CN108008175B - 一种食品加工机的电流检测方法 - Google Patents

一种食品加工机的电流检测方法 Download PDF

Info

Publication number
CN108008175B
CN108008175B CN201711170985.2A CN201711170985A CN108008175B CN 108008175 B CN108008175 B CN 108008175B CN 201711170985 A CN201711170985 A CN 201711170985A CN 108008175 B CN108008175 B CN 108008175B
Authority
CN
China
Prior art keywords
current
sampling
control
current detection
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711170985.2A
Other languages
English (en)
Other versions
CN108008175A (zh
Inventor
王旭宁
吴涯
张小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joyoung Co Ltd
Original Assignee
Joyoung Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joyoung Co Ltd filed Critical Joyoung Co Ltd
Priority to CN201711170985.2A priority Critical patent/CN108008175B/zh
Publication of CN108008175A publication Critical patent/CN108008175A/zh
Application granted granted Critical
Publication of CN108008175B publication Critical patent/CN108008175B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Resistance Heating (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本发明实施例公开了一种食品加工机的电流检测方法,该食品加工机包括负载回路和电流采样电阻,电流采样电阻串联于负载回路中,用于对负载回路进行电流检测;食品加工机的负载包括加热装置和电机,该方法包括:根据负载的全部控制周期的最小公倍数确定电流检测中的采样周期T,并根据负载的控制斩波角确定电流检测中的采样次数m。通过该实施例方案,提高了电流检测精度。

Description

一种食品加工机的电流检测方法
技术领域
本发明实施例涉及食品加工机控制技术,尤指一种食品加工机的电流检测方法。
背景技术
食品加工机如果出现加热管不工作或电机不工作的现象,会严重影响食品加工效果,破坏用户体验。为了有效识别食品加工机加热管和电机异常,目前最有效的方法就是实时检测加热管和电机电流,根据检测电流判断机器工作状态,及时处理机器异常。并且实时检测电流不仅能识别机器异常,当加热管或电机电流过大时,可以及时保护加热管和电机,防止机器损坏。因此,食品加工机的电流检测对保护机器正常工作,改善用户体验具有重要意义。然而,受目前的控制电路结构或采样方式限制,相关电流检测技术均会出现电流检测精度差的问题,从而影响食品加工机的正常工作,为用户带来很差的使用体验。
发明内容
本发明实施例提供了一种食品加工机的电流检测方法,能够提高电流检测精度。
本发明实施例采用如下技术方案:
一种食品加工机的电流检测方法,该食品加工机包括负载回路和电流采样电阻,电流采样电阻串联于负载回路中,用于对负载回路进行电流检测;食品加工机的负载包括加热装置和电机,该方法包括:
根据负载的全部控制周期的最小公倍数确定电流检测中的采样周期T,并根据负载的控制斩波角确定电流检测中的采样次数m。
可选地,负载的全部控制周期的最小公倍数是指:
加热装置和电机的全部控制方式中的全部控制周期的最小公倍数。
可选地,加热装置采用掉波控制方式控制,电机采用斩波控制方式控制;
根据负载的控制斩波角确定电流检测中的采样次数m包括:
根据掉波控制方式以及斩波控制方式中的最小控制斩波角β确定采样次数m。
可选地,T=12/f;
Figure BDA0001477232050000021
其中,f为交流工频。
可选地,该方法还包括:
在进行电流检测之前,关闭全部负载的控制电流,并采样待机电流I0
在进行电流检测之后,根据当前检测出电流I1、待机电流I0以及预设的第一关系式计算最终检测电流I。
可选地,第一关系式包括:I=I1-I0
可选地,该方法还包括:根据线路板采样系数
Figure BDA0001477232050000022
对当前采样电压值Uout进行校正;
根据校正后获得的实际采样电压值U’out计算检测电流I。
可选地,根据线路板采样系数
Figure BDA0001477232050000023
对当前采样电压值Uout进行校正包括:根据线路板采样系数
Figure BDA0001477232050000024
当前采样电压值Uout以及预设的第二关系式计算实际采样电压值U’out
其中,第二关系式包括:
Figure BDA0001477232050000025
可选地,该方法还包括:
预先在食品加工机的采样电阻上通过固定校准电流I校准,并采样该采样电阻上的校准电压U校准
根据校准电压U校准和预设的理论电压U理论计算线路板采样系数
Figure BDA0001477232050000026
可选地,该方法还包括:在线路板出厂时计算线路板采样系数
Figure BDA0001477232050000027
并对线路板采样系数
Figure BDA0001477232050000028
进行校正。
本发明实施例的有益效果包括:
1、本发明实施例的食品加工机包括负载回路和电流采样电阻,电流采样电阻串联于负载回路中,用于对负载回路进行电流检测;食品加工机的负载包括加热装置和电机,食品加工机的电流检测方法包括:根据负载的全部控制周期的最小公倍数确定电流检测中的采样周期T,并根据负载的控制斩波角确定电流检测中的采样次数m。该实施例方案解决了相关技术中因为使用可控硅控制电路使得采样电压不对称导致电流检测精度差,以及应为电流采样电路的运放电路失调电压导致电流检测精度差等诸多问题,提高了电流检测精度。
2、本发明实施例中负载的全部控制周期的最小公倍数是指:加热装置和电机的全部控制方式中的全部控制周期的最小公倍数。食品加工机中的加热装置的全部功率档位和电机的控制周期,以及控制导通及关闭的控制周期设置为交流电周期的整数倍,是为了保证控制周期内导通半波及关闭半波的正负半波对称。因此该实施例方案中的采样周期T设置为所有控制周期的最小公倍数,可以保证采样周期内所有控制档位的导通及关闭交流半波对称,从而消除采样电压U不是完全对称导致的电流检测误差。
3、本发明实施例中加热装置采用掉波控制方式控制,电机采用斩波控制方式控制;根据负载的控制斩波角确定电流检测中的采样次数m包括:根据掉波控制方式以及斩波控制方式中的最小控制斩波角β确定采样次数m。由于主控单元MCU斩波控制存在最小斩波角β,单个交流半波电流检测次数需要保证即使最小斩波角也能采样到电流,才能准确检测电流;另外,保证电机斩波时的微小电流也能使得电流检测更可靠。因此该实施例方案可以提高电流检测可靠性,从而进一步提高电流检测精度。
4、本发明实施例的方法还包括:在进行电流检测之前,关闭全部负载的控制电流,并采样待机电流I0;在进行电流检测之后,根据当前检测出电流I1、待机电流I0以及预设的第一关系式计算最终检测电流I。该实施例方案可消除运放电路失调电压导致的电流检测误差。
5、本发明实施例的方法还包括:根据线路板采样系数
Figure BDA0001477232050000031
对当前采样电压值Uout进行校正;根据校正后获得的实际采样电压值U’out计算检测电流I。该实施例方案可消除印刷电路板PCB走线铜箔电阻导致的电流检测误差。
6、本发明实施例的方法还包括:在线路板出厂时计算线路板采样系数
Figure BDA0001477232050000041
并对线路板采样系数
Figure BDA0001477232050000042
进行校正。该实施例方案将线路板采样系数
Figure BDA0001477232050000043
存储在EEPROM(ElectricallyErasable Programmable Read-Only Memory,带电可擦可编程只读存储器)内部,仅需在线路板出厂时进行一次校准,使用时MCU直接读取EEPROM内部的数据,生产成本更低,工艺更简单。
附图说明
下面结合附图对本发明做进一步的说明:
图1为本发明实施例的消除由于采样电压U不是完全对称而导致的误差的实施例方法流程图;
图2为常规的电流检测硬件结构示意图;
图3为本发明实施例的消除由于运放电路失调电压导致的误差的实施例方法流程图;
图4为本发明实施例的消除由于PCB铜箔电阻导致的误差的实施例方法流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机***中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
实施例一
一种食品加工机的电流检测方法,该食品加工机包括负载回路和电流采样电阻,电流采样电阻串联于负载回路中,用于对负载回路进行电流检测;食品加工机的负载包括加热装置和电机,如图1所示,该方法可以包括步骤S11:
S11、根据负载的全部控制周期的最小公倍数确定电流检测中的采样周期T,并根据负载的控制斩波角确定电流检测中的采样次数m。
在本发明实施例中,目前利用采样电阻检测电流是食品加工机的电流检测中成本最低,并且最常用的方法,具体电路拓扑如图2所示:采样电阻R采样加热装置或电机回路1中的电流I,采样电压U=I×R,放大电路2对采样电压U进行放大Uout=I×R×α,α为放大倍数,然后输入主控单元MCU,MCU根据采样电压值Uout计算电流I。但目前的电流检测方案存在以下问题:
1、由于目前加热装置或电机都是使用可控硅控制,而外加电压VCC会导致可控硅导通斩波点超前或滞后,所以采样电压U不是完全对称的交流波形(即正负半波不一样),实际采样电压Uout=VCC±α×I×R-ΔU1,使用一般的采样算法计算采样电流会导致电流值检测不准。
2、相关采样电路中的放大电路一般均使用运算放大器,而运算放大器的失调电压会导致电流检测误差加大,影响电流检测精度,采样电压Uout=VCC±α×I×R-ΔU1-ΔU2
3、线路板生产过程中,不同线路板之间会存在微小的差异,尤其是印刷电路板PCB铜箔电阻会导致采样电阻出现偏差,而电流检测采样信号很小,极容易受线路板参数的影响,导致电流检测误差加大,采样电压Uout=VCC±α×I×(R+ΔR)-ΔU1-ΔU2
在本发明实施例中,基于以上问题,需要对当前的电流检测方法进行改进,解决各种因素引起的检测精度差的问题。
在本发明实施例中,根据上述内容可知,MCU检测电压Uout=VCC±α×I×(R+ΔR)-ΔU1-ΔU2,其中α为放大倍数,I是流过采样电阻的电流,R是采样电阻的阻值,ΔR是PCB铜箔的电阻值,ΔU1是由于采样电阻采样电压U不是完全对称而导致的误差,ΔU2是运放电路失调电压导致的误差,ΔR是PCB铜箔电阻导致的误差。
在本发明实施例中,针对由于采样电阻采样电压U不是完全对称而导致的误差,可以采用步骤S11中的方案,即根据负载的全部控制周期的最小公倍数确定电流检测中的采样周期T,并根据负载的控制斩波角确定电流检测中的采样次数m,从而消除采样电压U不是完全对称导致的电流检测误差,即消除采样电压Uout=VCC±α×I×(R+ΔR)-ΔU1-ΔU2中的误差ΔU1。下面通过具体实施例对该实施例方案进行解释。
在本发明实施例中,目前食品加工机大部分使用可控硅控制加热装置或电机,为了满足豆浆机制浆性能要求,同时避免谐波电流骚扰过大,对大电流负载(加热装置)采用掉波控制方式,小电流负载(电机)使用斩波控制方式。
在本发明实施例中,食品加工机(如豆浆机)加热使用掉波控制方式,加热档位及控制周期可以分别包括:
全功率P1,控制周期T1=1/f,两个交流半波全部导通(f是交流电频率);
3/4功率P2,控制周期T2=1/f×4,导通6个交流半波,关闭2个交流半波;
2/3功率P3,控制周期T3=1/f×3,导通4个交流半波,关闭2个交流半波;
1/2功率P4,控制周期T4=1/f×2,导通2个交流半波,关闭2个交流半波;
1/3功率P5,控制周期T5=1/f×3,导通2个交流半波,关闭4个交流半波;
1/4功率P6,控制周期T6=1/f×4,导通2个交流半波,关闭6个交流半波。
在本发明实施例中,食品加工机(如豆浆机)的电机使用斩波控制方式,例如,控制周期T7=1/f,两个半波都进行斩波,最小控制斩波角β,可控硅在交流半波上的斩波点都是β的整数倍。
在本发明实施例中,上述的食品加工机加热档位最大控制周期设置为交流电周期的4倍,是为了防止控制周期过大而出现电压闪烁风险。加热功率档位及电机控制周期,控制导通及关闭周期设置为交流电周期的整数倍,是为了保证控制周期内导通半波及关闭半波的正负半波对称。例如1/2功率P4:导通2个交流半波,关闭2个交流半波,导通半波1个正半波1个负半波,关闭半波也是1个正半波1个负半波。之所以要保证控制周期内正负半波对称,是因为采样电阻的采样电压U不是完全对称的交流波形,如果采样波形只有正半波或负半波,或者正负半波不对称,电流检测结果就会偏大或偏小。
在本发明实施例中,将电流检测周期T设置为所有控制周期的最小公倍数,是为了保证采样周期内所有控制档位的导通及关闭交流半波对称,消除采样电压U不是完全对称导致的电流检测误差,即消除采样电压Uout=VCC±α×I×(R+ΔR)-ΔU1-ΔU2中的误差ΔU1
可选地,负载的全部控制周期的最小公倍数是指:加热装置和电机的全部控制方式中的全部控制周期的最小公倍数。
在本发明实施例中,下面对上述控制方式实施例中的所有控制周期的最小公倍数的计算方法做详细介绍:
电流采样周期T是负载控制周期T1、T2、T3、T4、T5、T6、T7的最小公倍数,其中,T2=1/f×4、T2=1/f×4、T3=1/f×3、T4=1/f×2、T5=1/f×3、T6=1/f×4、T7=1/f,即T=12×1/f。例如当交流电频率为50HZ时,电流检测的采样周期
Figure BDA0001477232050000071
单个交流半波电流采样次数
Figure BDA0001477232050000072
即每个交流半波是最小控制斩波角β的n倍。在采样周期内,电流检测采样次数m=n*12*2=24n。
在本发明实施例中,例如,当可控硅最小斩波角β=0.5ms时,单个交流半波电流采样次数
Figure BDA0001477232050000073
次,采样周期内电流检测采样次数m=480次。
可选地,当加热装置采用掉波控制方式控制,电机采用斩波控制方式控制时;根据负载的控制斩波角确定电流检测中的采样次数m可以包括:根据掉波控制方式以及斩波控制方式中的最小控制斩波角β确定采样次数m。
在本发明实施例中,MCU斩波控制存在最小斩波角β,单个交流半波电流检测次数n需要保证即使最小斩波角也能采样到电流,也能准确检测电流,保证电机斩波时的微小电流也能可靠检测。因此n等于单个交流半波内包含多少个整数倍最小斩波角β,即
Figure BDA0001477232050000081
那么电流检测周期T内采样次数
Figure BDA0001477232050000082
可选地,T=12/f;
Figure BDA0001477232050000083
其中,f为交流工频。
在本发明实施例中,基于前述内容可知,电流检测周期T可以选择12/f,也可以选择12/f的整数倍;电流检测次数m可以选择
Figure BDA0001477232050000084
也可以选择
Figure BDA0001477232050000085
的整数倍。
实施例二
该实施例给出了消除由于运放电路失调电压导致的误差的实施例方案。
可选地,如图3所示,该方法还可以包括S21-S22:
S21、在进行电流检测之前,关闭全部负载的控制电流,并采样待机电流I0
S22、在进行电流检测之后,根据当前检测出电流I1、待机电流I0以及预设的第一关系式计算最终检测电流I。
可选地,第一关系式包括:I=I1-I0
在本发明实施例中,该实施例方案实质上是:采样负载电流I前,先采样基准电流I0(即上述的待机电流I0),再根据基准电流计算最终检测电流I。
在本发明实施例中,通过采样周期T及采样次数m可以提升电流检测精度并消除电流检测中由于采样电阻采样电压U不是完全对称而导致的误差ΔU1。而通过采样基准电流I0,再根据基准电流I0计算采样电流I=I1-I0即可消除运放电路失调电压导致的误差ΔU2
在本发明实施例中,因为当负载全部关闭时,负载电流I=0,基准电流采样值U0=VCC-ΔU2=I0*R0,而运放电路失调电压比较稳定,所以当负载工作时,将负载电流采样值Uout减去基准电流采样值U0则有:Uout-U0=[VCC±α×I×(R+ΔR)-ΔU2]-[VCC-ΔU2]=±α×I×(R+ΔR);最终MCU的采样结果仅与采样电阻R及负载电流I及放大倍数α有关,消除了运放电路失调电压导致的误差ΔU2
实施例三
该实施例给出了消除由于PCB铜箔电阻导致的误差的实施例方案。
可选地,如图4所示,该方法还可以包括S31-S32:
S31、根据线路板采样系数
Figure BDA0001477232050000096
对当前采样电压值Uout进行校正;
S32、根据校正后获得的实际采样电压值U’out计算检测电流I。
在本发明实施例中,本实施例技术方案通过设计采样周期T及采样次数m可以提升电流检测精度,并消除采样电阻采样电压U不是完全对称而导致的误差ΔU1;通过采样基准电流,并根据基准电流计算采样电流可以消除运放电路失调电压导致的误差ΔU2,最终MCU的采样值Uout=±α×I×(R+ΔR)。为了消除PCB走线铜箔电阻导致的电流检测误差ΔR,本实施例技术方案通过线路板采样系数
Figure BDA0001477232050000097
对采样值进行校准,并根据采样系数
Figure BDA0001477232050000098
计算负载电流,提升了电流检测精度。
可选地,该方法还包括:
预先在食品加工机的采样电阻上通过固定校准电流I校准,并采样该采样电阻上的校准电压U校准
根据校准电压U校准和预设的理论电压U理论计算线路板采样系数
Figure BDA0001477232050000091
在本发明实施例中,根据上文所述,已知Uout=±α×I×(R+ΔR),当采样电阻电路上通过固定校准电流I校准时,MCU理论采样值U理论=±α×I校准×R,实际采样值U校准=±α×I校准×(R+ΔR),则系数
Figure BDA0001477232050000092
Figure BDA0001477232050000093
可选地,根据线路板采样系数
Figure BDA0001477232050000094
对当前采样电压值Uout进行校正包括:根据线路板采样系数
Figure BDA0001477232050000095
当前采样电压值Uout以及预设的第二关系式计算实际采样电压值U’out
其中,第二关系式包括:
Figure BDA0001477232050000101
在本发明实施例中,MCU计算采样电流时,将采样值Uout除以线路板采样系数
Figure BDA00014772320500001015
即实际采样值
Figure BDA0001477232050000102
再计算负载电流
Figure BDA0001477232050000103
消除了PCB铜箔电阻导致的电流检测误差。
可选地,该方法还包括:在线路板出厂时计算线路板采样系数
Figure BDA0001477232050000104
并对线路板采样系数
Figure BDA0001477232050000105
进行校正。
在本发明实施例中,在线路板出厂时计算线路板采样系数
Figure BDA0001477232050000106
将线路板采样系数
Figure BDA0001477232050000107
存储在EEPROM内部,可以仅在线路板出厂时对该线路板采样系数
Figure BDA0001477232050000108
进行一次校准,使用时MCU直接读取EEPROM内部的数据即可,生产成本更低,工艺更简单。在其它实施例中,为了进一步保证该线路板采样系数
Figure BDA0001477232050000109
的准确性,还可以定时计算线路板采样系数
Figure BDA00014772320500001011
并利用最新的线路板采样系数
Figure BDA00014772320500001010
对电流检测中的采样数据进行校正,而且在每次定时计算该线路板采样系数
Figure BDA00014772320500001012
时,还可以根据出厂计算的存储在EEPROM内部的原始线路板采样系数
Figure BDA00014772320500001013
对新计算的线路板采样系数
Figure BDA00014772320500001014
进行校正,进一步确保电流检测准确度。
本发明实施例的有益效果包括:
1、本发明实施例的食品加工机包括负载回路和电流采样电阻,电流采样电阻串联于负载回路中,用于对负载回路进行电流检测;食品加工机的负载包括加热装置和电机,食品加工机的电流检测方法包括:根据负载的全部控制周期的最小公倍数确定电流检测中的采样周期T,并根据负载的控制斩波角确定电流检测中的采样次数m。该实施例方案解决了相关技术中因为使用可控硅控制电路使得采样电压不对称导致电流检测精度差,以及应为电流采样电路的运放电路失调电压导致电流检测精度差等诸多问题,提高了电流检测精度。
2、本发明实施例中负载的全部控制周期的最小公倍数是指:加热装置和电机的全部控制方式中的全部控制周期的最小公倍数。食品加工机中的加热装置的全部功率档位和电机的控制周期,以及控制导通及关闭的控制周期设置为交流电周期的整数倍,是为了保证控制周期内导通半波及关闭半波的正负半波对称。因此该实施例方案中的采样周期T设置为所有控制周期的最小公倍数,可以保证采样周期内所有控制档位的导通及关闭交流半波对称,从而消除采样电压U不是完全对称导致的电流检测误差。
3、本发明实施例中加热装置采用掉波控制方式控制,电机采用斩波控制方式控制;根据负载的控制斩波角确定电流检测中的采样次数m包括:根据掉波控制方式以及斩波控制方式中的最小控制斩波角β确定采样次数m。由于主控单元MCU斩波控制存在最小斩波角β,单个交流半波电流检测次数需要保证即使最小斩波角也能采样到电流,才能准确检测电流;另外,保证电机斩波时的微小电流也能使得电流检测更可靠。因此该实施例方案可以提高电流检测可靠性,从而进一步提高电流检测精度。
4、本发明实施例的方法还包括:在进行电流检测之前,关闭全部负载的控制电流,并采样待机电流I0;在进行电流检测之后,根据当前检测出电流I1、待机电流I0以及预设的第一关系式计算最终检测电流I。该实施例方案可消除运放电路失调电压导致的电流检测误差。
5、本发明实施例的方法还包括:根据线路板采样系数
Figure BDA0001477232050000111
对当前采样电压值Uout进行校正;根据校正后获得的实际采样电压值U’out计算检测电流I。该实施例方案可消除印刷电路板PCB走线铜箔电阻导致的电流检测误差。
6、本发明实施例的方法还包括:在线路板出厂时计算线路板采样系数
Figure BDA0001477232050000112
并对线路板采样系数
Figure BDA0001477232050000113
进行校正。该实施例方案将线路板采样系数
Figure BDA0001477232050000114
存储在EEPROM(ElectricallyErasable Programmable Read-Only Memory,带电可擦可编程只读存储器)内部,仅需在线路板出厂时进行一次校准,使用时MCU直接读取EEPROM内部的数据,生产成本更低,工艺更简单。
虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (6)

1.一种食品加工机的电流检测方法,所述食品加工机包括负载回路和电流采样电阻,所述电流采样电阻串联于所述负载回路中,用于对所述负载回路进行电流检测;所述食品加工机的负载包括加热装置和电机,其特征在于,所述方法包括:所述加热装置采用掉波控制方式控制,所述电机采用斩波控制方式控制;
根据所述负载的全部控制周期的最小公倍数确定所述电流检测中的采样周期T,并根据所述负载的控制斩波角确定所述电流检测中的采样次数m,根据所述掉波控制方式以及所述斩波控制方式中的最小控制斩波角β确定所述采样次数m,所述
Figure FDA0002386397270000011
其中,f为交流工频,所述T=12/f。
2.根据权利要求1所述的食品加工机的电流检测方法,其特征在于,所述负载的全部控制周期的最小公倍数是指:
所述加热装置和电机的全部控制方式中的全部控制周期的最小公倍数。
3.根据权利要求1所述的食品加工机的电流检测方法,其特征在于,所述方法还包括:
在进行电流检测之前,关闭全部负载的控制电流,并采样待机电流I0
在进行电流检测之后,根据当前检测出电流I1、所述待机电流I0以及预设的第一关系式计算最终检测电流I,所述第一关系式包括:I=I1-I0
4.根据权利要求1所述的食品加工机的电流检测方法,其特征在于,所述方法还包括:
根据线路板采样系数
Figure FDA0002386397270000012
对当前采样电压值Uout进行校正;
根据校正后获得的实际采样电压值U’out计算检测电流I,所述根据线路板采样系数
Figure FDA0002386397270000013
对当前采样电压值Uout进行校正包括:根据所述线路板采样系数
Figure FDA0002386397270000014
所述当前采样电压值Uout以及预设的第二关系式计算所述实际采样电压值U’out
其中,所述第二关系式包括:
Figure FDA0002386397270000015
5.根据权利要求4所述的食品加工机的电流检测方法,其特征在于,所述方法还包括:
预先在所述食品加工机的采样电阻上通过固定校准电流I校准,并采样所述采样电阻上的校准电压U校准
根据所述校准电压U校准和预设的理论电压U理论计算所述线路板采样系数
Figure FDA0002386397270000021
6.根据权利要求5所述的食品加工机的电流检测方法,其特征在于,所述方法还包括:在线路板出厂时计算所述线路板采样系数
Figure FDA0002386397270000022
并对所述线路板采样系数
Figure FDA0002386397270000023
进行校正。
CN201711170985.2A 2017-11-22 2017-11-22 一种食品加工机的电流检测方法 Active CN108008175B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711170985.2A CN108008175B (zh) 2017-11-22 2017-11-22 一种食品加工机的电流检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711170985.2A CN108008175B (zh) 2017-11-22 2017-11-22 一种食品加工机的电流检测方法

Publications (2)

Publication Number Publication Date
CN108008175A CN108008175A (zh) 2018-05-08
CN108008175B true CN108008175B (zh) 2020-05-19

Family

ID=62053277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711170985.2A Active CN108008175B (zh) 2017-11-22 2017-11-22 一种食品加工机的电流检测方法

Country Status (1)

Country Link
CN (1) CN108008175B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114631745B (zh) * 2020-12-16 2024-05-14 九阳股份有限公司 一种食品加工机
CN113687130B (zh) * 2021-09-13 2024-06-21 阳光电源股份有限公司 一种电压测量方法及其应用装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131772A (ja) * 1989-10-18 1991-06-05 Hamamatsu Photonics Kk 電圧検出装置
CN1199455A (zh) * 1996-08-27 1998-11-18 三洋电机株式会社 控制空气调节器的设备
CN1455262A (zh) * 2002-05-04 2003-11-12 朱筱杰 电阻测量电路及含此电路的检测、控制、报警装置
CN101762738A (zh) * 2010-01-08 2010-06-30 北京京仪椿树整流器有限责任公司 一种输出电流断续状态下斩波器的平均电流采样方法
CN103152052A (zh) * 2011-12-06 2013-06-12 中国科学院深圳先进技术研究院 对多个电压模拟信号进行采样的方法
CN104965420A (zh) * 2015-06-02 2015-10-07 九阳股份有限公司 一种低干扰食品加工机
CN104991115A (zh) * 2015-06-12 2015-10-21 武汉精测电子技术股份有限公司 一种斩波式直流电流检测方法及电路
CN105093010A (zh) * 2015-07-21 2015-11-25 胜利油田胜利电器有限责任公司 在混频周期信号中提取特定频率的波的数字滤波方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131772A (ja) * 1989-10-18 1991-06-05 Hamamatsu Photonics Kk 電圧検出装置
CN1199455A (zh) * 1996-08-27 1998-11-18 三洋电机株式会社 控制空气调节器的设备
CN1455262A (zh) * 2002-05-04 2003-11-12 朱筱杰 电阻测量电路及含此电路的检测、控制、报警装置
CN101762738A (zh) * 2010-01-08 2010-06-30 北京京仪椿树整流器有限责任公司 一种输出电流断续状态下斩波器的平均电流采样方法
CN103152052A (zh) * 2011-12-06 2013-06-12 中国科学院深圳先进技术研究院 对多个电压模拟信号进行采样的方法
CN104965420A (zh) * 2015-06-02 2015-10-07 九阳股份有限公司 一种低干扰食品加工机
CN104991115A (zh) * 2015-06-12 2015-10-21 武汉精测电子技术股份有限公司 一种斩波式直流电流检测方法及电路
CN105093010A (zh) * 2015-07-21 2015-11-25 胜利油田胜利电器有限责任公司 在混频周期信号中提取特定频率的波的数字滤波方法

Also Published As

Publication number Publication date
CN108008175A (zh) 2018-05-08

Similar Documents

Publication Publication Date Title
CN102857087B (zh) 一种功率因数自适应控制方法
CN104821552B (zh) 过温保护方法、电路以及带该电路的线性驱动电路
JP4987068B2 (ja) 交流電気量測定装置
CN108008175B (zh) 一种食品加工机的电流检测方法
US10845397B2 (en) Systems and methods for detecting load coupling and for detecting a load type
CN203688638U (zh) 一种用于金属氧化物避雷器阻性泄漏电流的检测装置
US8165832B1 (en) Wall plug power monitor
CN109444643A (zh) 一种单相正弦信号掉电快速检测方法及***
CN111413661A (zh) 一种采用标准表法进行仪表常数试验的检测方法
CN106264090B (zh) 基于电压控制烹饪器具的方法及装置和烹饪器具
WO2018094917A1 (zh) 一种修正波逆变器输出电压控制***及控制方法
CN206563885U (zh) 控制旋钮的装置及旋钮
CN103344830B (zh) 一种合闸相位检测方法
JP5396675B2 (ja) 絶縁監視装置
CN204832286U (zh) 一种三相电能表三线与四线计量方式自动切换装置
CN101963635A (zh) 判断交流负载特性的方法及***、调光节能控制器
JP4734177B2 (ja) 三相3線式電路の漏電検出装置及び漏電検出方法
CN107219404B (zh) 一种频率调节的方法及装置
CN201364508Y (zh) 零电压触发电子调温装置
JP2007292622A (ja) 絶縁監視装置
CN109782055B (zh) 一种中性点不接地***电容电流测量方法及装置
JP5973192B2 (ja) 推定電圧データ演算装置
CN102914703B (zh) 基于瞬时点的相序快速测量方法
WO2021082036A1 (zh) 一种电力***频率测量方法、母线电压校正方法及装置
CN102929318B (zh) 微波炉的料理电压校准方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant