the invention, being carried out with the Third Way to the H bridge Setting time Ti of control can also be unequal with the setting time Tm controlled with the fourth way the H bridge.
According to one embodiment of present invention, with the Third Way control the H bridge when, the control module export to The control signal of the first switch tube is complementary with the control signal of output to the third switching tube and is fixed duty cycle, and PWM control is carried out to the failing edge of the control signal of output to the second switch and the 4th switching tube.
Also, when controlling the H bridge with the fourth way, the control module is exported to the control of the second switch Signal processed is complementary with the control signal of output to the 4th switching tube and is fixed duty cycle, and opens output to described first The failing edge of the control signal of third switching tube described in Guan Guanhe carries out PWM control.
In an embodiment of the present invention, as shown in Figure 1, first switch tube Q1, second switch Q2, third switching tube Q3 and 4th switching tube Q4 is IGBT (Insulated Gate Bipolar Transistor, insulated gate bipolar transistor), when So, in other embodiments of the invention, first switch tube Q1, second switch Q2, third switching tube Q3 and the 4th switching tube Q4 may be metal-oxide-semiconductor.
DC-DC converter according to an embodiment of the present invention obtains DC-DC by control module when being actuated for work The converter last time work when control mode, and according to the DC-DC converter last time work when control mode select this Control mode when work so that in DC-DC converter whole life cycle the control mode of phase shift modulation and down tube modulation Control mode is alternately.Wherein, the control mode when selecting this work for phase shift modulation control mode when, pass through control Molding block obtains total time TA for controlling H bridge in the first way and controls the total time TB of H bridge in a second manner, and then judgement is total Relationship between time TA and total time TB finally carries out H bridge according to the relationship selection between total time TA and total time TB The mode of control, to carry out temperature equalization control to first switch tube, second switch, third switching tube and the 4th switching tube; When the control mode that the control mode when selecting this work is modulated for down tube, obtained by control module with Third Way control The setting time Ti of the H bridge processed and setting time Tm that H bridge is controlled with fourth way, then replaces H bridge according to Ti and Tm Control is to carry out temperature equalization control to first switch tube, second switch, third switching tube and the 4th switching tube, thus whole In a life cycle, using phase shift modulation control mode when total time TA and total time TB it is equal as far as possible, and use down tube When the control mode of modulation is worked Third Way and fourth way alternately so that the fever of each switching tube is relatively flat Weighing apparatus improves the working life of switching tube in H bridge, in the case where not increasing cost so as to extend life cycle.
In addition, as shown in fig. 6, the embodiment of the present invention also proposed a kind of electric car 10 comprising above-mentioned DC-DC Converter 20.
The electric car of the embodiment of the present invention can control DC-DC converter in whole life cycle using phase shift tune System control mode and down tube modulation control mode alternately, and using phase shift modulation control mode when total time TA and total time TB are equal as far as possible, using down tube modulate control mode worked when Third Way and fourth way alternately into Row can be realized and carry out temperature equalization to first switch tube, second switch, third switching tube and the 4th switching tube in H bridge Control, so that the fever relative equilibrium of each switching tube improves the work of switching tube in H bridge in the case where not increasing cost Service life, to extend the life cycle of DC-DC converter.
In the description of the present invention, it is to be understood that, term " center ", " longitudinal direction ", " transverse direction ", " length ", " width ", " thickness ", "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top", "bottom" "inner", "outside", " up time The orientation or positional relationship of the instructions such as needle ", " counterclockwise ", " axial direction ", " radial direction ", " circumferential direction " be orientation based on the figure or Positional relationship is merely for convenience of description of the present invention and simplification of the description, rather than the device or element of indication or suggestion meaning must There must be specific orientation, be constructed and operated in a specific orientation, therefore be not considered as limiting the invention.
In addition, term " first ", " second " are used for descriptive purposes only and cannot be understood as indicating or suggesting relative importance Or implicitly indicate the quantity of indicated technical characteristic.Define " first " as a result, the feature of " second " can be expressed or Implicitly include at least one this feature.In the description of the present invention, the meaning of " plurality " is at least two, such as two, three It is a etc., unless otherwise specifically defined.
In the present invention unless specifically defined or limited otherwise, term " installation ", " connected ", " connection ", " fixation " etc. Term shall be understood in a broad sense, for example, it may be being fixedly connected, may be a detachable connection, or integral;It can be mechanical connect It connects, is also possible to be electrically connected;It can be directly connected, can also can be in two elements indirectly connected through an intermediary The interaction relationship of the connection in portion or two elements, unless otherwise restricted clearly.For those of ordinary skill in the art For, the specific meanings of the above terms in the present invention can be understood according to specific conditions.
In the present invention unless specifically defined or limited otherwise, fisrt feature in the second feature " on " or " down " can be with It is that the first and second features directly contact or the first and second features pass through intermediary mediate contact.Moreover, fisrt feature exists Second feature " on ", " top " and " above " but fisrt feature be directly above or diagonally above the second feature, or be merely representative of First feature horizontal height is higher than second feature.Fisrt feature can be under the second feature " below ", " below " and " below " One feature is directly under or diagonally below the second feature, or is merely representative of first feature horizontal height less than second feature.
In the description of this specification, reference term " one embodiment ", " some embodiments ", " example ", " specifically show The description of example " or " some examples " etc. means specific features, structure, material or spy described in conjunction with this embodiment or example Point is included at least one embodiment or example of the invention.In the present specification, schematic expression of the above terms are not It must be directed to identical embodiment or example.Moreover, particular features, structures, materials, or characteristics described can be in office It can be combined in any suitable manner in one or more embodiment or examples.In addition, without conflicting with each other, the skill of this field Art personnel can tie the feature of different embodiments or examples described in this specification and different embodiments or examples It closes and combines.
Although the embodiments of the present invention has been shown and described above, it is to be understood that above-described embodiment is example Property, it is not considered as limiting the invention, those skilled in the art within the scope of the invention can be to above-mentioned Embodiment is changed, modifies, replacement and variant.

Claims (13)

1. a kind of control method of DC-DC converter, which is characterized in that the DC-DC converter includes H bridge, and the H bridge includes First switch tube, second switch, third switching tube and the 4th switching tube, wherein the first switch tube and described second is opened It closes pipe and constitutes the first bridge arm, the third switching tube and the 4th switching tube constitute the second bridge arm, and the control method includes Following steps:
When the DC-DC converter is worked, control mode when DC-DC converter last time work is obtained, and Control mode when being worked according to the DC-DC converter last time selects control mode when this task, and the DC-DC becomes Control mode when the parallel operation last time works is different from control mode when this task, wherein the control of the DC-DC converter Mode processed includes the control mode of phase shift modulation and the control mode of down tube modulation;
Control mode when selecting this work for the phase shift modulation control mode when, acquisition controls institute in the first way State total time TA of H bridge and control the total time TB of the H bridge in a second manner, and by judge the total time TA with it is described Relationship between total time TB is in a manner of selecting to control the H bridge, to the first switch tube, second switch Pipe, third switching tube and the 4th switching tube carry out temperature equalization control, wherein, will when controlling the H bridge with the first method First bridge arm is as leading-bridge, and using second bridge arm as lagging leg;The H is controlled with the second method When bridge, using second bridge arm as leading-bridge, and using first bridge arm as lagging leg;
When the control mode that the control mode when selecting this work is modulated for the down tube, obtains and institute is controlled with Third Way It states setting time Ti of H bridge and controls the setting time Tm of the H bridge with fourth way, and according to the setting time Ti and institute It states setting time Tm and the H bridge alternately control to the first switch tube, second switch, third switching tube and the Four switching tubes carry out temperature equalization control, wherein when controlling the H bridge with the Third Way, by the first switch tube and The third switching tube uses down tube as upper tube and using the second switch and the 4th switching tube as down tube The control mode of modulation controls the first switch tube to the 4th switching tube;Described in fourth way control When H bridge, using the first switch tube and the third switching tube as down tube and by the second switch and the described 4th Switching tube controls the first switch tube to the 4th switching tube as upper tube, and using the control mode of down tube modulation System.
2. the control method of DC-DC converter as described in claim 1, which is characterized in that according to the total time TA and institute It states the relationship between total time TB and selects the mode controlled the H bridge, specifically include:
When the total time TA is greater than the total time TB, the second method is selected to control the H bridge;
When the total time TA is less than the total time TB, the first method is selected to control the H bridge;
When the total time TA is equal to the total time TB, select the first method or the second method to the H bridge It is controlled.
3. the control method of DC-DC converter as claimed in claim 1 or 2, which is characterized in that wherein,
When controlling the H bridge with the first method, export to the control signal of the first switch tube and output to described the The control signal and output to the 4th switch that the control signal of two switching tubes is complementary and output is to the third switching tube The control signal of pipe is complementary, and the first switch tube previous phase angle super than the 4th switching tube is opened and described Second switch previous phase angle super than the third switching tube is open-minded;
When controlling the H bridge with the second method, export to the control signal of the first switch tube and output to described the The control signal and output to the 4th switch that the control signal of two switching tubes is complementary and output is to the third switching tube The control signal of pipe is complementary, and the 4th switching tube previous phase angle super than the first switch tube is opened and described Third switching tube previous phase angle super than the second switch is open-minded.
4. the control method of DC-DC converter as described in claim 1, which is characterized in that according to the setting time Ti and The setting time Tm carries out alternately control to the H bridge, specifically includes:
When the time for controlling the H bridge using the Third Way reaching Ti, the H bridge is carried out using the fourth way Control, until reaching Tm using the time that the fourth way controls the H bridge;Or
When the time for controlling the H bridge using the fourth way reaching Tm, the H bridge is carried out using the Third Way Control, until reaching Ti using the time that the Third Way controls the H bridge.
5. the control method of DC-DC converter as described in claim 1 or 4, which is characterized in that wherein,
When controlling the H bridge with the Third Way, export to the control signal of the first switch tube and output to described the The control signal of three switching tubes is complementary and is fixed duty cycle, and to output to the second switch and the 4th switching tube Control signal failing edge carry out PWM control;
When controlling the H bridge with the fourth way, export to the control signal of the second switch and output to described the The control signal of four switching tubes is complementary and is fixed duty cycle, and to output to the first switch tube and the third switching tube Control signal failing edge carry out PWM control.
6. the control method of the DC-DC converter as described in any one of claim 1-2 and 4, which is characterized in that with described Setting time Ti that three modes control the H bridge is equal to the setting controlled with the fourth way the H bridge Time Tm.
7. a kind of DC-DC converter characterized by comprising
H bridge, the H bridge include first switch tube, second switch, third switching tube and the 4th switching tube, wherein described first Switching tube and the second switch constitute the first bridge arm, and the third switching tube and the 4th switching tube constitute the second bridge Arm;
Control module, the control module is for obtaining the DC-DC converter when the DC-DC converter is worked Control mode when one action, and according to the DC-DC converter last time work when control mode select this task When control mode, the DC-DC converter last time work when control mode it is different from control mode when this task, The control mode of the DC-DC converter includes the control mode of phase shift modulation and the control mode of down tube modulation, wherein
Control mode when selecting this work for the phase shift modulation control mode when, the control module is obtained with the One mode controls total time TA of the H bridge and controls the total time TB of the H bridge in a second manner, and described total by judging Relationship between time TA and the total time TB is in a manner of selecting to control the H bridge, to the first switch Pipe, second switch, third switching tube and the 4th switching tube carry out temperature equalization control, wherein with first method control When the H bridge, using first bridge arm as leading-bridge, and using second bridge arm as lagging leg;With described second When mode controls the H bridge, using second bridge arm as leading-bridge, and using first bridge arm as lagging leg;
When the control mode that the control mode when selecting this work is modulated for the down tube, the control module is obtained with the Three modes are controlled setting time Ti of the H bridge and are controlled the setting time Tm of the H bridge with fourth way, and are set according to described It sets time Ti and the setting time Tm and the H bridge alternately control to the first switch tube, second switch, the Three switching tubes and the 4th switching tube carry out temperature equalization control, wherein, will be described when controlling the H bridge with the Third Way First switch tube and the third switching tube are as upper tube and using the second switch and the 4th switching tube as under Pipe, and the first switch tube to the 4th switching tube is controlled using the control mode of down tube modulation;With described When four modes control the H bridge, the first switch tube and the third switching tube are opened as down tube and by described second 4th switching tube described in Guan Guanhe is as upper tube, and using the control mode of down tube modulation to the first switch tube to described the Four switching tubes are controlled.
8. DC-DC converter as claimed in claim 7, which is characterized in that the control module according to the total time TA with When the mode that the relationship selection between the total time TB controls the H bridge, wherein
When the total time TA is greater than the total time TB, the control module select the second method to the H bridge into Row control;
When the total time TA is less than the total time TB, the control module select the first method to the H bridge into Row control;
When the total time TA is equal to the total time TB, the control module selects the first method or the second party Formula controls the H bridge.
9. DC-DC converter as claimed in claim 7 or 8, which is characterized in that wherein,
When controlling the H bridge with the first method, the control module export control signal to the first switch tube with The control signal of output to the second switch is complementary and exports to the control signal of the third switching tube and exports extremely The control signal of 4th switching tube is complementary, and the first switch tube previous phase angle super than the 4th switching tube is opened The logical and described second switch previous phase angle super than the third switching tube is open-minded;
When controlling the H bridge with the second method, the control module export control signal to the first switch tube with The control signal of output to the second switch is complementary and exports to the control signal of the third switching tube and exports extremely The control signal of 4th switching tube is complementary, and the 4th switching tube previous phase angle super than the first switch tube is opened The logical and described third switching tube previous phase angle super than the second switch is open-minded.
10. DC-DC converter as claimed in claim 7, which is characterized in that the control module is according to the setting time Ti When alternately control to the H bridge with the setting time Tm, wherein
When the time for controlling the H bridge using the Third Way reaching Ti, the control module uses the fourth way The H bridge is controlled, until reaching Tm using the time that the fourth way controls the H bridge;Or
When the time for controlling the H bridge using the fourth way reaching Tm, the control module uses the Third Way The H bridge is controlled, until reaching Ti using the time that the Third Way controls the H bridge.
11. the DC-DC converter as described in claim 7 or 10, which is characterized in that wherein,
When controlling the H bridge with the Third Way, the control module export control signal to the first switch tube with It exports to the control signal complementation of the third switching tube and is fixed duty cycle, and to output to the second switch and institute The failing edge for stating the control signal of the 4th switching tube carries out PWM control;
When controlling the H bridge with the fourth way, the control module export control signal to the second switch with It exports to the control signal complementation of the 4th switching tube and is fixed duty cycle, and to output to the first switch tube and institute The failing edge for stating the control signal of third switching tube carries out PWM control.
12. DC-DC converter as claimed in claim 7, which is characterized in that controlled with the Third Way to the H bridge Setting time Ti of system is equal to the setting time Tm controlled with the fourth way the H bridge.
13. a kind of electric car, which is characterized in that including the DC-DC converter as described in any one of claim 7-12.
CN201611106398.2A 2016-12-02 2016-12-02 The control method of electric car and its DC-DC converter and DC-DC converter Active CN108155798B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611106398.2A CN108155798B (en) 2016-12-02 2016-12-02 The control method of electric car and its DC-DC converter and DC-DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611106398.2A CN108155798B (en) 2016-12-02 2016-12-02 The control method of electric car and its DC-DC converter and DC-DC converter

Publications (2)

Publication Number Publication Date
CN108155798A CN108155798A (en) 2018-06-12
CN108155798B true CN108155798B (en) 2019-11-08

Family

ID=62470871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611106398.2A Active CN108155798B (en) 2016-12-02 2016-12-02 The control method of electric car and its DC-DC converter and DC-DC converter

Country Status (1)

Country Link
CN (1) CN108155798B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111049378B (en) * 2018-10-12 2021-08-27 广州汽车集团股份有限公司 DC/DC converter, control method thereof and automobile

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102791072A (en) * 2011-05-20 2012-11-21 东软飞利浦医疗设备***有限责任公司 High power high voltage generator
CN104600998A (en) * 2015-02-10 2015-05-06 四川英杰电气股份有限公司 Method for controlling uniform heating of switch device of switch power source
US9214865B2 (en) * 2010-04-20 2015-12-15 Rf Micro Devices, Inc. Voltage compatible charge pump buck and buck power supplies

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9214865B2 (en) * 2010-04-20 2015-12-15 Rf Micro Devices, Inc. Voltage compatible charge pump buck and buck power supplies
CN102791072A (en) * 2011-05-20 2012-11-21 东软飞利浦医疗设备***有限责任公司 High power high voltage generator
CN104600998A (en) * 2015-02-10 2015-05-06 四川英杰电气股份有限公司 Method for controlling uniform heating of switch device of switch power source

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
组合整流式高频环节逆变器;阚加荣 等;《电工技术学报》;20130531;第28卷(第5期);全文 *

Also Published As

Publication number Publication date
CN108155798A (en) 2018-06-12

Similar Documents

Publication Publication Date Title
JP6706663B2 (en) Gradient power supply driver stage circuit, gradient power supply system and control method thereof
CN106891746B (en) The control method of electric car and its onboard charger and onboard charger
JP2019502346A (en) Electric vehicle, on-vehicle charger, and method for controlling the same
CN108155798B (en) The control method of electric car and its DC-DC converter and DC-DC converter
CN106891745B (en) The control method of electric car and its onboard charger and onboard charger
CN106287863A (en) Electromagnetic heater and control method thereof and control circuit
CN108155809B (en) The control method of electric car and its DC-DC converter and DC-DC converter
CN108155805B (en) The control method of electric car and its DC-DC converter and DC-DC converter
JP2019500838A (en) Electric vehicle, on-vehicle charger, and method for controlling the same
CN108155802A (en) The control method of electric vehicle and its DC-DC converter and DC-DC converter
CN108155804B (en) The control method of electric car and its DC-DC converter and DC-DC converter
CN108155806A (en) The control method of electric vehicle and its DC-DC converter and DC-DC converter
CN108155797A (en) The control method of electric vehicle and its DC-DC converter and DC-DC converter
CN106891736B (en) The control method of electric car and its onboard charger and onboard charger
CN108155794A (en) The control method of electric vehicle and its DC-DC converter and DC-DC converter
WO2017101843A1 (en) Electric automobile, on-board charger thereof, and on-board charger control method
CN108155808A (en) The control method of electric vehicle and its DC-DC converter and DC-DC converter
CN108155803A (en) The control method of electric vehicle and its DC-DC converter and DC-DC converter
WO2017101834A1 (en) Electric automobile, on-board charger thereof, and on-board charger control method
CN108155810A (en) The control method of electric vehicle and its DC-DC converter and DC-DC converter
CN108155792A (en) The control method of electric vehicle and its DC-DC converter and DC-DC converter
CN108155795A (en) The control method of electric vehicle and its DC-DC converter and DC-DC converter
CN108155796A (en) The control method of electric vehicle and its DC-DC converter and DC-DC converter
WO2017101830A1 (en) Electric automobile, on-board charger thereof, and on-board charger control method
CN113556032B (en) Starting method of power unit of power electronic transformer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant