CN108151698A - 一种基于轴线相交法的天线旋转中心标校方法 - Google Patents

一种基于轴线相交法的天线旋转中心标校方法 Download PDF

Info

Publication number
CN108151698A
CN108151698A CN201711433860.4A CN201711433860A CN108151698A CN 108151698 A CN108151698 A CN 108151698A CN 201711433860 A CN201711433860 A CN 201711433860A CN 108151698 A CN108151698 A CN 108151698A
Authority
CN
China
Prior art keywords
antenna
axis
point
rotation center
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711433860.4A
Other languages
English (en)
Other versions
CN108151698B (zh
Inventor
李宗春
路志勇
张冠宇
冯其强
郭迎钢
何华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 54 Research Institute
Information Engineering University of PLA Strategic Support Force
Original Assignee
CETC 54 Research Institute
Information Engineering University of PLA Strategic Support Force
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 54 Research Institute, Information Engineering University of PLA Strategic Support Force filed Critical CETC 54 Research Institute
Priority to CN201711433860.4A priority Critical patent/CN108151698B/zh
Publication of CN108151698A publication Critical patent/CN108151698A/zh
Application granted granted Critical
Publication of CN108151698B publication Critical patent/CN108151698B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C1/00Measuring angles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明涉及一种基于轴线相交法的天线旋转中心标校方法,该方法首先设置控制点,构建工程控制网,获得大地坐标和大地方位角;然后在天线上布设标志点,控制天线的姿态按照设定角度变化,获得天线在不同姿态下的标识点的坐标;最后根据天线不同姿态下标识点的坐标,采用轴线相交法得到天线的旋转中心,精度能够达到毫米级。在此基础上可精确标定上行阵天线相位中心之间的相对位置关系,从而完成载波相位标校,实现信号载波对齐。

Description

一种基于轴线相交法的天线旋转中心标校方法
技术领域
本发明属于天线组阵技术领域,具体涉及一种基于轴线相交法的天线旋转中心标校方法。
背景技术
天线组阵技术是随着人类探索外层空间的历程而逐步发展起来的,是未来深空通信中的重要发展方向之一。深空通信等技术的发展对天线性能的要求也越来越高,尤其是要求天线的等效口径越来也大,但是,由于其结构和重量极其庞大,驱动伺服非常困难。天线组阵技术是利用多个天线接收来自同一个深空探测器的下行信号或者向同一个深空探测器发射上行信号,通过信号合成提高信号的信噪比,实现数据的上下行高速传输。相比单个天线,天线组阵具有提升***性能、增强可操作性、降低***研制成本和提高***运行灵活性等明显优势。
上行组阵是利用地面上分布的多个发射天线组成发射阵列,对同一目标发射信号,并通过调整各个发射信号的时延、相位,使各个发射信号在目标处能够实现同相合成,从而增强深空探测器接收信号的信噪比。因此,上行天线组阵技术的研究与应用具有重要的现实价值。但是如何完成载波相位标校,如何实现信号载波对齐是上行天线组阵的需要解决的技术难题。
天线相心变化受到多种因素的影响。对于同一天线,由于受到重力变形和加工精度等因素的影响,不同方位、俯仰角下的天线相心可能不同;对于不同天线,同一方位、俯仰角度引入的相位滞后也会不同,不同方位角、俯仰角下天线相位中心的准确性也会不同;天线的机械和温度特性的差异以及其他环境因素也会造成相位误差。为了精确标定上行阵天线相位中心之间的相对位置关系,首先需要对精确标定各天线的旋转中心。
《北京测绘》2006年第1期公开了作者为陈廷武、李敬东的《大型天线几何旋转中心的测定方法》,该方法使得天线绕垂直轴旋转,每旋转15度,获得一组数据,拟合出天线的竖直轴;以同样的方法控制天线绕水平轴旋转,每旋转10度,获得一组数据,拟合出天线的水平轴。水平轴和垂直轴的交点便为天线的旋转中心。该标校方法获得天线旋转中心的精度较低、且不够准确。
发明内容
本发明的目的在于提供一种基于轴线相交法的天线旋转中心标校方法,用以解决现有技术中对于天线旋转中心标定不准确的问题。
为解决上述技术问题,本发明的技术方案为:
本发明提供了一种基于轴线相交法的天线旋转中心标校方法,包括如下步骤:
设置控制点,构建工程控制网,获得大地坐标和大地方位角;
在天线上布设标志点,控制天线的姿态变化,获得天线在不同姿态下的标识点的坐标;
根据天线在不同姿态下标识点的坐标,得到在每种姿态下天线的轴线;
根据天线在每种姿态下天线的轴线,求得所有轴线的交点,该交点为天线的旋转中心。
进一步地,根据天线在每种姿态下天线的轴线,采用最小二乘法,求得距离每条轴线的距离平方和最小的点,该点为所有轴线的交点。
进一步地,采用GNSS网来获得大地坐标和大地方位角。
进一步地,所述控制天线的姿态变化,获得天线在不同姿态下的标识点的坐标包括:控制天线的方位角不变,俯仰角在设定范围内变化,得到在该方位角下天线不同的姿态;进而得到在不同方位角下天线不同的姿态;从而得到天线不同的姿态。
进一步地,天线的方位角从0°至360°,俯仰角从0°至90°等间隔变化,得到天线不同的姿态。
进一步地,所述根据天线在不同姿态下标识点的坐标,得到在每种姿态下天线的轴线包括:
构建工业摄影测量***和全站仪测量***;
采用工业摄影测量***拍摄标志点,得到标志点在工业摄影测量坐标系下的坐标;
将标志点在工业摄影测量***坐标系下的坐标与天线进行拟合,得到天线轴线在工业摄影测量***坐标系下的轴线;
在天线工装上布设公共点,根据公共点得到全站仪坐标系和工业摄影测量坐标系的关系;
根据该关系,将在工业摄影测量***坐标系下的轴线转换到全站仪坐标系中,得到在每种姿态下天线的轴线。
进一步地,所述根据公共点得到全站仪坐标系和工业摄影测量坐标系的关系包括:
分别采用全站仪测量***和工业摄影测量***对公共点进行测量;
将工业摄影测量***测量公共点所得的结果,转换到全站仪坐标系中,得到测量转换结果;
若测量转换结果不满足精度要求,则重新测量;
根据满足精度要求的测量转换结果,得到全站仪坐标系和工业摄影测量坐标系的关系。
本发明的有益效果:
本发明为了获得精准的天线旋转中心,以大地坐标和大地方位角为基准,来获得各个标志点的坐标,根据这些大量的坐标,采用轴线相交法获得天线的旋转中心。使用该方法获得天线旋转中心的精度能够达到毫米级。在此基础上,可精确标定上行阵天线相位中心之间的相对位置关系,从而完成载波相位标校,实现信号载波对齐。
进一步地,构建GNSS网来获得天线的大地坐标和大地方位角,由于GNSS具有测量速度快,不受通视、天气等条件的限制,自动化程度高,受人为测量误差的影响小,能够进行连续测量等优点,故使得通过该***获得的大地坐标和大地方位角更加准确与精准,由此得到的天线旋转中心也更加准确。
附图说明
图1是本发明的方法流程图;
图2是工程控制网示意图;
图3是测量墩示意图;
图4是标志点分布示意图;
图5是工装布设示意图;
图6是轴线分布图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚,下面结合附图及实施例,对本发明作进一步的详细说明。
为了精确获取天线旋转中心在大地空间直角坐标系中的坐标,并高精度标校上行阵天线旋转中心之间的相对位置关系,本发明提出了一种基于轴线相交法的天线旋转中心标校方法,该方法的主要流程如图1所示。
下面以某实验场地内的4台φ3m的上行阵天线组阵为例,来介绍本发明的标校方法。
首先,由于工程控制网的建立是确保获得高精度天线旋转中心的基础,故先设置控制点,构建工程控制网,获得大地坐标和大地方位角。展开来讲:
1、设计工程控制网网形并修建测量墩。
如图2所示,天线T1至天线T3组成上行阵天线组阵。根据工程的具体需求,结合实验场地内4台φ3m天线的分布,并考虑实际地形、地质条件、测量方案等要求,修建了4个带有强制对中装置的高精度测量墩,即J001、J002、J003和J004,每个测量墩的示意图如图3所示。每个测量墩即为1个控制点,这4个控制点(J001~J004)构成了天线组阵标校的工程控制网。
2、通过构建GNSS网建立大地坐标与大地方位角基准。
GNSS具有测量速度快,不受通视、天气等条件的限制,自动化程度高,受人为测量误差的影响小,能够进行连续测量等优点。故在该实施例中,采用GNSS网进行工程控制网测量,以获取高精度的大地坐标和大地方位角。
按照GPS控制测量中的C级测量技术要求施测。GPS测量方案采用J001—J002—J004和J002—J03—J004两个闭合环进行,每个环至少连续测量4个小时;长基线J002—J004至少连续观测12小时。
以闭环J001—J002—J004为例,介绍GPS测量的具体步骤:
1)在J001、J002和J004测量墩上安置GPS天线;
2)测量天线高度;
3)连接好天线、接收机和电源,打开接收机并设置测量模式、天线型号、采样间隔和卫星截止高度角等参数;
4)新建工程文件,并开始测量;
5)定时检查记录仪器的工作状态;
6)当观测时间满足要求后即可结束测量,保存测量得到的原始观测数据。
利用数据处理软件LGO(LEICA Geo Office Combined)把GPS测量得到的原始观测数据的格式转换为rinex格式;采用Gamit10.50和Globk5.19I软件,以BJFS、SHAO、LHAZ三个IGS基准站的GPS观测数据及其大地坐标和运动速度计算控制点J002和J004点的大地坐标。局域网数据处理采用LEICA GEO office8.4软件,以控制点J004点高精度计算结果为控制基准,计算其他各控制点的坐标及方位基准数据。
GPS观测数据处理后可以得到高精度的大地坐标和大地方位角,为后续结果向大地坐标系的转换提供了基础。
3、通过全站仪观测构建高精度的三维控制网。
利用全站仪,来建立相对精度达到亚毫米级的边角控制网。测量实施参照《国家三角测量规范》(GB/T 17942—2000)、精密工程测量规范(GBT 15314-1994)中相关测量要求进行。并且,采用精密棱镜配合全站仪建立工程控制网。
以测站J001为例说明全站仪控制网测量的具体步骤如下:
1)架设仪器;
2)量取全站仪仪器高和棱镜高;
3)选择零方向;
4)采用方向观测法,多测回获取水平角和垂直角;
5)进行获取斜距;
6)检查测量数据是否超限。
将全站仪观测结果导入到控制网平产软件中进行处理,得到三维控制网控制点的坐标及精度。
然后,将工业摄影测量***和全站仪测量***进行联合测量,在每台天线上布设标志点,控制每台天线的姿态按照设定角度变化,获得每台天线不同姿态下的标识点的坐标。展开来讲:
对每台天线分别在方位为60°、180°和300°的位置,俯仰从10°至80°每隔10°进行摄影测量,以获取天线面板上大量标识点的坐标。
使用工业摄影测量***必须配合摄影测量标志,由于每个天线由八块相同的扇形面板组成,故每块面板的标志布设方案相同。在每块面板上共均匀布设18个普通测量标志和1个编码标志,测量标志分布情况如图4所示。为了把工业摄影测量坐标系引入全站仪测量坐标系,需要测量公共点。公共点借助工装交替布设在天线面板边缘的内外侧,另在副面的外端面布设一个公共点。工装的分布如图5所示。
以天线T1为例,介绍测量的具体步骤:
1)按照工业摄影测量标志布设方案,在天线面板上布设测量标志和工装;
2)在合适的测量墩上架设全站仪;
3)调整天线至方位角60°、俯仰角10°的位置,把球棱镜全站仪可视范围内的工装上,用全站仪测量其坐标;
4)保持天线位置不变,在全站仪测量的公共点的靶座上安装摄影测量工装;
5)利用工业摄影测量***对天线面板上分布的标识点进行测量;
6)保持天线方位角为60°不变,俯仰从10°至80°每隔10°重复步骤3)—步骤5)进行测量;
7)将天线转至方位角180°和300°,重复步骤3)—步骤5)进行测量;
8)将工业摄影测量***测量公共点所得的结果,转换到全站仪坐标系中,得到测量转换结果;若测量转换结果不满足精度要求,则重新测量;根据满足精度要求的测量转换结果,得到全站仪坐标系和工业摄影测量坐标系的关系。
最后,根据每台天线不同姿态下标识点的坐标,采用轴线相交法得到每台天线的旋转中心。
轴线相交法,顾名思义,对于每台天线,其每个姿态下的轴线应该相交于一点。故需要根据上述测量得到的坐标,获得每台天线在每种姿态下的轴线;对于其中的一台天线,求得每个姿态下的轴线的交点,该点为该台天线的旋转中心;进而得到每台天线的旋转中心。具体的:
1、求出每个姿态下的天线的轴线,具体步骤如下:
1)对工业摄影测量获取的像片进行处理,得到布设在天线面板上标志点在摄影测量坐标系下的坐标;
2)将标志点坐标与天线模型进行最佳拟合,并根据拟合结果确定天线轴线在摄影测量坐标系中的指向;
3)利用全站仪和工业摄影测量的公共点进行公共点转换,将天线轴线指向转换到全站仪测量坐标系中。
2、根据天线在每种姿态下天线的轴线,采用最小二乘法,求得距离每条轴线的距离平方和最小的点,该点为所有轴线的交点。
此实施例中,对每台天线分别在24个姿态下进行了测量,每台天线可以得到24条轴线。在理想情况下,24条轴线应该交于一点,但是由于重力变形、加工精度、天线的机械和温度特性、测量误差等因素的影响,导致这些轴线在空间汇总为异面直线。依据最小二乘准则,求出距24条轴线的距离平方和最小的空间点作为天线的旋转中心,如图6所示。
采用矩阵法计算到多条直线距离平方和最小点的坐标。
假设24条天线轴线为l1、l2、l3、…、l24,直线li(i=1,2,3,…,24)过点pi=[x0i y0iz0i],方向为ui=[uxi uyi uzi],则li可表示成:
式中,ai表示直线上点到pi的距离参数。
将式(1)展开,得到:
式中,x、y、z、ai为未知参数。
m条直线共有3m个误差方程和(m+3)个未知参数,误差方程为:
V=AX-L (3)
其中,
根据上式,采用最小二乘法即可求解:
X=-(ATA)·(ATL) (4)
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (7)

1.一种基于轴线相交法的天线旋转中心标校方法,其特征在于,包括如下步骤:
设置控制点,构建工程控制网,获得大地坐标和大地方位角;
在天线上布设标志点,控制天线的姿态变化,获得天线在不同姿态下的标识点的坐标;
根据天线在不同姿态下标识点的坐标,得到在每种姿态下天线的轴线;
根据天线在每种姿态下天线的轴线,求得所有轴线的交点,该交点为天线的旋转中心。
2.根据权利要求1所述的基于轴线相交法的天线旋转中心标校方法,其特征在于,根据天线在每种姿态下天线的轴线,采用最小二乘法,求得距离每条轴线的距离平方和最小的点,该点为所有轴线的交点。
3.根据权利要求1所述的基于轴线相交法的天线旋转中心标校方法,其特征在于,采用GNSS网来获得大地坐标和大地方位角。
4.根据权利要求1所述的基于轴线相交法的天线旋转中心标校方法,其特征在于,所述控制天线的姿态变化,获得天线在不同姿态下的标识点的坐标包括:控制天线的方位角不变,俯仰角在设定范围内变化,得到在该方位角下天线不同的姿态;进而得到在不同方位角下天线不同的姿态;从而得到天线不同的姿态。
5.根据权利要求4所述的基于轴线相交法的天线旋转中心标校方法,其特征在于,天线的方位角从0°至360°,俯仰角从0°至90°等间隔变化,得到天线不同的姿态。
6.根据权利要求1所述的基于轴线相交法的天线旋转中心标校方法,其特征在于,所述根据天线在不同姿态下标识点的坐标,得到在每种姿态下天线的轴线包括:
构建工业摄影测量***和全站仪测量***;
采用工业摄影测量***拍摄标志点,得到标志点在工业摄影测量坐标系下的坐标;
将标志点在工业摄影测量***坐标系下的坐标与天线进行拟合,得到天线轴线在工业摄影测量***坐标系下的轴线;
在天线工装上布设公共点,根据公共点得到全站仪坐标系和工业摄影测量坐标系的关系;
根据该关系,将在工业摄影测量***坐标系下的轴线转换到全站仪坐标系中,得到在每种姿态下天线的轴线。
7.根据权利要求6所述的基于轴线相交法的天线旋转中心标校方法,其特征在于,所述根据公共点得到全站仪坐标系和工业摄影测量坐标系的关系包括:
分别采用全站仪测量***和工业摄影测量***对公共点进行测量;
将工业摄影测量***测量公共点所得的结果,转换到全站仪坐标系中,得到测量转换结果;
若测量转换结果不满足精度要求,则重新测量;
根据满足精度要求的测量转换结果,得到全站仪坐标系和工业摄影测量坐标系的关系。
CN201711433860.4A 2017-12-26 2017-12-26 一种基于轴线相交法的天线旋转中心标校方法 Active CN108151698B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711433860.4A CN108151698B (zh) 2017-12-26 2017-12-26 一种基于轴线相交法的天线旋转中心标校方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711433860.4A CN108151698B (zh) 2017-12-26 2017-12-26 一种基于轴线相交法的天线旋转中心标校方法

Publications (2)

Publication Number Publication Date
CN108151698A true CN108151698A (zh) 2018-06-12
CN108151698B CN108151698B (zh) 2020-05-22

Family

ID=62462998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711433860.4A Active CN108151698B (zh) 2017-12-26 2017-12-26 一种基于轴线相交法的天线旋转中心标校方法

Country Status (1)

Country Link
CN (1) CN108151698B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109374990A (zh) * 2018-12-03 2019-02-22 北京无线电计量测试研究所 一种天线相位中心校准方法
CN109506629A (zh) * 2018-10-24 2019-03-22 东华大学 一种水下核燃料组件检测装置旋转中心标定的方法
CN109541324A (zh) * 2018-11-12 2019-03-29 北京航空航天大学 一种基于紧缩场的阵中单元天线相位中心测量方法
CN111381255A (zh) * 2018-12-27 2020-07-07 鉴真防务技术(上海)有限公司 一种gnss天线时延性能测量方法
CN112995888A (zh) * 2021-02-02 2021-06-18 深圳优必胜信息技术有限公司 一种基于阵列天线的定位方法、***、电子设备及存储介质
CN117405055A (zh) * 2023-11-02 2024-01-16 中国科学院国家天文台 一种导航通信抛物面天线旋转中心的测定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2326393C2 (ru) * 2006-06-19 2008-06-10 Ооо Нпп "Трим" Способ определения положения фазового центра антенны
CN103064089A (zh) * 2012-12-28 2013-04-24 中国电子科技集团公司第五十四研究所 卫星导航数字多波束发射阵列天线相位中心的标定方法
CN103558619A (zh) * 2013-11-06 2014-02-05 中测新图(北京)遥感技术有限责任公司 获取航拍像片的外方位元素的方法
CN106482691A (zh) * 2016-11-23 2017-03-08 华南理工大学 一种实时测量转轴空间位姿的装置与方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2326393C2 (ru) * 2006-06-19 2008-06-10 Ооо Нпп "Трим" Способ определения положения фазового центра антенны
CN103064089A (zh) * 2012-12-28 2013-04-24 中国电子科技集团公司第五十四研究所 卫星导航数字多波束发射阵列天线相位中心的标定方法
CN103558619A (zh) * 2013-11-06 2014-02-05 中测新图(北京)遥感技术有限责任公司 获取航拍像片的外方位元素的方法
CN106482691A (zh) * 2016-11-23 2017-03-08 华南理工大学 一种实时测量转轴空间位姿的装置与方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109506629A (zh) * 2018-10-24 2019-03-22 东华大学 一种水下核燃料组件检测装置旋转中心标定的方法
CN109506629B (zh) * 2018-10-24 2021-07-09 东华大学 一种水下核燃料组件检测装置旋转中心标定的方法
CN109541324A (zh) * 2018-11-12 2019-03-29 北京航空航天大学 一种基于紧缩场的阵中单元天线相位中心测量方法
CN109374990A (zh) * 2018-12-03 2019-02-22 北京无线电计量测试研究所 一种天线相位中心校准方法
CN111381255A (zh) * 2018-12-27 2020-07-07 鉴真防务技术(上海)有限公司 一种gnss天线时延性能测量方法
CN111381255B (zh) * 2018-12-27 2023-05-26 鉴真防务技术(上海)有限公司 一种gnss天线时延性能测量方法
CN112995888A (zh) * 2021-02-02 2021-06-18 深圳优必胜信息技术有限公司 一种基于阵列天线的定位方法、***、电子设备及存储介质
CN117405055A (zh) * 2023-11-02 2024-01-16 中国科学院国家天文台 一种导航通信抛物面天线旋转中心的测定方法
CN117405055B (zh) * 2023-11-02 2024-04-09 中国科学院国家天文台 一种导航通信抛物面天线旋转中心的测定方法

Also Published As

Publication number Publication date
CN108151698B (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
CN108151698A (zh) 一种基于轴线相交法的天线旋转中心标校方法
CN108168504A (zh) 一种基于拟合球心法的天线旋转中心标校方法
CN102607506B (zh) 高填方机场边坡单台全站仪的自由设站变形监测方法
CN102890281B (zh) 一种用于高层建筑的gps高精度定位测量方法
CN109033592B (zh) 一种异形饰面板的bim放样方法
CN101413785B (zh) 基于双旋转激光平面发射机网络的定位***误差补偿方法
CN102565812B (zh) 一种gps rtk中测量隐蔽点点位坐标的方法
CN103399326A (zh) 一种gnss动态测量精度检验***及方法
CN110426723A (zh) 一种卫星定位gga数据的获取与地图发布的方法
CN110081909A (zh) 基于全球定位控制点坐标的车载移动测量***检校方法
CN202420501U (zh) 一种gps rtk中测量隐蔽点点位坐标的辅助测量装置
CN111190204B (zh) 基于北斗双天线和激光测距仪的实时定位装置及定位方法
CN106988312B (zh) 基于北斗定向定位技术的机械设备归心改正方法及***
US20190186913A1 (en) Method for verifying accuracy of rtk tilt compensation measurement
CN108375801A (zh) 高精度地面移动式三分量磁测装置及磁测方法
CN112363191A (zh) 一种基于rtk的野外森林样地定位方法
CN107607964A (zh) 一种应用于rtk接收机的激光测距定位方法
CN108181618A (zh) 一种雷达标定方法
CN101266153B (zh) 测绘工程类陀螺全站仪精度评定方法
CN110030968A (zh) 一种基于星载立体光学影像的地面遮挡物仰角测量方法
CN105371843A (zh) 一种基于地磁场空间角度的长距离导航方法及装置
CN110487251B (zh) 一种用非量测相机的无人机进行大比例尺测图的作业方法
CN104330078B (zh) 一种基于三点后方交会模型的联合测量方法
CN207717986U (zh) 一种基于双天线的倾斜测量装置
CN111322997B (zh) Gps辅助的全站仪实现的水田作物位置信息采集方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant