CN107983385B - 一种镍基磁性复合物材料及其合成方法和应用 - Google Patents

一种镍基磁性复合物材料及其合成方法和应用 Download PDF

Info

Publication number
CN107983385B
CN107983385B CN201711214764.0A CN201711214764A CN107983385B CN 107983385 B CN107983385 B CN 107983385B CN 201711214764 A CN201711214764 A CN 201711214764A CN 107983385 B CN107983385 B CN 107983385B
Authority
CN
China
Prior art keywords
nickel
composite material
nickel complex
based magnetic
dicarboxamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711214764.0A
Other languages
English (en)
Other versions
CN107983385A (zh
Inventor
刘国成
李岩
张艳萍
林宏艳
刘湘湘
梁爽
魏孟阳
赵刚
应俊
刘滨秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinzhou Tiantai Metal Powder Processing Co ltd
Original Assignee
Bohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bohai University filed Critical Bohai University
Priority to CN201711214764.0A priority Critical patent/CN107983385B/zh
Publication of CN107983385A publication Critical patent/CN107983385A/zh
Application granted granted Critical
Publication of CN107983385B publication Critical patent/CN107983385B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

一种镍基磁性复合物材料及其合成方法和应用,将NiCl2·6H2O、N,N'‑双(4‑亚甲基吡啶)苯‑1,4‑二甲酰胺和均苯三甲酸,加入去离子水,在高压反应釜中水热反应,生成有机配体镍配合物[Ni3(4‑bmbpd)3(BTC)2(H2O)4]·4H2O;将镍配合物,采用玛瑙研钵研磨粉碎后,分散乙醇中,用球磨机研磨,离心分离出微晶态镍配合物材料,放置于氮气保护下的管式炉中,煅烧,得到镍基磁性复合物材料。该镍基磁性复合物材料作为光催化降解有机染料污染物材料的应用。优点是:催化速度快,效率高,且能方便回收再利用,对亚甲蓝有机污染物的光催化降解率可达96%,可以作为亚甲蓝有机污染物光催化降解材料。

Description

一种镍基磁性复合物材料及其合成方法和应用
技术领域
本发明属于催化材料合成领域,特别涉及一种镍基磁性N-C复合材料的合成及其应用。
背景技术
印染废水是加工棉、麻、化学纤维及其混纺产品为主的印染厂排出的生产废水。印染废水水量较大,每印染加工1吨纺织品耗水100~200吨,其中80~90%成为废水。废水中流失的染料占染料产量的15%,造成了巨大的环境压力。在各种染料中,亚甲基蓝可用于麻、蚕丝织物、纸张的染色和竹、木的着色;还可用于制造墨水和色淀及生物、细菌组织的染色等方面。由于该染料在的水溶性较好,因此在生产和使用过程中流失率高,易进入水体,对环境以及人体的皮肤、眼睛等均具有较大的危害作用。因此,开发新的功能性降解材料来降低或消除亚甲蓝染料污染物的危害具有重要的实际意义。
通过一些无机氧化物或者金属-有机配合物催化剂的催化作用,亚甲基蓝可在紫外光条件下进行一定程度的降解。但是,整个降解过程不仅耗时长,降解率低,而且上述催化剂在回收再利用时,都需要从催化体系中分离出来。由于为了提高上述催化剂的催化效果,通常都将上述催化剂做成细小的粉体材料,因此,分离再利用的难度较大。给实际应用造成了一定的障碍。
因此,制备一种催化速度快,效率高,且能方便回收再利用的染料光催化剂具有十分重要的意义。
发明内容
本发明要解决的技术问题是提供一种镍基磁性复合物材料及其合成方法和应用,有效缩短亚甲基蓝的光催化降解时间,通过磁性吸附实现快速有效回收,从而再利用,节约能源消耗,降低环境污染。
本发明的技术解决方案是:
一种镍基磁性复合物材料,表达式如下:
Ni@ONC
其中,ONC为少量氮、氧参杂的C材料;
其具体合成步骤如下:
(1)基于有机配体镍配合物的合成
将NiCl2·6H2O、N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺和均苯三甲酸,加入去离子水;在室温下超声5min~12min形成悬浮混合物,所述N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺与均苯三甲酸的摩尔比为1:1~1:2,所述N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺与NiCl2·6H2O的摩尔比为1:1~1:3,用浓度为0.1mol/L的NaOH溶液调pH为4.2~7.2,倒入高压反应釜中以10℃/h升温速率升温至105℃~145℃,水热条件下保温48h~120h,以2.5℃/h的降温速率降温到室温得到绿色块状晶体,用去离子水和乙醇交替清洗3次~5次,室温下自然晾干,得到有机配体镍配合物[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O;
其中,4-bmbpd为N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺,BTC为均苯三甲酸;
(2)镍基磁性复合物材料的合成
将步骤(1)合成的镍配合物[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O称取4克,采用玛瑙研钵研磨2小时~4小时,然后分散到2毫升~4毫升的乙醇中,用球磨机研磨20分钟~40分钟,离心分离出微晶态镍配合物材料,在70℃下干燥24小时;将2克镍配合物放置于氮气保护下的管式炉中,以5℃/h升温速率升温至800℃,恒温4小时~6小时,以2.5~10℃/h的降温速率降温到室温得到镍基磁性复合物材料。
进一步的,所述N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺与去离子水的摩尔比为1:2800~1:8300。
一种镍基磁性复合物材料的合成方法,其具体步骤如下:
(1)基于有机配体镍配合物的合成
将NiCl2·6H2O、N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺和均苯三甲酸,加入去离子水;在室温下超声5min~12min形成悬浮混合物,所述N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺与均苯三甲酸的摩尔比为1:1~1:2,所述N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺与NiCl2·6H2O的摩尔比为1:1~1:3,用浓度为0.1mol/L的NaOH溶液调pH为4.2~7.2,倒入高压反应釜中以10℃/h升温速率升温至105℃~145℃,水热条件下保温48h~120h,以2.5℃/h的降温速率降温到室温得到绿色块状晶体,用去离子水和乙醇交替清洗3次~5次,室温下自然晾干,得到有机配体镍配合物[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O;
其中,4-bmbpd为N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺,BTC为均苯三甲酸;
(2)镍基磁性复合物材料的合成
将步骤(1)合成的镍配合物[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O称取4克,采用玛瑙研钵研磨2小时~4小时,然后分散到2毫升~4毫升的乙醇中,用球磨机研磨20分钟~40分钟,离心分离出微晶态镍配合物材料,在70℃下干燥24小时;将2克微晶态镍配合物材料放置于氮气保护下的管式炉中,以5℃/h升温速率升温至800℃,恒温4小时~6小时,以2.5~10℃/h的降温速率降温到室温得到镍基磁性复合物材料。
进一步的,所述N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺与去离子水的摩尔比为1:2800~1:8300。
一种镍基磁性复合物材料作为光催化降解有机染料污染物材料的应用。
一种镍基磁性复合物材料作为光催化降解有机染料污染物材料的应用,其具体步骤如下:
将Ni@ONC复合材料加入含有水污染物的水溶液中,在经过40min-60min紫外光光照射后,利用磁铁,将Ni@ONC复合材料催化剂吸附回收,以循环使用。
本发明的有益效果是:
催化速度快,效率高,且能方便回收再利用,N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺有机胺配体中间的亚甲基基团,不仅增加了配体的配位灵活性,而且对构筑高维开放骨架起到空间拓展作用;均苯三甲三根为高维配位骨架的构筑提供了多方向性空间支点;上述两种配体良好的空间拓展能力有效阻碍了在高温烧结过程中镍的聚合,为镍基团簇的形成提供了保障,同时为多孔C材料的形成提供了空间;N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺配体中的亚氨基的引入,为镍基磁性复合物材料提供了N源,为提高镍基磁性复合物材料的快速光催化效果提供了可能;镍金属源的选择为复合物材料提供了磁性基础,以便于在光催化降解有机染料污染物后的有效回收及再利用。在40分钟下对亚甲蓝有机污染物的光催化降解率可达96%,可以作为亚甲蓝有机污染物的快速且可方便再利用的光催化降解材料。
附图说明
图1是本发明的[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O的XRD衍射图;
图2是本发明的[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O的热分析图;
图3是本发明的[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O的红外光谱图;
图4是本发明的[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O的配位环境图;
图5是本发明的[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O的三维结构图;
图6是本发明的[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O的二重互穿拓扑结构图;
图7是本发明的Ni@ONC的XRD衍射图;
图8是本发明的Ni@ONC的SEM表面形貌图;
图9是在紫外光照射下,无催化剂条件下,亚甲蓝水溶液在180min内光催化降解紫外吸收图;
图10是在紫外光照射下,在使用Ni@ONC催化剂条件下,亚甲蓝水溶液在40min内光催化降解紫外吸收图;
图11是亚甲蓝的降解率随时间变化图;
图12是循环使用Ni@ONC对亚甲蓝的光催化降解率柱状图;
图13是Ni@ONC复合材料催化剂重复利用示意图。
具体实施方式
实施例1
(1)合成[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O,其中,4-bmbpd为N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺,结构式为:
Figure GDA0001564900390000041
BTC为均苯三甲酸根
将0.1mmol NiCl2·6H2O、0.10mmol N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺、0.1mmol均苯三甲酸和5mL H2O依次加入到25mL烧杯中,在室温下超声5min,得到悬浮混合物,用0.1mol/L的NaOH溶液调解悬浮混合物的pH至4.2后,转移到25mL的高压反应釜中,以10℃/h的加热速率升温至105℃,水热条件下保温48h,以2.5℃/h的降温速率将温度降至室温,得到绿色块状晶体,用去离子水和乙醇交替清洗3次,室温下自然晾干,得[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O,产率为35%,其XRD衍射图谱如图1所示,其配位环境图如图4所示,其三维结构图如图5,其二重互穿拓扑结构图如图6所示;
(2)合成Ni@ONC磁性复合材料
将步骤(1)合成的镍配合物[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O称取4克,采用玛瑙研钵研磨2个小时,然后分散到2毫升的乙醇中,用球磨机研磨20分钟,离心分离出微晶态镍配合物材料,在70℃下干燥24小时。将2克微晶态镍配合物材料放置于氮气保护下的管式炉中,以5℃/h升温速率升温至800℃,恒温4小时,以10℃/h的降温速率降温到室温得到黑色固体镍基磁性复合物材料。
实施例2
(1)合成[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O,其中,4-bmbpd为N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺,BTC为均苯三甲酸根
将0.2mmol NiCl2·6H2O、0.10mmol N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺、0.15mmol均苯三甲酸和12mL H2O依次加入到25mL烧杯中,在室温下超声8min,得到悬浮混合物,用0.1mol/L的NaOH溶液调解悬浮混合物的pH至6.4后,转移到25mL的高压反应釜中,以10℃/h的加热速率升温至125℃,水热条件下保温96h,以2.5℃/h的降温速率将温度降至室温,得到绿色块状晶体,用去离子水和乙醇交替清洗4次,室温下自然晾干,得[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O,产率为85%,其XRD衍射图谱如图1所示,其配位环境图如图4所示,其三维结构图如图5,其二重互穿拓扑结构图如图6所示;
(2)合成Ni@ONC磁性复合材料
将步骤(1)合成的镍配合物[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O称取4克,采用玛瑙研钵研磨3个小时,然后分散到3毫升的乙醇中,用球磨机研磨30分钟,离心分离出微晶态镍配合物材料,在70℃下干燥24小时。将2克微晶态镍配合物材料放置于氮气保护下的管式炉中,以5℃/h升温速率升温至800℃,恒温5小时,以2.5℃/h的降温速率降温到室温得到黑色固体镍基磁性复合物材料。
实施例3
(1)合成[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O,其中,4-bmbpd为N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺,BTC为均苯三甲酸根
将0.3mmol NiCl2·6H2O、0.10mmol N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺、0.2mmol均苯三甲酸和15mL H2O依次加入到25mL烧杯中,在室温下超声12min,得到悬浮混合物,用0.1mol/L的NaOH溶液调解悬浮混合物的pH至7.2后,转移到25mL的高压反应釜中,以10℃/h的加热速率升温至145℃,水热条件下保温120h,以2.5℃/h的降温速率将温度降至室温,得到绿色块状晶体,用去离子水和乙醇交替清洗5次,室温下自然晾干,得[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O,产率为45%,其XRD衍射图谱如图1所示,其配位环境图如图4所示,其三维结构图如图5,其二重互穿拓扑结构图如图6所示;
(3)合成Ni@ONC磁性复合材料
将步骤(1)的镍配合物[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O称取4克,采用玛瑙研钵研磨4个小时,然后分散到4毫升的乙醇中,用球磨机研磨40分钟,离心分离出微晶态镍配合物材料,在70℃下干燥24小时,取2克置于氮气保护下的管式炉中,以5℃/h升温速率升温至800℃,恒温6小时,以5℃/h的降温速率降温到室温得到黑色固体镍基磁性复合物材料。
基于本发明实施例1~实施例3的有机配体的镍配合物的表征
粉末衍射表征[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O相纯度
在Rigaku Ultima IV粉末X射线衍射仪上收集完成粉末衍射数据,操作电流为40mA,电压为40kV。采用铜靶X射线。固定扫描,接收狭缝宽为0.1mm。密度数据收集使用2θ/θ扫描模式,扫描范围5°到50°,扫描速度为5°/s,跨度为0.02°/次。数据拟合使用Cerius2程序,单晶结构粉末衍射谱模拟转化使用Mercury 1.4.1。如图1所示,基于有机配体的镍配合物的粉末X射线衍射谱图与拟合的XRD谱图基本吻合,表明配合物均为纯相。
热重表征[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O稳定性
热稳定性采用PE-Pyris Diamond S-II热分析仪完成,加热速率10℃/min,温度范围20℃~850℃。图2表明本发明合成的镍配合物的结晶水失去温度在175~210℃,配位骨架分解温度范围为355℃~410℃。在500℃以后主要发生的是NiO的还原。
[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O红外表征
如图3所示[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O中存在来自N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺和均苯三甲酸根的羧基、酰胺基、吡啶基等明显的特征吸收峰。
晶体结构测定
用显微镜选取合适大小的单晶,室温下采用Bruker SMART APEX II衍射仪(石墨单色器,Mo-Ka)收集衍射数据。扫描方式
Figure GDA0001564900390000062
衍射数据使用SADABS程序进行吸收校正。数据还原和结构解析分别使用SAINT和SHELXTL程序完成。最小二乘法确定全部非氢原子坐标,并用理论加氢法得到氢原子位置。采用最小二乘法对晶体结构进行精修。图4~图6展示出实施例1~实施例3中合成的基于有机配体的镍配合物的基本配位情况和扩展结构。其晶体学衍射点数据收集与结构精修的部分参数如表1所示:
表1
Figure GDA0001564900390000061
本发明实施例1~实施例3的镍基磁性复合物材料Ni@ONC的物相表征
如图7所示,出现在22℃附近的衍射峰说明镍基磁性复合物材料中的碳主要是石墨碳形式存在,出现在38℃以后的衍射峰说明镍基磁性复合物材料中的镍主要是镍单质的形式存在,存在有少量的氧化镍。
镍基磁性复合物材料Ni@ONC的形貌
如图8所示,由扫描电镜可观察到微米级镍复合物形貌为不规则形貌。
对实施例2合成的[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O以及的Ni@ONC复合材料的光催化降解亚甲蓝性能测试实验的具体步骤如下:
将50mg的Ni@ONC复合材料加入150mL浓度为10.0mg·L–1的亚甲蓝水溶液中作为实验组,将50mg的配合物[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O加入150mL浓度为10.0mg·L–1的亚甲蓝水溶液中作为对照组,并取同体积的染料分子水溶液作为对照组。搅拌实验组和对照组的染料分子水溶液30min得到悬浮物,边机械搅拌边采用125W高压汞灯作为紫外光光源进行照射。对于对照组亚甲蓝,每隔5min取出5mL溶液进行离心分离;得到澄清上层溶液进行UV测试。在经过180min紫外光光照射后,在无光催化剂和使用配合物催化剂情况下,上述对照组亚甲蓝染料分子几乎无法仅仅通过光照而降解,如图9所示;在存在Ni@ONC复合材料情况下,上述实验组亚甲蓝水溶液的染料分子的特征吸收发生快速显著的降低,表明该染料分子已经发生迅速分解,如图10所示。在经过40min紫外光光照射后,亚甲蓝分解率可达到96.37%。亚甲蓝分解率随时间变化图如图11所示。
利用磁铁,隔着盛装亚甲蓝水溶液的反应器,可以将Ni@ONC复合材料催化剂有效的吸附在反应器底部,倒掉催化亚甲蓝后的残余液,加入新的亚甲蓝水溶液,移开磁铁后,Ni@ONC复合材料会再次在搅拌作用下分散到亚甲蓝水溶液中,进行再次催化降解,催化降解率达96.20%,经过10次循环,亚甲蓝的分解率可达到96.14%,说明Ni@ONC复合材料是一种快速、可方便分离再利用且长期稳定有效的有机染料分解光催化剂。循环使用时,亚甲蓝的分解率柱状图如图12所示。Ni@ONC复合材料催化剂重复利用示意图如图13所示。
以上仅为本发明的具体实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种镍基磁性复合物材料,其特征是:
表达式如下:Ni@ONC
其中,ONC为氮、氧掺杂的C材料;
其具体合成步骤如下:
(1)有机配体镍配合物的合成
将NiCl2·6H2O、N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺和均苯三甲酸,加入去离子水;在室温下超声5min~12min形成悬浮混合物,所述N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺与均苯三甲酸的摩尔比为1:1~1:2,所述N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺与NiCl2·6H2O的摩尔比为1:1~1:3,用浓度为0.1mol/L的NaOH溶液调pH为4.2~7.2,倒入高压反应釜中以10℃/h升温速率升温至105℃~145℃,水热条件下保温48h~120h,以2.5℃/h的降温速率降温到室温得到绿色块状晶体,用去离子水和乙醇交替清洗3次~5次,室温下自然晾干,得到有机配体镍配合物[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O;
其中,4-bmbpd为N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺,BTC为均苯三甲酸;
(2)镍基磁性复合物材料的合成
将步骤(1)合成的镍配合物[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O称取4克,采用玛瑙研钵研磨2小时~4小时,然后分散到2毫升~4毫升的乙醇中,用球磨机研磨20分钟~40分钟,离心分离出微晶态镍配合物材料,在70℃下干燥24小时;将2克经干燥的所述微晶态镍配合物材料放置于氮气保护下的管式炉中,以5℃/h升温速率升温至800℃,恒温4小时~6小时,以2.5~10℃/h的降温速率降温到室温得到镍基磁性复合物材料。
2.根据权利要求1所述的镍基磁性复合物材料,其特征是:所述N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺与去离子水的摩尔比为1:2800~1:8300。
3.一种镍基磁性复合物材料的合成方法,其特征是:
具体步骤如下:
(1)有机配体镍配合物的合成
将NiCl2·6H2O、N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺和均苯三甲酸,加入去离子水;在室温下超声5min~12min形成悬浮混合物,所述N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺与均苯三甲酸的摩尔比为1:1~1:2,所述N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺与NiCl2·6H2O的摩尔比为1:1~1:3,用浓度为0.1mol/L的NaOH溶液调pH为4.2~7.2,倒入高压反应釜中以10℃/h升温速率升温至105℃~145℃,水热条件下保温48h~120h,以2.5℃/h的降温速率降温到室温得到绿色块状晶体,用去离子水和乙醇交替清洗3次~5次,室温下自然晾干,得到有机配体镍配合物[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O;
其中,4-bmbpd为N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺,BTC为均苯三甲酸;
(2)镍基磁性复合物材料的合成
将步骤(1)合成的镍配合物[Ni3(4-bmbpd)3(BTC)2(H2O)4]·4H2O称取4克,采用玛瑙研钵研磨2小时~4小时,然后分散到2毫升~4毫升的乙醇中,用球磨机研磨20分钟~40分钟,离心分离出微晶态镍配合物材料,在70℃下干燥24小时;将2克镍配合物放置于氮气保护下的管式炉中,以5℃/h升温速率升温至800℃,恒温4小时~6小时,以2.5~10℃/h的降温速率降温到室温得到镍基磁性复合物材料。
4.根据权利要求3所述的镍基磁性复合物材料的合成方法,其特征是:所述N,N'-双(4-亚甲基吡啶)苯-1,4-二甲酰胺与去离子水的摩尔比为1:2800~1:8300。
5.一种如权利要求1所述的镍基磁性复合物材料作为光催化降解有机染料污染物材料的应用。
6.根据权利要求5所述的镍基磁性复合物材料作为光催化降解有机染料污染物材料的应用,其具体步骤如下:
将Ni@ONC复合材料加入含有水污染物的水溶液中,在经过40min-60min紫外光照射后,利用磁铁,将Ni@ONC复合材料吸附回收,以循环使用。
CN201711214764.0A 2017-11-28 2017-11-28 一种镍基磁性复合物材料及其合成方法和应用 Active CN107983385B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711214764.0A CN107983385B (zh) 2017-11-28 2017-11-28 一种镍基磁性复合物材料及其合成方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711214764.0A CN107983385B (zh) 2017-11-28 2017-11-28 一种镍基磁性复合物材料及其合成方法和应用

Publications (2)

Publication Number Publication Date
CN107983385A CN107983385A (zh) 2018-05-04
CN107983385B true CN107983385B (zh) 2020-04-17

Family

ID=62033635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711214764.0A Active CN107983385B (zh) 2017-11-28 2017-11-28 一种镍基磁性复合物材料及其合成方法和应用

Country Status (1)

Country Link
CN (1) CN107983385B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108948368B (zh) * 2018-07-24 2021-05-07 中国人民解放军国防科技大学 一种快速制备镍基金属有机框架材料的方法
CN111545222B (zh) * 2020-05-14 2022-09-27 渤海大学 一种Co9S8、S、N共掺杂核壳结构碳化纳米复合材料及其合成方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103709182B (zh) * 2013-12-06 2016-08-17 渤海大学 基于半刚性双吡啶双酰胺配体和5-甲基间苯二甲酸的过渡金属配合物及其合成方法和应用
CN104370952B (zh) * 2014-10-22 2016-08-17 渤海大学 一种基于有机配体的多功能锌配合物及其应用
CN106391122B (zh) * 2016-08-16 2019-01-04 渤海大学 一种聚吡咯功能化的钴配合物复合材料的合成方法及其应用

Also Published As

Publication number Publication date
CN107983385A (zh) 2018-05-04

Similar Documents

Publication Publication Date Title
Li et al. Efficient reduction of Cr (VI) by a BMO/Bi2S3 heterojunction via synergistic adsorption and photocatalysis under visible light
Liu et al. Boron doped C3N4 nanodots/nonmetal element (S, P, F, Br) doped C3N4 nanosheets heterojunction with synergistic effect to boost the photocatalytic hydrogen production performance
CN106824213B (zh) 一种钴氧化物掺杂的碱式碳酸铋/氯氧化铋光催化剂及其制备方法
CN102921416A (zh) 一种纳米复合光催化材料及其制备方法
Zhou et al. Switching charge transfer of g-C3N4/BiVO4 heterojunction from type II to Z-scheme via interfacial vacancy engineering for improved photocatalysis
CN105600828B (zh) 一种多孔纳米CuFe2O4的制备方法
CN110918126A (zh) 一种花状二硫化钼结合UiO-66光催化剂的制备方法
CN105502286B (zh) 一种多孔纳米NiFe2O4的制备方法
CN105964250B (zh) 一种具有可见光响应的Ag10Si4O13光催化剂及其制备方法和应用
Chen et al. Bi12SiO20/g-C3N4 heterojunctions: Synthesis, characterization, photocatalytic activity for organic pollutant degradation, and mechanism
CN109550500A (zh) 一种可磁性分离的石墨烯基锌铁混合双金属氧化物光催化剂的制备方法及其应用
Du et al. Black lead molybdate nanoparticles: facile synthesis and photocatalytic properties responding to visible light
Shan et al. Preparation and application of bimetallic mixed ligand MOF photocatalytic materials
Liang et al. Synthesis and structure of a bismuth-cobalt bimetal coordination polymer for green efficient photocatalytic degradation of organic wastes under visible light
CN106391122A (zh) 一种聚吡咯功能化的钴配合物复合材料的合成方法及其应用
CN102020306A (zh) 纳米二氧化铈的微波快速合成方法
Yu et al. Ultrasound-assisted construction of a Z-scheme heterojunction with g-C3N4 nanosheets and flower-like Bi2WO6 microspheres and the photocatalytic activity in the coupling reaction between alcohols and amines under visible light irradiation
CN107983385B (zh) 一种镍基磁性复合物材料及其合成方法和应用
CN107433203A (zh) 一种Z‑Scheme复合体系及制备方法和应用
CN103055903A (zh) 能带可调型BiOI-AgI球形固溶体可见光光催化材料的制备方法
CN108355669A (zh) 一种磁性纳米洋葱碳负载Bi2WO6的光催化剂及其制备方法和应用
CN105833887B (zh) 一种BiOCl/β‑FeOOH复合纳米材料及其制备方法
CN107983373A (zh) 一种微波原位快速制备炭负载BiOBr可见光催化剂的方法
CN110227503A (zh) 一种常温一步制备卤化氧铋纳米片的方法
Wu et al. MoS2 and g-C3N4 nanosheet co-modified Bi2WO6 ternary heterostructure catalysts coupling with H2O2 for improved visible photocatalytic activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221216

Address after: 121000 Dawa village, daughter River Township, Taihe District, Jinzhou City, Liaoning Province

Patentee after: Jinzhou Tiantai Metal Powder Processing Co.,Ltd.

Address before: No. 19 Science and Technology Road, Songshan New District, Jinzhou City, Liaoning Province, 121000

Patentee before: BOHAI University