CN108091838B - 一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法 - Google Patents

一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法 Download PDF

Info

Publication number
CN108091838B
CN108091838B CN201711192592.1A CN201711192592A CN108091838B CN 108091838 B CN108091838 B CN 108091838B CN 201711192592 A CN201711192592 A CN 201711192592A CN 108091838 B CN108091838 B CN 108091838B
Authority
CN
China
Prior art keywords
core
shell structure
absorbent cotton
composite material
salt solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711192592.1A
Other languages
English (en)
Other versions
CN108091838A (zh
Inventor
彭年才
连崑
陈振秋
胡飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201711192592.1A priority Critical patent/CN108091838B/zh
Publication of CN108091838A publication Critical patent/CN108091838A/zh
Application granted granted Critical
Publication of CN108091838B publication Critical patent/CN108091838B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

一步制备核‑壳结构纳米α‑Fe2O3@C复合材料的方法,先配制铁盐溶液;然后将医用脱脂棉填充于石英坩埚中,将铁盐溶液倒入到石英坩埚中,并用玻璃棒挤压脱脂棉,使所有脱脂棉都充分浸湿;再将石英坩埚放入管式炉中,通入氮气,升温到280‑600℃,保温1‑3h,自然冷却;去除残余的棉絮后得到核‑壳结构纳米α‑Fe2O3@C复合材料;本发明能够快速制备出结构完整、分散良好的核‑壳结构纳米α‑Fe2O3@C复合材料,且整个制备过程周期短,操作简便,易于实现大规模批量化生产。

Description

一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法
技术领域
本发明涉及纳米铁碳复合材料制备技术领域,具体涉及一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法。
背景技术
寻求新一代高比能负极材料一直是锂离子电池电极材料研究的热点,过渡金属氧化物如MnO2、α-Fe2O3、Fe3O4等作为锂离子电池负极材料因其能提供高达700mAh/g以上的可逆容量而受到广泛的关注,是极具潜力的新一代锂离子电池电极材料。其中α -Fe2O3作为锂离子电池负极材料因具有高达1007mAh/g的理论比容量和廉价、环境友好等优点而受到广泛关注,但其导电性差、能量效率低、容量易衰减等缺陷限制了该材料的实际应用。为此,常将α-Fe2O3与碳材料复合制备成α-Fe2O3@C复合材料,以增强材料的导电性与结构稳定性,降低极化现象,以及抑制充放电过程中活性材料颗粒发生的团聚,达到改善其电化学性能的目的。
经过对现有纳米α-Fe2O3@C复合材料制备技术的文献检索发现,方鉥等人在《武汉大学学报》2016年第62卷第4期338页到344 页发表的“两种形貌纳米α-Fe2O3@C的制备及其吸附性能”一文中提到利用分步水热、双氧水氧化辅助PH值调控制备得到荔枝状和菱形状两种形貌的α-Fe2O3@C核壳结构的纳米材料,但该方法所制备的α-Fe2O3@C粒径在数微米以上,且制备周期长,实验操作复杂。
另外,李培养等人在《化工新型材料》2015年第43卷第9期第48页到50页发表的“溶液燃烧法制备纳米Fe2O3/C超级电容器电极材料”一文中提到在空气气氛下,以硝酸铁、柠檬酸和硝酸铵为原料,采用溶液燃烧法一步合成纳米Fe2O3/C复合材料的制备方法,该制备方法基本实现了制备工艺简单、产率高及成本低的优点,但所制得的Fe2O3/C材料颗粒形貌不规则,团聚严重。
因此,如何制备结构完整、分散良好、颗粒尺寸在微米以下且反应周期短、操作简单的核-壳结构纳米α-Fe2O3@C复合材料已成为当前亟待突破的关键技术难点。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法,能够快速制备出结构完整、分散良好的核-壳结构纳米α-Fe2O3@C复合材料,且整个反应周期短,操作简便,易于实现大规模批量化生产。
为了实现上述目的,本发明采用的技术方案如下:
一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法,包括以下步骤:
1)称取FeCl3·6H2O于烧杯中,加入水,搅拌至完全溶解,配制成0.05g/mL-0.2g/mL的铁盐溶液;
2)将医用脱脂棉,填充于石英坩埚中,将步骤1)配置的铁盐溶液倒入到石英坩埚中,并用玻璃棒挤压脱脂棉,使所有脱脂棉都充分浸湿;
3)将石英坩埚放入管式炉中,通入氮气,以5℃/min速度升温到280-600℃,保温1-3h,自然冷却;去除残余的棉絮后得到核-壳结构纳米α-Fe2O3@C复合材料。
所述的核-壳结构纳米α-Fe2O3@C复合材料具有完整核壳结构,其平均粒径为80-200纳米,包覆的碳层厚度为3-5纳米。
本发明的有益效果为:本发明采用脱脂棉吸附FeCl3·6H2O的水溶液,脱脂棉上的微孔为后续反应提供了小腔室。在高温且无氧的环境下,吸附在这些脱脂棉微孔中的FeCl3·6H2O水溶液进行反应,当铁离子与溶液中的氢氧根离子生成Fe(OH)3后,由于高温而进一步失水生成α-Fe2O3晶粒,这些晶粒填充在脱脂棉的微孔里,同时随着脱脂棉在高温下的分解,最终形成了一个个由碳层完全包覆的分散的α -Fe2O3@C颗粒。
与现有技术相比,本发明方法只需用脱脂棉吸附铁盐溶液,并在无氧条件下,于280℃-600℃保温1h-3h就能够快速制备出具有核- 壳结构纳米α-Fe2O3@C复合材料。脱脂棉上的微孔为反应提供了小腔室从而使最终产物具有完整的结构,同时碳包覆层对α-Fe2O3晶粒的完整包覆使最终产物能良好分散而不会发生颗粒之间的团聚。整个制备过程周期短,最多只需3小时,操作简便,通过管式炉等设备加热并保温即可,易于实现大规模批量化生产。
附图说明
图1(a)为本发明实施例一制备的核-壳结构纳米α-Fe2O3@C复合材料TEM图(50nm);图1(b)为本发明实施例一制备的核-壳结构纳米α-Fe2O3@C复合材料TEM图(10nm)。
图2为本发明实施例一制备的核-壳结构纳米α-Fe2O3@C复合材料XRD图。
具体实施方式
下面结合实施例和附图对本发明作详细描述。
实施例一,一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法,包括以下步骤:
1)称取3g FeCl3·6H2O于烧杯中,加入30ml水,搅拌至完全溶解,配制成0.1g/mL的铁盐溶液;
2)称取5g医用脱脂棉,填充于石英坩埚中,将步骤1)配置的铁盐溶液倒入到石英坩埚中,并用玻璃棒挤压脱脂棉,使所有脱脂棉都充分浸湿;
3)将石英坩埚放入管式炉中,通入氮气,以5℃/min速度升温到350℃,保温2h后炉内自然冷却至室温,关闭氮气;去除残余的棉絮后得到粉末状产物,即为核-壳结构纳米α-Fe2O3@C复合材料。
参照图1,图1(a)为实施例一制备的核-壳结构纳米α-Fe2O3@C 复合材料TEM图(50nm);图1(b)为实施例一制备的核-壳结构纳米α-Fe2O3@C复合材料TEM图(10nm)。从图1(a)中可以看到,所制备的核-壳结构纳米α-Fe2O3@C复合材料在80nm到200nm不等,从图1(b)中可以看到,所制备的核-壳结构纳米α-Fe2O3@C复合材料有一层厚度为3-5nm的C包覆层,而且该包覆层对α-Fe2O3形成了完好的包覆。
参照图2,图2为实施例一制备的核-壳结构纳米α-Fe2O3@C复合材料XRD图。从图中的衍射峰与标准PDF卡片33-0664的对应情况可以看到,所制备的材料为α-Fe2O3
实施例二,一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法,包括以下步骤:
1)称取1.5g FeCl3·6H2O于烧杯中,加入30ml水,搅拌至完全溶解,配制成0.05g/mL的铁盐溶液;
2)称取5g医用脱脂棉,填充于石英坩埚中,将步骤1配置的铁盐溶液倒入到石英坩埚中,并用玻璃棒挤压脱脂棉,使所有脱脂棉都充分浸湿;
3)将石英坩埚放入管式炉中,通入氮气,以5℃/min速度升温到280℃,保温1h后炉内自然冷却至室温,关闭氮气;去除残余的棉絮后得到粉末状产物,即为核-壳结构纳米α-Fe2O3@C复合材料。
实施例三,一种一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法,包括以下步骤:
1)称取6g FeCl3·6H2O于烧杯中,加入30ml水,搅拌至完全溶解,配制成0.2g/mL的铁盐溶液;
2)称取5g医用脱脂棉,填充于石英坩埚中,将步骤1)配置的铁盐溶液倒入到石英坩埚中,并用玻璃棒挤压脱脂棉,使所有脱脂棉都充分浸湿;
3)将石英坩埚放入管式炉中,通入氮气,以5℃/min速度升温到600℃,保温3h后炉内自然冷却至室温,关闭氮气;去除残余的棉絮后得到粉末状产物,即为核-壳结构纳米α-Fe2O3@C复合材料。

Claims (5)

1.一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法,其特征在于,包括以下步骤:
1)称取FeCl3·6H2O于烧杯中,加入水,搅拌至完全溶解,配制成0.05g/mL-0.2g/mL的铁盐溶液;
2)将医用脱脂棉,填充于石英坩埚中,将步骤1)配置的铁盐溶液倒入到石英坩埚中,并用玻璃棒挤压脱脂棉,使所有脱脂棉都充分浸湿;
3)将石英坩埚放入管式炉中,通入氮气,以5℃/min速度升温到280-600℃,保温1-3h,自然冷却;去除残余的棉絮后得到核-壳结构纳米α-Fe2O3@C复合材料。
2.根据权利要求1所述的一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法,其特征在于:所述的核-壳结构纳米α-Fe2O3@C复合材料具有完整核壳结构,其平均粒径为80-200纳米,包覆的碳层厚度为3-5纳米。
3.根据权利要求1所述的一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法,其特征在于,包括以下步骤:
1)称取3g FeCl3·6H2O于烧杯中,加入30ml水,配制成0.1g/mL的铁盐溶液;
2)称取5g医用脱脂棉;
3)以5℃/min速度升温到350℃,保温2h。
4.根据权利要求1所述的一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法,其特征在于,包括以下步骤:
1)称取1.5g FeCl3·6H2O于烧杯中,加入30ml水,配制成0.05g/mL的铁盐溶液;
2)称取5g医用脱脂棉;
3)以5℃/min速度升温到280℃,保温1h。
5.根据权利要求1所述的一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法,其特征在于,包括以下步骤:
1)称取6g FeCl3·6H2O于烧杯中,加入30ml水,配制成0.2g/mL的铁盐溶液;
2)称取5g医用脱脂棉;
3)以5℃/min速度升温到600℃,保温3h。
CN201711192592.1A 2017-11-24 2017-11-24 一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法 Active CN108091838B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711192592.1A CN108091838B (zh) 2017-11-24 2017-11-24 一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711192592.1A CN108091838B (zh) 2017-11-24 2017-11-24 一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法

Publications (2)

Publication Number Publication Date
CN108091838A CN108091838A (zh) 2018-05-29
CN108091838B true CN108091838B (zh) 2020-06-26

Family

ID=62172998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711192592.1A Active CN108091838B (zh) 2017-11-24 2017-11-24 一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法

Country Status (1)

Country Link
CN (1) CN108091838B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109507242B (zh) * 2018-10-26 2021-07-20 上海纳米技术及应用国家工程研究中心有限公司 多孔结构c@三氧化二铁复合纳米材料的制备方法及其产品和应用
CN110649237B (zh) * 2019-09-27 2021-05-14 厦门理工学院 一种铁氧化物@碳纳米复合材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007095454A2 (en) * 2006-02-10 2007-08-23 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Carbon-encased metal nanoparticles and sponges, methods of synthesis, and methods of use
CN102208614A (zh) * 2011-04-26 2011-10-05 中国矿业大学 一种锂离子电池负极材料碳包覆三氧化二铁的制备方法
CN104157832A (zh) * 2014-09-04 2014-11-19 湖北工程学院 一种四氧化三铁/碳复合锂离子电池电极材料的制备方法
CN106848277A (zh) * 2017-01-22 2017-06-13 曲阜师范大学 一种镁铁氧/碳复合材料及其制备方法
CN107275640A (zh) * 2017-07-03 2017-10-20 中国科学院过程工程研究所 一步制备硫氮双掺棉花基多孔碳
CN107331832A (zh) * 2017-05-10 2017-11-07 苏州冠洁纳米抗菌涂料科技有限公司 一种复合材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10374215B2 (en) * 2014-10-17 2019-08-06 Wayne State University Centrifugation-assisted preparation of additive-free carbon-decorated magnetite electrodes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007095454A2 (en) * 2006-02-10 2007-08-23 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Carbon-encased metal nanoparticles and sponges, methods of synthesis, and methods of use
CN102208614A (zh) * 2011-04-26 2011-10-05 中国矿业大学 一种锂离子电池负极材料碳包覆三氧化二铁的制备方法
CN104157832A (zh) * 2014-09-04 2014-11-19 湖北工程学院 一种四氧化三铁/碳复合锂离子电池电极材料的制备方法
CN106848277A (zh) * 2017-01-22 2017-06-13 曲阜师范大学 一种镁铁氧/碳复合材料及其制备方法
CN107331832A (zh) * 2017-05-10 2017-11-07 苏州冠洁纳米抗菌涂料科技有限公司 一种复合材料的制备方法
CN107275640A (zh) * 2017-07-03 2017-10-20 中国科学院过程工程研究所 一步制备硫氮双掺棉花基多孔碳

Also Published As

Publication number Publication date
CN108091838A (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
Wang et al. Preparation and application of iron oxide/graphene based composites for electrochemical energy storage and energy conversion devices: Current status and perspective
Liao et al. MnO2 hierarchical microspheres assembled from porous nanoplates for high-performance supercapacitors
CN108063056B (zh) 多孔氮掺杂碳/碳纳米管复合材料及其制备方法和应用
Ren et al. From three‐dimensional flower‐like α‐Ni (OH) 2 nanostructures to hierarchical porous NiO nanoflowers: microwave‐assisted fabrication and supercapacitor properties
WO2017181826A1 (zh) 一种三维多级孔结构的石墨烯粉体的制备方法
Hong et al. Hierarchical SnO2 nanoclusters wrapped functionalized carbonized cotton cloth for symmetrical supercapacitor
CN108767260B (zh) 一种碳包覆FeP中空纳米电极材料及其制备方法和应用
CN108711611B (zh) 一种三维高密度的金属纳米颗粒/石墨烯多孔复合材料及其制备方法和应用
CN108735983B (zh) 一种金属纳米颗粒负载于石墨烯水凝胶复合材料及其制备方法和应用
Nazarian-Samani et al. Three-dimensional graphene-based spheres and crumpled balls: micro-and nano-structures, synthesis strategies, properties and applications
Ju et al. Prussian blue analogue derived low-crystalline Mn2O3/Co3O4 as high-performance supercapacitor electrode
CN104773762A (zh) 一种生长在碳纤维布上的NiCo2O4介孔纳米管材料及其制备方法
Yao et al. Template-assisted synthesis of hierarchically porous Co3O4 with enhanced oxygen evolution activity
CN107611359A (zh) 锂离子电池Ni‑NiO/石墨烯复合负极材料的制备方法
Dai et al. High-yield synthesis of carbon nanotube–porous nickel oxide nanosheet hybrid and its electrochemical capacitance performance
Zhu et al. Recent progress on nanostructured transition metal oxides as anode materials for lithium-ion batteries
Ahmad et al. Graphene oxide selenium nanorod composite as a stable electrode material for energy storage devices
CN105489863A (zh) 一种基于C/Ti4O7复合纳米纤维的锂硫电池正极材料及其制备方法
CN103840176A (zh) 一种表面负载Au纳米颗粒的三维石墨烯基复合电极及其制备方法和应用
CN108091838B (zh) 一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法
CN111243871B (zh) 新型NiSe2包覆介孔空心碳球复合材料及其制备方法和在超级电容器中的应用
CN112786865A (zh) 一种MoS2准量子点/氮硫共掺杂生物质碳复合纳米材料的制备方法和应用
Liang et al. Biomass based composite used as anode materials: Porous ZnO anchored on the rice husk-derived carbon substrate for Li-ion batteries
Zhao et al. Polar Co3Se4 nitrogen-doped porous carbon derived from ZIF-67 for use as a sulfur substrates in high-performance lithium-sulfur batteries
CN105562005A (zh) 碳包裹Ni纳米晶颗粒负载在石墨烯上的纳米复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant