CN108023650A - 用于信噪比估计的方法和设备 - Google Patents

用于信噪比估计的方法和设备 Download PDF

Info

Publication number
CN108023650A
CN108023650A CN201710695349.5A CN201710695349A CN108023650A CN 108023650 A CN108023650 A CN 108023650A CN 201710695349 A CN201710695349 A CN 201710695349A CN 108023650 A CN108023650 A CN 108023650A
Authority
CN
China
Prior art keywords
absolute value
snr
approximation
noise
decibel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710695349.5A
Other languages
English (en)
Other versions
CN108023650B (zh
Inventor
程红兵
李正元
庄斌南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN108023650A publication Critical patent/CN108023650A/zh
Application granted granted Critical
Publication of CN108023650B publication Critical patent/CN108023650B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Radio Transmission System (AREA)
  • Noise Elimination (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供一种用于信噪比估计的方法和设备。所述方法包括:接收信号序列和噪声序列;确定信号序列的接收功率的第一绝对值和近似值;确定噪声序列的噪声功率的第二绝对值和近似值;基于第一绝对值和近似值和第二绝对值和近似值,确定信噪比(SNR)。

Description

用于信噪比估计的方法和设备
本申请要求于2016年10月28日提交到美国专利商标局的第62/414,143号美国临时专利申请以及2017年2月1日提交到美国专利商标局的第15/421,998号美国非临时专利申请的优先权,所述专利申请的全部内容通过引用包含于此。
技术领域
本公开总体上涉及信号处理,更具体地讲,涉及一种用于信噪比(SNR)估计的方法和设备。
背景技术
信噪比(SNR)是一种在无线接收器中将期望信号的水平与噪声的水平进行比较的测量。它被定义为期望信号功率与噪声功率的比率,并可用分贝表示。期望信号功率和噪声功率可通过分别计算信号和噪声序列中的全部接收样本的平均值来测量。为了降低接收器的硬件实现的复杂度,绝对值和可被使用。然而,包括在具有绝对值和近似值(absolutevalue sum approximation)的总接收信号功率中的噪声功率无法通过直接相减来消掉。
发明内容
根据本公开的方面,提供一种方法,所述方法包括:接收信号序列和噪声序列;确定信号序列的接收功率的第一绝对值和近似值;确定噪声序列的噪声功率的第二绝对值和近似值;基于第一绝对值和近似值和第二绝对值和近似值,确定信噪比(SNR)。
根据本公开的另一方面,提供一种设备,所述设备包括:存储器;处理器;接收器,被配置为:接收信号序列和噪声序列,确定信号序列的接收功率的第一绝对值和近似值,确定噪声序列的噪声功率的第二绝对值和近似值,基于第一绝对值和近似值和第二绝对值和近似值,确定信噪比(SNR)。
根据本公开的另一方面,提供一种制造处理器的方法,所述方法包括:形成所述处理器作为包括至少一个其他处理器的晶片或封装件的部分,其中,所述处理器被配置为接收信号序列和噪声序列,确定信号序列的接收功率的第一绝对值和近似值,确定噪声序列的噪声功率的第二绝对值和近似值,并基于第一绝对值和近似值和第二绝对值和近似值确定信噪比(SNR)。
根据本公开的另一方面,提供一种构造集成电路的方法,所述方法包括:针对集成电路的层的一组特征产生掩膜布局,其中,掩膜布局包括用于包括处理器的一个或多个电路特征的标准单元库宏,所述处理器被配置为接收信号序列和噪声序列,确定信号序列的接收功率的第一绝对值和近似值,确定噪声序列的噪声功率的第二绝对值和近似值,并基于第一绝对值和近似值和第二绝对值和近似值确定信噪比(SNR)。
附图说明
当结合附图时,通过下面的具体实施方式,本公开的上述和其他方面、特征和优点将变得更加清楚,其中:
图1是根据本公开的实施例的通信网络中的电子装置的框图;
图2是根据本公开的实施例的使用偏差补偿执行SNR估计方法的电路的框图;
图3是根据本公开的实施例的执行和SNR近似值方法(sum SNR approximationmethod)的电路的框图;
图4是根据本公开的实施例的使用功率和(power sum)执行时域SNR估计方法的电路的框图;
图5是根据本公开的实施例的使用绝对值和(absolute value sum)执行时域SNR估计方法的电路的框图;
图6是根据本公开的实施例的确定SNR的方法的流程图;
图7是根据本公开的实施例的测试被配置为确定SNR的处理器的方法的流程图;
图8是根据本公开的实施例的制造被配置为确定SNR的处理器的方法的流程图。
具体实施方式
现将参照附图对本公开进行更加全面地描述,在附图中示出了本公开的实施例。然而,本公开可以以多种不同的形式来实现,并且不应该被视为限于这里阐述的实施例。相反,提供这些实施例使得本公开将是彻底的和完整的,并且将该装置和方法的范围全面地传达给本领域技术人员。相同的参考标记始终表示相同的元件。
将理解,当元件被称为“连接到”或“结合到”另一个元件时,它可直接连接到或结合到所述另一个元件,或者可存在中间元件。相比之下,当元件被称为“直接连接到”或“直接结合到”另一个元件时,不存在中间元件。如这里使用的,术语“和/或”包括(但不限于)一个或多个关联的所列项的任何组合和全部组合。
将理解,尽管可在这里使用术语第一和第二以及其他术语来描述各种元件,但是这些元件不应该由这些术语限制。这些术语只是用于将一个元件与另一个元件进行区分。例如,在不脱离本公开的教导的情况下,第一信号可被称为第二信号,类似地,第二信号可被称为第一信号。
这里使用的术语仅是用于描述特定的实施例的目的,而意图不在于限制本装置和方法。如这里所使用的,除非上下文明确地另有指示,否则单数形式也意图包括复数形式。还将理解,当在本说明书中使用术语“包括”或“包括(但不限于)”时,表明陈述的特征、区域、整体、步骤、操作、元件和/或组件的存在,但不排除一个或多个其他特征、区域、整体、步骤、操作、元件、组件和/或它们的组合的存在或添加。
除非另有定义,否则这里使用的所有术语(包括(但不限于)技术术语和科学术语)具有与本装置和方法所属领域的普通技术人员普遍理解的含义相同的含义。还将理解,除非在这里明确地定义,否则术语(诸如在通用字典中定义的术语)应该被解释为具有与它们在相关领域和/或本说明书中的语境中的含义一致的含义,而将不被理想化或过于形式化地解释。
图1是根据本公开的实施例的通信网络网络中的电子装置的框图。
参照图1,电子装置100包括(但不限于)通信块110、处理器120、存储器130、显示器150、输入/输出块160、音频块170和无线收发器180。无线收发器180可包括在用户设备或Wi-Fi访问点或者蜂窝基站,并包括但不限于无线发送器和接收器。
电子装置100包括用于将电子装置100连接到另一电子装置或用于语音和数据的通信的网络的通信块110。通信块110提供通用分组无线业务(GPRS)、增强数据速率的GSM演进(EDGE)、蜂窝通信、广域网、局域网、个人区域网、近场通信、装置到装置(D2D)、机器到机器(M2M)、卫星通信,增强移动宽带(eMBB)、海量机器类通信(mMTC)、超可靠低延迟通信(URLLC)、窄带物联网(NB-IoT)和短距离通信。通信块110的功能或包括收发器113的通信块100的部分功能可由芯片集实现。具体地,蜂窝通信块112使用技术(诸如,第二代(2G)、GPRS、EDGE、D2D、M2M、长期演进(LTE),第五代(5g)、高级长期演进(LTE-A)、码分多址(CDMA)、宽带码分多址(WCDMA)、通用移动电信***(UMTS)、无线宽带(WiBro)和全球移动通讯***(GSM)),来通过地面基站收发台将广域网连接提供到其他电子装置或直接将广域网连接提供到其他电子装置。蜂窝通信块112包括(但不限于)芯片集及收发器113。收发器113包括(但不限于)发送器和接收器。无线保真(WiFi)通信块114使用诸如IEEE 802.11的技术通过网络访问点提供局域网连接。蓝牙通信块116使用诸如IEEE 802.15的技术来提供个人区域直接和网络化通信。近场通信(NFC)块118使用诸如ISO/IEC 14443的标准来提供点到点短距离通信。通信块110还可包括全球导航卫星***(GNSS)接收器119。GNSS接收器119可支持从卫星发送器接收信号。
电子装置100可从包括(但不限于)电池的电源接收用于操作功能块的电力。无线收发器180可以是Wi-Fi访问点或地面基站收发台(BTS)(诸如,蜂窝基站)的一部分,并可包括遵循第三代合作伙伴项目(3GPP)的射频发送器和接收器。无线收发器180可将数据和语音通信服务提供给移动用户设备(UE)的用户。在本公开中,术语“UE”可与术语“电子装置”互换使用。
处理器120提供电子装置100的用户所需的应用层处理功能。处理器120还为电子装置100中的各种块提供命令和控制功能。处理器120提供功能块所需的更新控制功能。处理器120可提供收发器130所需的资源的协调(包括(但不限于)功能块之间的通信控制)。处理器120还可更新与蜂窝通信块112或Wi-Fi块114相关联的固件、数据库、查找表、校正方法程序和库。Wi-Fi块114还可具有将计算资源用于Wi-Fi块114以及诸如信噪估计块的其他功能块的本地处理器或芯片集。
存储器130提供用于装置控制程序代码、用户数据存储、应用代码和数据存储的存储。存储器130可提供用于蜂窝通信块112或Wi-Fi块114所需的固件、库、数据库、查找表、算法、方法、SNR估计参数和校正数据的数据存储。当装置启动时,蜂窝通信块112或Wi-Fi块114所需的程序代码和数据库可从存储器130载入到本地存储中。蜂窝通信块112或Wi-Fi块114还可具有用于存储程序代码、库、数据库、校正数据和查找表数据的本地的、易失性的和非易失性的存储器。
显示器150可以是触摸面板,并可被实现为液晶显示器(LCD)、有机发光二极管(OLED)显示器和有源矩阵OLED(AMOLED)显示器等。输入/输出块160控制到电子装置100的用户的接口。音频块170提供输入到电子装置100的音频和从电子装置100输出的音频。
无线收发器180可包括在用于接收、发送或中继无线信号的用户设备或访问点或者基站中。无线收发器180可通过将数据通信信号发送到电子装置100、从电子装置100接收数据通信信号和中继到电子装置100和来自电子装置100的数据通信信号来促进与电子装置100的通信。电子装置100可通过无线收发器180连接到网络。例如,无线收发器180可以是用于将信号发送到电子装置100(诸如,智能电话)或从电子装置100接收信号的访问点、小区塔、无线路由器、天线、多个天线或它们的组合。无线收发器180可通过网络中继无线信号,来确保与其他电子装置100(诸如,用户设备(UE))的通信、服务或它们的组合。无线收发器180可被用于发送通信信号(诸如,语音或数据)。
直接SNR估计可基于使用功率和确定总接收功率Ptotal(包括信号和噪声)和噪声功率σ2。可如下面的等式(1)来计算线性域SNR:
线性至分贝(dB)转换可被用于确定线性域SNR的dB域SNR估计。可如下面的等式(2)来计算SNRdB
SNRdB=10·log10(SNR) …(2)
当来自两个接收(Rx)天线的SNR需要被组合时,来自两个Rx天线的SNR的和可在线性域中被计算,然后被转换到dB域。可如下面的等式(3)来计算来自两个Rx天线的SNR的和:
SNRsum,dB=10·log10(SNR0+SNR1) …(3)
其中,SNR0和SNR1是分别在线性域中的在Rx天线0和Rx天线1估计的SNR。
根据本公开的实施例,本***和方法提供总接收功率和噪声功率的绝对值和近似值,以从多个Rx天线估计总接收功率和噪声功率。由于估计是在均方根域,所以包含在总接收信号内的噪声项无法被轻易去除。本***和方法提供偏差补偿,以从总功率去除噪声项的影响。由于在dB域估计SNR,所以本***和方法可直接在dB域组合两个SNR估计,以获得dB形式的和SNR(sum SNR)。
根据本公开的实施例,本***和方法提供偏差补偿,以提高SNR测量准确性并使用绝对值和降低估计偏差。本***和方法还提供和SNR近似值替代功率和,以降低计算复杂度。然而,在低SNR的情况下,直接实现可引起大的正偏差。本***和方法提供补偿,以特别是在低SNR情况下消掉正偏差。由于每个天线SNR估计输出是在dB域中,所以本***和方法组合来自两个Rx天线的估计。
根据本公开的实施例,每个天线SNR估计在dB域中被获得,以避免在估计中使用可增加计算复杂度的除法块。在两个Rx天线的情况下,可需要和SNR以保持接收器性能。本***和方法使用dB域中的每个天线SNR来在dB域中直接组合和确定和SNR。虽然本公开描述了两个Rx天线的示例,但是在不偏离本公开的范围的情况下,本***和方法可被扩展到来自替代两个天线的任意两个分支(例如,两个不同的频带或两个时隙)的SNR组合。本***和方法还可被扩展到通过级联两个分支或Rx天线的组合来组合多于两个的分支或多于两个的Rx天线的情况。
如下面的等式(4),总接收信号(期望信号加噪声)序列可包括信号序列si和噪声序列ni
yi=si+ni,i=1,…,m …(4)
其中,假设,si和ni为服从高斯分布的独立同分布,m是大于或等于1的整数。
可如下计算单独测量的噪声序列:
zi=n′i,i=1,…,m …(5)
其中,单独测量的噪声序列具有与上面等式(4)的yi中的ni相同的统计。例如,序列zi可在没有信号传输发生的时间段期间被捕获。
用于估计SNR的方法可包括首先估计信号功率Ps和噪声功率Pn,可如下面的等式(6)和等式(7)来计算信号功率Ps和噪声功率Pn
可如下面的等式(8)和(9)来计算dB形式的SNR:
SNRdB=10·log10(Ps-Pn)-10·log10(Pn) …(9)
其中,等式(9)可被用于消除等式(8)的除法运算,并降低运算复杂度。
为降低功率和的计算复杂度,绝对值和可被确定用于总接收信号序列和噪声序列中的每个序列,其中,如下面的等式(10)和等式(11)分别确定绝对值和:
可如下面的等式(12)和等式(13)来计算dB形式的SNR:
SNRdB=20·log10(As)-20·log10(An) …(13)
由于As包含信号和噪声功率部分二者,所以估计将具有正偏差,特别是在低SNR环境的情况下。由于上面等式(4)中的yi是两个独立高斯随机变量的和,所以它也是高斯随机变量。高斯随机变量的幅度是瑞利分布。因此,可如等式(14)和等式(15)所示地获得下面的等式。
噪声可在均方根域不被直接减掉。根据本公开的实施例,本***和方法提供如下面等式(16)、等式(17)和等式(18)所示的偏差补偿方案:
SNRdB=10·log10(As+An)+10·log10(As-An)-20·log10(An)
…(18)
图2是根据本公开的实施例的使用偏差补偿执行SNR估计方法的电路的框图。
参照图2,使用偏差补偿执行SNR估计方法的电路包括接收信号序列208、噪声序列200、第一绝对值求和块AbsSum块210、第二绝对值求和块AbsSum块202、第一加法器电路216、第二加法器电路218、第一减法器电路214、第二减法器电路220、第一dB转换块204、第二dB转换块206和第三dB转换块212。
参照图2,本***可接收具有期望信号序列和噪声序列的接收信号序列208。本***可使用上面的等式(5)确定噪声序列200。根据本公开的一个实施例,本***接收噪声序列200。AbsSum块210确定接收信号序列208的绝对值和。AbsSum块210和AbsSum块202分别执行接收信号序列208和噪声序列200的绝对值的求和。AbsSum块202确定噪声序列200的绝对值和。第一加法器电路216对来自AbsSum块210和AbsSum块202的输出进行求和。第三dB转换块212将第一加法器电路216的输出转换成分贝值。第一减法器电路214从AbsSum块210的输出减去AbsSum块202的输出。第二dB转换块206将第一减法器电路214的输出转换成分贝值。第一dB转换块204将AbsSum块202的输出转换成分贝值。第二加法器电路218根据上面的等式(18)对第三dB转换块212和第二dB转换块206的输出进行求和。第二减法器电路220从第二加法器电路281的输出减去第一dB转换块204的输出。第一dB转换块204、第二dB转换块206和第三dB转换块212中的对数计算可通过各种方法(例如,通过使用存储在存储器中的查找表(LUT))来实现。
在两个Rx天线的情况下,被分别表示为SNR0,dB和SNR1,dB的在每个Rx天线的SNR估计可使用具有偏置消除的绝对值和方法来估计。本***和方法还可在不转换回到线性域的情况下确定dB域中的和SNR。可针对两个Rx天线将线性域中的对应的每个天线SNR分别表示为SNR0和SNR1,并可如下面的等式(19)计算dB域中的和SNR SNRsum,dB
SNRsum,dB=10log10(SNR0+SNR1) …(19)
可如下面的等式(20)和等式(21)来计算线性尺度下的两个Rx天线的两个SNR的最大值SNRmax和最小值SNRmin,可如下面的等式(22)和等式(23)来计算dB尺度下的两个Rx天线的两个SNR(SNR0,dB,SNR1,dB)的最大值SNRmax,dB和最小值SNRmin,dB
SNRmax=max(SNR0,SNR1) …(20)
SNRmin=min(SNR0,SNR1) …(21)
SNRmax,dB=max(SNR0,dB,SNR1,dB) …(22)
SNRmin,dB=min(SNR0,dB,SNR1,dB) …(23)
可通过如下的等式(24)至等式(29)来计算对数和的近似值:
最后项只取决于可取决于所需的计算精度通过查找表(LUT)来实现。
图3是根据本公开的实施例的执行和SNR近似值方法的电路的框图。
参照图3,比较器302将来自2个Rx天线的两个输入SNR0,dB和SNR1,dB进行比较。加法器电路304将3dB加到比较器302所确定的两个输入SNR0,dB和SNR1,dB中的较大者。减法器308从SNR0,dB减去SNR1,dB。绝对值Abs块310确定SNR0,dB与SNR1,dB之间的差的绝对值。差的绝对值被输入到LUT 312。补偿值SNRsum,dB通过将LUT 312的输出值与加法器电路304的输出值相加来确定。
根据本公开的一个实施例,本***和方法提供用于Wi-Fi收发器(诸如,收发器180)的每个数据包的长训练字段(long training field,LTF)符号的SNR估计。估计的SNR可被用于确定在通道平滑期间使用的平滑系数。估计的SNR还可被用于确定是否在公共相位误差(CPE)估计块期间使用相位限制器。本***和方法可将估计的SNR应用在对数似然比(LLR)量化。Wi-Fi收发器中的SNR估计可被用在重复两次的LTF符号上。本***和方法可实现时域或频域中的SNR估计。
根据本公开的一个实施例,本***和方法提供时域中的SNR估计。当第一LTF符号和第二LTF符号之间的相位差被完美补偿时,可如等式(30)和等式(31)所示地分别以离散时间格式表示第一LTF符号LTFt,1(i)和第二LTF符号LTFt,2(i):
LTFt,1(i)=h(i)*s(i)+n1(i)=∑lhl·s(i-l)+n1(i) …(30)
LTFt,2(i)=h(i)*s(i)+n2(i)=∑lhl·s(i-l)+n2(i) …(31)
其中,h(i)、s(i)和nj(i)(j=1,2)分别是通道响应、时域LTF样本和加性高斯白噪声(AWGN)。
在AWGN通道中,可如等式(32)和等式(33)所示地计算两个LTF符号的和的平均功率Psig,t以及差的平均功率Pnois,t
其中,h(i)=1,E[s(i)]2=σs 2,E[n1(i)]2=E[n2(i)]2=σn 2。然后,可如等式(34)所示地计算估计的SNR:
图4是根据本公开的实施例的执行时域SNR估计方法的电路的框图。
参照图4,执行时域SNR估计方法的电路包括第一LTF符号LTF1 402、第二LTF符号LTF2 412、相位对准器(phase aligner)块414、加法器块404、第一除法器块406、第二除法器块418、第一减法器块416、第二减法器块410、第一功率和块408、第二功率和块420、第三除法器块422和dB转换块424。
参照图4,第一LTF符号LTF1 402和第二LTF符号LTF2 412被处理。相位对准器块414使LTF2 412的公共相位与LTF1 402的公共相位对准。加法器块404将LTF1 402与来自相位对准器块414的相位对准的LTF2相加。第一减法器块416从LTF1 402减去相位对准的LTF2。第一除法器块406将来自加法器块404的输出除以2。第二除法器块418将来自第一减法器块416的输出除以2。第一除法器块406和第二除法器块418的输出被分别提供到第一功率和块408和第二功率和块420。针对复数的序列xi,功率和块计算其中,i=0…n-1。第二减法器块410从第一功率和块408的输出减去第二功率和块420的输出。第三除法器块422将第二减法器块410的输出除以第二功率和块420的输出。dB转换块424将第三除法器块422的输出转换为表示LTF1 402和LTF2 412的SNR的dB值。
根据另一实施例,本***提供频域中的SNR估计。并非对时域样本求平均值,而是在频域子载波上进行平均。
由于LTF符号在频域中使用伪随机序列,所以时域样本s(i)可被近似值为独立同分布圆对称高斯随机变量CN(0,σs 2)。在AWGN通道下((h(i)=1)),可如等式(42)和等式(43)所示地计算时域样本:
LTFt,1(i)=s(i)+n1(i) …(43)
LTFt,2(i)=s(i)+n2(i) …(43)
可如等式(44)所示地计算两个LTF符号的第i样本的和:
y(i)=LTFt,1(i)+LTFt,2(i) …(44)
由于s1(i),s2(i),n1(i),n2(i)是独立高斯随机变量,所以y(i)是CN(0,4σs 2+2σn 2)。y(i)的幅度(即,|y(i)|)是瑞利随机变量。基于瑞利随机变量的属性,
可如等式(45)所示地使用大数定律计算信号的绝对值和Asig,t和噪声的绝对值和Anois,t
可如等式(46)所示地计算实际SNR计算:
如果绝对值和以及算法计算被用于LTF,则可如等式(47)所示地计算等式(46):
SNRdB=10·log10(Asig,t+Anois,t)+10·log10(Asig,t-Anois,t)-20·log10(Anois,t)-3 …(47)
图5是根据本公开的实施例的使用绝对值和执行时域SNR估计方法的电路的框图。
参照图5,执行时域SNR估计方法的电路包括第一LTF符号LTF1 502、第二LTF符号LTF2 520、相位对准器块522、第一加法器块504、第二加法器块510、第三加法器块516、第一除法器块506、第二除法器块526、第一减法器块524、第二减法器块530、第三减法器块518、第一绝对值和块508、第二绝对值和块528、第一dB转换块512、第二dB转换块532、第三dB转换块534。
参照图5,第一LTF符号LTF1 502和第二LTF符号LTF2 520被处理。相位对准器块522使LTF2 520的公共相位与LTF1 502的公共相位对准。第一加法器块504将LTF1 502与来自相位对准器块522的相位对准的LTF2相加。第一减法器块524从LTF1 502减去相位对准的LTF2。第一除法器块506将来自加法器块504的输出除以2。第二除法器块526将来自第一减法器块524的输出除以2。第一除法器块506和第二除法器块526的输出被分别提供到第一绝对值和块508和第二绝对值和块528。第二减法器块530从第一绝对值和块508的输出减去第二绝对值和块528的输出。第二加法器块510将第二绝对值和块528的输出与第一绝对值和块508的输出相加。第一dB转换块512将第二加法器块510的输出转换为dB值。第二dB转换块532将第二减法器块530的输出转换为dB值。第三dB转换块534将第二绝对值和块528的输出转换为dB值。第三加法器块516将第一dB转换块512的输出和第二dB转换块532的输出相加。第三减法器块518从第三加法器块516的输出减去第三dB转换块534的输出。第三减法器块518的输出是表示LTF1 502和LTF2 520的SNR的dB值。
图6是根据本公开的实施例的确定信噪比的方法的流程图。
参照图6的流程图,在601,本***接收信号序列和噪声序列。在602,本***基于信号序列确定接收功率的第一绝对值和近似值。在603,本***基于噪声序列确定噪声功率的第二绝对值和近似值。在604,本***基于使用具有第一绝对值和近似值和第二绝对值和近似值的偏差补偿去除噪声功率来确定SNR。
图7是根据本公开的实施例的测试被配置为确定SNR的处理器的方法的流程图,其中,以硬件实现或以使用软件编程的硬件实现处理器。
参照图7,在701,本方法形成处理器作为包括至少一个其他处理器的晶片或封装件的部分。处理器被配置为接收信号序列和噪声序列,确定信号序列的接收功率的第一绝对值和近似值,确定噪声序列的噪声功率的第二绝对值和近似值,并基于第一绝对值和近似值和第二绝对值和近似值确定信噪比(SNR)。
在703,本方法测试处理器,其中,测试处理器的步骤包括使用一个或多个电光转换器、将光信号分离成两个或多个光信号的一个或多个分光器以及一个或多个光电转换器来测试处理器和该至少一个其他处理器。
图8是根据本公开的实施例的制造被配置为确定SNR的处理器的方法的流程图。
参照图8,在801,本方法包括数据的初始布局,其中,在数据的初始布局中,本方法针对集成电路的层的一组特征产生掩膜布局。掩膜布局包括用于包括处理器的一个或多个电路特征的标准单元库宏。处理器被配置为接收信号序列和噪声序列,确定信号序列的接收功率的第一绝对值和近似值,确定噪声序列的噪声功率的第二绝对值和近似值,并基于第一绝对值和近似值和第二绝对值和近似值确定信噪比(SNR)。
在803,存在设计规则检查,其中,在设计规则检查中,本方法在产生掩膜布局期间为了符合布局设计规则而忽视宏的相对位置。
在805,存在布局调整,其中,在布局调整中,本方法在产生掩膜布局之后为了符合布局设计规则检查宏的相对位置。
在807,做出新的布局设计,其中,本方法在检测到任何的宏不符合布局设计规则时通过将每个不符合的宏改为遵守布局设计规则来修改掩膜布局,根据具有集成电路的所述层的该组特征的修改的掩膜布局来产生掩膜,并根据掩膜来制造集成电路层。
虽然已经参照本公开的特定实施例具体示出和描述了本公开,但是本领域普通技术人员将理解,在不脱离由所附权利要求和它们的等同物定义的本公开的范围的情况下,可对实施例做出形式和细节上的各种改变。

Claims (20)

1.一种用于信噪比估计的方法,包括:
接收信号序列和噪声序列;
确定信号序列的接收功率的第一绝对值和近似值;
确定噪声序列的噪声功率的第二绝对值和近似值;
基于第一绝对值和近似值和第二绝对值和近似值,确定信噪比SNR。
2.如权利要求1所述的方法,其中,确定SNR的步骤还基于使用偏差补偿去除噪声功率。
3.如权利要求2所述的方法,其中,偏差补偿包括:对第一分贝项和第二分贝项进行求和,
其中,第一分贝项基于将第一绝对值和近似值与第二绝对值和近似值的求和的结果转换到分贝域中,
其中,第二分贝项基于将从第一绝对值和近似值减去第二绝对值和近似值的结果转换到分贝域中。
4.如权利要求1所述的方法,还包括:在分贝域中对第一SNR和第二SNR进行求和。
5.如权利要求4所述的方法,其中,第一SNR和第二SNR与一对两个频带、一对两个时隙和一对两个天线中的至少一对相关联。
6.如权利要求3所述的方法,其中,将第一绝对值和近似值和第二绝对值和近似值的求和的结果转换到分贝域中和将从第一绝对值和近似值减去第二绝对值和近似值的结果转换到分贝域中的步骤包括:使用存储在存储器中的查找表LUT,来将第一绝对值和近似值和第二绝对值和近似值的求和的结果转换到分贝域中和将从第一绝对值和近似值减去第二绝对值和近似值的结果转换到分贝域中。
7.如权利要求4所述的方法,还包括:使用比较器确定第一SNR和第二SNR中的较大者。
8.如权利要求7所述的方法,还包括:将3dB加到第一SNR和第二SNR中的较大者。
9.如权利要求4所述的方法,还包括:确定第一SNR与第二SNR之间的差的绝对值。
10.一种用于信噪比估计的设备,包括:
存储器;
处理器;
接收器,被配置为:
接收信号序列和噪声序列,
确定信号序列的接收功率的第一绝对值和近似值,
确定噪声序列的噪声功率的第二绝对值和近似值,
基于第一绝对值和近似值和第二绝对值和近似值,确定信噪比SNR。
11.如权利要求10所述的设备,其中,接收器还被配置为:基于使用偏差补偿去除噪声功率来确定SNR。
12.如权利要求11所述的设备,其中,偏差补偿包括:对第一分贝项和第二分贝项进行求和,
其中,第一分贝项基于将第一绝对值和近似值与第二绝对值和近似值的求和的结果转换到分贝域中,
其中,第二分贝项基于将从第一绝对值和近似值减去第二绝对值和近似值的结果转换到分贝域中。
13.如权利要求10所述的设备,其中,接收器还被配置为:在分贝域中对第一SNR和第二SNR进行求和。
14.如权利要求13所述的设备,其中,第一SNR和第二SNR与两个频带、两个时隙和两个天线中的至少一个相关联。
15.如权利要求12所述的设备,其中,接收器还被配置为:使用存储在存储器中的查找表LUT将第一绝对值和近似值和第二绝对值和近似值的求和的结果转换到分贝域中并将从第一绝对值和近似值减去第二绝对值和近似值的结果转换到分贝域中。
16.如权利要求13所述的设备,其中,接收器还被配置为:使用比较器确定第一SNR和第二SNR中的较大者。
17.如权利要求16所述的设备,其中,接收器还被配置为:将3dB加到第一SNR和第二SNR中的较大者。
18.如权利要求13所述的设备,其中,接收器还被配置为:确定第一SNR与第二SNR之间的差的绝对值。
19.一种制造处理器的方法,包括:
形成所述处理器作为包括至少一个其他处理器的晶片或封装件的部分,其中,所述处理器被配置为接收信号序列和噪声序列,确定信号序列的接收功率的第一绝对值和近似值,确定噪声序列的噪声功率的第二绝对值和近似值,并基于第一绝对值和近似值和第二绝对值和近似值确定信噪比。
20.一种构造集成电路的方法,包括:
针对集成电路的层的一组特征产生掩膜布局,其中,掩膜布局包括用于包括处理器的一个或多个电路特征的标准单元库宏,所述处理器被配置为接收信号序列和噪声序列,确定信号序列的接收功率的第一绝对值和近似值,确定噪声序列的噪声功率的第二绝对值和近似值,并基于第一绝对值和近似值和第二绝对值和近似值确定信噪比。
CN201710695349.5A 2016-10-28 2017-08-15 用于信噪比估计的方法和设备 Active CN108023650B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662414143P 2016-10-28 2016-10-28
US62/414,143 2016-10-28
US15/421,998 2017-02-01
US15/421,998 US9960866B1 (en) 2016-10-28 2017-02-01 Method and apparatus for signal-to-noise ratio (SNR) estimation

Publications (2)

Publication Number Publication Date
CN108023650A true CN108023650A (zh) 2018-05-11
CN108023650B CN108023650B (zh) 2021-01-15

Family

ID=62013819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710695349.5A Active CN108023650B (zh) 2016-10-28 2017-08-15 用于信噪比估计的方法和设备

Country Status (4)

Country Link
US (1) US9960866B1 (zh)
KR (1) KR102306221B1 (zh)
CN (1) CN108023650B (zh)
TW (1) TWI826352B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110233684A (zh) * 2019-07-04 2019-09-13 中国联合网络通信集团有限公司 信噪比评估方法、装置、设备及存储介质
CN111181580A (zh) * 2018-11-13 2020-05-19 联发科技股份有限公司 通信接收装置及其信号处理方法
CN112491753A (zh) * 2020-11-17 2021-03-12 成都国恒空间技术工程有限公司 一种信噪比估计算法的高效实现方法
CN112562666A (zh) * 2020-11-30 2021-03-26 海信视像科技股份有限公司 一种筛选设备的方法及服务设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4555790A (en) * 1983-06-30 1985-11-26 Betts William L Digital modem having a monitor for signal-to-noise ratio
US6028894A (en) * 1996-12-27 2000-02-22 Fujitsu Limited SIR or SNR measurement apparatus
US6081822A (en) * 1998-03-11 2000-06-27 Agilent Technologies, Inc. Approximating signal power and noise power in a system
CN1377526A (zh) * 1999-09-13 2002-10-30 高通股份有限公司 精确预告信号与干扰噪声比以提高通信***性能的***和方法
US20070011639A1 (en) * 2005-07-05 2007-01-11 Pitts Robert L Placement methods for standard cell library
CN101640572A (zh) * 2008-07-18 2010-02-03 俊茂微电子(上海)有限公司 信噪比测量方法和装置以及通信设备
CN101106402B (zh) * 2006-06-30 2012-11-14 英特尔公司 用于计算信噪比(snr)的方法和装置
CN105119666A (zh) * 2015-07-13 2015-12-02 中国电子科技集团公司第十研究所 自适应联合信道估计信道质量的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5809059A (en) * 1996-11-21 1998-09-15 Motorola, Inc. Method and apparatus for spread spectrum channel assignment
US7313167B2 (en) 2002-09-30 2007-12-25 Telefonaktiebolaget Lm Ericsson (Publ) Signal-to-noise ratio estimation of CDMA signals
US7027496B2 (en) 2003-04-04 2006-04-11 Nokia Corporation Method and apparatus providing unbiased signal-to-noise ratio estimation and its application to discontinuous transmission detection
US8239162B2 (en) * 2006-04-13 2012-08-07 Tanenhaus & Associates, Inc. Miniaturized inertial measurement unit and associated methods
US7414581B2 (en) 2006-01-06 2008-08-19 Honeywell International Inc. Method for improved signal to noise ratio estimation
GB0626023D0 (en) 2006-12-29 2007-02-07 Nokia Corp A receiver
US8098770B2 (en) 2008-05-06 2012-01-17 Broadcom Corporation Unbiased signal-to-noise ratio estimation for receiver having channel estimation error
US8767799B2 (en) 2011-04-12 2014-07-01 Alcatel Lucent Method and apparatus for determining signal-to-noise ratio
CN103402249B (zh) 2013-08-27 2015-12-23 武汉邮电科学研究院 用于lte***pucch信道的信噪比估计方法
US9706421B2 (en) 2013-12-06 2017-07-11 Qualcomm Incorporated Apparatus and method for sire bias compensation
US9106472B1 (en) 2014-06-27 2015-08-11 Ibiquity Digital Corporation Channel state information (CSI) estimation and applications for in-band on-channel radio receivers
US9722650B2 (en) 2014-12-15 2017-08-01 Intel Corporation Method for noise power estimation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4555790A (en) * 1983-06-30 1985-11-26 Betts William L Digital modem having a monitor for signal-to-noise ratio
US6028894A (en) * 1996-12-27 2000-02-22 Fujitsu Limited SIR or SNR measurement apparatus
US6081822A (en) * 1998-03-11 2000-06-27 Agilent Technologies, Inc. Approximating signal power and noise power in a system
CN1377526A (zh) * 1999-09-13 2002-10-30 高通股份有限公司 精确预告信号与干扰噪声比以提高通信***性能的***和方法
US20070011639A1 (en) * 2005-07-05 2007-01-11 Pitts Robert L Placement methods for standard cell library
CN101106402B (zh) * 2006-06-30 2012-11-14 英特尔公司 用于计算信噪比(snr)的方法和装置
CN101640572A (zh) * 2008-07-18 2010-02-03 俊茂微电子(上海)有限公司 信噪比测量方法和装置以及通信设备
CN105119666A (zh) * 2015-07-13 2015-12-02 中国电子科技集团公司第十研究所 自适应联合信道估计信道质量的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111181580A (zh) * 2018-11-13 2020-05-19 联发科技股份有限公司 通信接收装置及其信号处理方法
CN110233684A (zh) * 2019-07-04 2019-09-13 中国联合网络通信集团有限公司 信噪比评估方法、装置、设备及存储介质
CN110233684B (zh) * 2019-07-04 2021-09-07 中国联合网络通信集团有限公司 信噪比评估方法、装置、设备及存储介质
CN112491753A (zh) * 2020-11-17 2021-03-12 成都国恒空间技术工程有限公司 一种信噪比估计算法的高效实现方法
CN112491753B (zh) * 2020-11-17 2022-07-19 成都国恒空间技术工程有限公司 一种信噪比估计算法的高效实现方法
CN112562666A (zh) * 2020-11-30 2021-03-26 海信视像科技股份有限公司 一种筛选设备的方法及服务设备
CN112562666B (zh) * 2020-11-30 2022-11-04 海信视像科技股份有限公司 一种筛选设备的方法及服务设备

Also Published As

Publication number Publication date
US9960866B1 (en) 2018-05-01
KR102306221B1 (ko) 2021-09-29
KR20180046842A (ko) 2018-05-09
US20180123709A1 (en) 2018-05-03
TW201817173A (zh) 2018-05-01
TWI826352B (zh) 2023-12-21
CN108023650B (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
CN108023650A (zh) 用于信噪比估计的方法和设备
CN100459441C (zh) 发射机和发送方法
KR102269194B1 (ko) 기준 신호 시간차 측정 방법 및 장치
US20150311986A1 (en) Phase Noise Tracking and Reduction
JP2015149765A (ja) 無線通信装置のアンテナをチューニングするシステム及び方法
KR20160141816A (ko) 액세스 포인트를 선택하기 위한 개선된 메커니즘을 위한 방법 및 장치
US10064204B2 (en) Method, device, and system for setting an operating parameter of a radio receiver based on a predicted radio signal environment
US9118285B2 (en) Compensation of a transmitter distortion
KR102203300B1 (ko) 채널 추적 장치 및 방법
US7203494B2 (en) Optimizing radio communication efficiency and methods thereof
KR102203301B1 (ko) 소프트 정보에 기초한 결정 지향 공통 위상 오차 추정에 관한 방법 및 장치
US10033482B2 (en) System and method for providing interference parameter estimation for multi-input multi-output (MIMO) communication system
US20150056996A1 (en) Methods for determining whether to perform cell measurement on a predetermined neighbor cell and for ping-pong avoidance during cell reselection and communication apparatus utilizing the same
CN102857452B (zh) 用于估算和校正无线通信设备中的相位偏移的***和方法
US20200244294A1 (en) Adjusting parameters of a receiver system
JP4580508B2 (ja) 信号処理装置及び通信装置
US9749156B2 (en) Receiving device and method of mobile communication system
US8934588B2 (en) Wireless communication system with direct conversion mechanism and method of operation thereof
Irio et al. On the impact of fading on residual self-interference power of in-band full-duplex wireless systems
US9742360B2 (en) Efficient smart wideband linear hybrid CMOS RF power amplifier
JP2011114386A (ja) 基地局装置、無線通信システムおよび周波数補正方法
Kryszkiewicz et al. Energy savings by task offloading to a fog considering radio front-end characteristics
Habibi et al. Digital compensation of cross-modulation distortion in multimode transceivers
KR20180045772A (ko) 일반 패킷 라디오 서비스 시스템용 저 복잡도 시퀀스 추정기
US8976840B2 (en) Radio receiver for detecting an additive white Gaussian noise channel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant