CN107947589A - 一种加辅助电路的全桥llc谐振变换器 - Google Patents

一种加辅助电路的全桥llc谐振变换器 Download PDF

Info

Publication number
CN107947589A
CN107947589A CN201711287200.XA CN201711287200A CN107947589A CN 107947589 A CN107947589 A CN 107947589A CN 201711287200 A CN201711287200 A CN 201711287200A CN 107947589 A CN107947589 A CN 107947589A
Authority
CN
China
Prior art keywords
oxide
semiconductor
metal
resonant
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711287200.XA
Other languages
English (en)
Inventor
史永胜
王雪丽
李娜
宁青菊
李珏
魏浩
史禄培
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201711287200.XA priority Critical patent/CN107947589A/zh
Publication of CN107947589A publication Critical patent/CN107947589A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • H02M7/4818Resonant converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种加辅助电路的全桥LLC谐振变换器,包括开关电路、谐振网络、变压器TR、整流滤波网络和辅助电路。谐振网络包括串联谐振电容Cr1、串联谐振电感Lr、并联谐振电感Lr。整流滤波网络即为同步整流电路,具有效率高、稳定性好的优点;辅助电路包括开关管、并联体二极管、寄生电容和辅助电容Cr2。本发明能够在不增加控制电路复杂性的基础上实现全桥(FB)臂的零电压导通,通过辅助电路减小电路的环流损耗,进一步提高电路的效率。并且,在对电能要求很高并不允许出现输入电压震荡的应用环境里,可以在输入电压突降或断电的有效时间内(hold‑up time)保证输出正常工作,从而不影响整体的***的工作状态。

Description

一种加辅助电路的全桥LLC谐振变换器
技术领域
本发明属于开关操作电源领域,涉及一种全桥LLC变换器,尤其是一种加辅助电路的全桥LLC谐振变换器。
背景技术
能源转换效率一直是人们关注的热点,其中功率转换器件作为电力行业效率转换的一个代表,被广泛应用在如开关电源,分布式电源,不间断电源等各个方面,传统的功率转换器件大多工作于硬开关状态具有开关损耗大,电压应力大,功率密度低,EMI大,转换效率低等诸多问题,而LLC谐振变换器则能很好的削弱或者解决这些问题。
LLC谐振变换器工作于软开关状态,减小开关损耗,提高变换器效率,为变换器高频化提供了可能性,进一步缩小变换器的体积和重量,提高变换器的功率密度和动态性能,同时改善电磁兼容。
另外,除了电能质量和效率一直是关注焦点外,现代社会对电源的供电稳定性,尤其是在针对精密仪器和大数据中心等,这种必须保证稳定工作的的场所,更是倍加关注。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供一种在电路输入电压短时间下降或断掉的情况下能继续高效、稳定工作的加辅助电路的全桥LLC谐振变换器。
为达到上述目的,本发明采用以下技术方案予以实现:
一种加辅助电路的全桥LLC谐振变换器,其特征在于,包括直流供电电源V1、全桥LLC变换电路和辅助电路;全桥变换电路包括开关电路、谐振网络、变压器TR以及输出整流滤波电路;开关电路的输入端接直流共供电电源V1,输出端通过谐振网络连接到变压器TR的原边绕组上,输出整流滤波电路的输入端接变压器TR的副边绕组,输出端为全桥LLC谐振变换器的输出端;辅助电路通过谐振网络与变压器TR的原边绕组相连。
本发明进一步的改进在于:
开关电路包括四个开关MOS管,每个开关MOS管均并联有体二极管和寄生电容;其中,开关MOS管Q1的漏极和开关MOS管Q2的源极与直流电源相连,开关MOS管Q1的源极和开关MOS管Q2的漏极相连,开关MOS管Q2的源极接地,开关MOS管Q3的漏极和开关MOS管Q4的源极与直流电源相连。
开关MOS管Q1的源极接直流供电电源V1的正极,开关MOS管Q2的漏极接直流供电电源V1的负极。
谐振网络包括主谐振沟槽和辅助谐振网络;主谐振沟槽包括谐振电感Lr、励磁电感Lm和谐振电容Cr1;辅助谐振网络包括谐振电感Lr、谐振电容Cr1、励磁电感Lm和辅助电容Cr2;其中,谐振电感Lr的一端连接在开关MOS管Q1和开关MOS管Q2之间的节点上,另一端依次串联励磁电感Lm和谐振电容Cr1,励磁电感Lm并联在变压器TR的原边绕组两端,谐振电容Cr1的另一端连接在开关MOS管Q3和开关MOS管Q4之间的节点上。
辅助电路包括辅助开关管Qf、并联在辅助开关管Qf漏极和源极上的体二极管Df和寄生电容Cf;辅助开关管Qf的漏极串接辅助电容Cr2后,并联在谐振电容Cr1两端。
输出整流滤波电路包括四个整流MOS管,每个整流MOS管均并联有体二极管和寄生电容;其中,变压器TR副边绕组与整流MOS管SR1的漏极和整流MOS管SR2的源极相连,整流MOS管SR1的源极和整流MOS管SR2的漏极相连,整流MOS管SR3的漏极和整流MOS管SR4的源极与变压器TR副边绕组相连,滤波电容Co和输出负载R并联在整流MOS管SR3的源极和整流MOS管SR4的漏极之间。
与现有技术相比,本发明具有以下有益效果:
本发明添加辅助电路,以利于实现转化效率高,电能质量稳定的应用,在变换器输入掉电或突降时,稳定输出电压,继续保持高效率的电能变换,保护精密用电设备。本发明增加辅助电路,在正常工作期间辅助电路对主电路没有任何影响,只有在hold-up时间内主电路原边电压器的电压突降或波动,无法满足输出需要时,辅助电路此时通过增加谐振电容Cr1的值提高增益向副边提供能量,保持输出端满足需求。本发明全桥LLC的结构,可以成分保证所有开关MOS管的零电压转换软开关。本发明辅助电路为一个电容和一个开关管组成,只需要简单的控制电路,该控制电路与主控制电路相互独立,不增加主控制电路的复杂度。
附图说明
图1是全桥LLC谐振变换器电路拓扑结构;
图2a是电路工作的波形图;b为hold-up时的LLC谐振电流和励磁电流波形;
图3是正常输出和hold-up输出波形。
具体实施方式
下面结合附图对本发明做进一步详细描述:
参见图1,本发明直流供电电源V1、全桥LLC变换电路和一个辅助电路;全桥变换电路的输入端并接到直流供电电源V1的输出端。全桥变换电路包括开关电路、谐振网络、变压器TR、输出整流滤波电路。整流电路和开关电路均为全桥结构。开关电路的直流输入端为谐振回路的直流输入端;谐振电路的输入端接开关电路的输出端,输出端接变压器TR原边绕组。变压器TR与输出整流电路通过变压器TR进行耦合。输出整流滤波电路为全波整流。
谐振网络分为主谐振沟槽和辅助谐振网络:主谐振沟槽包括谐振电感Lr,励磁电感Lm和谐振电容Cr1;辅助谐振网络包括谐振电感Lr,谐振电容Cr1,励磁电感Lm和辅助电容Cr2;谐振网络包括依次串联的谐振电容Cr1、谐振电感Lr和励磁电感Lm;谐振电容Cr1、谐振电感Lr与励磁电感Lm串联后的两端分别接开关电路的两个输出端,谐振电感Lr与变压器TR原边绕组并联。串联谐振电感Lr是变压器TR原边的漏感,并联谐振电感Lr是变压器TR的励磁电感Lm。
本发明在LLC回路上添加了辅助电路,辅助电路的电容与谐振电容Cr1通过辅助开关管Qf进行并联,然后和谐振电感Lr、励磁电感Lm一起形成新的谐振网络,保护电路在hold-up时间内能保持稳定的输出,而不影响用电设配的正常工作。
辅助电路包括辅助开关管Qf、体二极管Df、寄生电容Cf和辅助电容Cr2,辅助电容Cr2和辅助开关管Qf进行串联,然后再与谐振电容Cr1进行并联。此辅助电路与全桥变换电路中的谐振电感Lr、谐振电容Cr1、变压器TR共同组成一个辅助谐振网络,在参数设计上通过辅助电路可减小电路的环流损耗,进一步提高电路的效率。正常工作时,此辅助电路对主电路没有任何影响,一旦变换器输入电压突降或断掉,此电路通过增加谐振电容Cr1的值,提高电压增益,并向副边传递能量,使得变换器整体正常输出。
开关电路包括开关MOS管Q1、开关MOS管Q1的体二极管D1、寄生电容C1、开关MOS管Q2、开关MOS管Q2的体二极管D2、寄生电容C2、开关MOS管Q3、开关MOS管Q3的体二极管D3、寄生电容C3、开关MOS管Q4、开关MOS管Q4的体二极管D4和寄生电容C4;具体的,开关MOS管Q1的漏极和开关MOS管Q2的源极与直流电源相连,开关MOS管Q1的源极和开关MOS管Q2的漏极相连,开关MOS管Q2的源极接地,开关MOS管Q3的漏极和开关MOS管Q4的源极与直流电源相连;
输出整流滤波电路包括整流MOS管SR1、整流MOS管SR1的体二极管D5、寄生电容C5、整流MOS管SR2、整流MOS管SR2的体二极管D6、寄生电容C6、整流MOS管SR3、整流MOS管SR3的体二极管D7、寄生电容C7、整流MOS管SR4、整流MOS管SR4的体二极管D8、寄生电容C8、滤波电容Co和输出电阻R;具体的,变压器TR副边绕组与整流MOS管SR1的漏极和整流MOS管SR2的源极相连,整流MOS管SR1的源极和整流MOS管SR2的漏极相连,整流MOS管SR3的漏极和整流MOS管SR4的源极与变压器TR副边绕组相连,并联滤波电容Co、输出负载R;
图2a为本发明在正常工作时的电路波形图;图2b是hold-up时间的电路波形图。
本发明增加辅助电路,在正常工作期间辅助电路对主电路没有任何影响,只有在hold-up时间内主电路原边电压器的电压突降或波动,无法满足输出需要时,辅助电路此时通过增加谐振电容Cr1的值提高增益向副边提供能量,保持输出端满足需求。本发明全桥LLC的结构,可以成分保证所有开关MOS管的零电压转换软开关。本发明的一个完整的周期由不同的子区间和对应不同的模态组成,下面对正常境况下的工作过程进行分析:
Mode1[t0-t1]阶段,在t0时刻,开关MOS管Q2、开关MOS管Q3开关管为导通状态,谐振电流ip方向为正,并流过开关MOS管Q2、开关MOS管Q3开关本体。此模态下同步整流整流MOS管SR1、整流MOS管SR4保持导通,励磁电感Lm两端被变压器TR副端电压钳位,励磁电流iLm变化率为正,谐振槽由谐振电感Lr、谐振电容Cr1组成。
Mode2[t1-t2]阶段,t1时刻励磁电感Lm仍旧被变压器TR副端电压钳位,谐振槽由谐振电感Lr、谐振电容Cr1组成,电路谐振频率为fr1。在变压器TR负端电压的作用下,励磁电流iLm方向变为正方向。在t2时刻ip与励磁电流iLm相等,副端侧整流MOS管SR1、整流MOS管SR4停止导通,负载能量由稳压电容提供。输出电压的反射电压对励磁电感Lm的钳位作用消失,励磁电感Lm开始加入谐振,谐振槽由励磁电感Lm、谐振电感Lr、谐振电容Cr1组成。
Mode3[t2-t3]阶段,在此模态内,电路进入死区时间,所有逆变开关的输出电容在ip的作用下开始充电放电,结束后,谐振槽输入电压反向,但驱动电压还未升至高电平,且ip方向仍旧为正,变压器TR副端电流换向,此后谐振电流通过整流MOS管SR2、整流MOS管SR3开始导通,励磁电感Lm被变压器TR副端电压钳位,退出谐振槽,同时励磁电流iLm变化率为负,流过体二极管的电流开始由零缓慢上升。谐振电流按正弦规律减小并且小于励磁电感Lm电流。
后半个开关周期的模态和前半个开关周期模态一致,这里不再分析。
如果在正常工作过程中发生输入电压波动(掉电等),LLC谐振回路可能出现图2b所示现象,这时辅助电路可以向输出提供短时能量,来有效的维持瞬时稳定性。
本发明的控制回路包括采样电路,控制处理器(单片机、DSP、FPGA等对反馈给自己的信号进行处理),驱动电路,采用调控方式调节占空比驱动开关电路给开关管信号。
本发明有准确的完成开关管软开关,并辅助电路控制与主电路控制相互独立,能在不增加主控制回路复杂度的基础上,有效地消除瞬时输入电压不稳定的情况,保证后级用电设备的正常工作。本发明辅助电路为一个电容和一个开关管组成,只需要简单的控制电路,该控制电路与主控制电路相互独立,不增加主控制电路的复杂度。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (6)

1.一种加辅助电路的全桥LLC谐振变换器,其特征在于,包括直流供电电源V1、全桥LLC变换电路和辅助电路;全桥变换电路包括开关电路、谐振网络、变压器TR以及输出整流滤波电路;开关电路的输入端接直流共供电电源V1,输出端通过谐振网络连接到变压器TR的原边绕组上,输出整流滤波电路的输入端接变压器TR的副边绕组,输出端为全桥LLC谐振变换器的输出端;辅助电路通过谐振网络与变压器TR的原边绕组相连。
2.根据权利要求1所述的加辅助电路的全桥LLC谐振变换器,其特征在于,开关电路包括四个开关MOS管,每个开关MOS管均并联有体二极管和寄生电容;其中,开关MOS管Q1的漏极和开关MOS管Q2的源极与直流电源相连,开关MOS管Q1的源极和开关MOS管Q2的漏极相连,开关MOS管Q2的源极接地,开关MOS管Q3的漏极和开关MOS管Q4的源极与直流电源相连。
3.根据权利要求2所述的加辅助电路的全桥LLC谐振变换器,其特征在于,开关MOS管Q1的源极接直流供电电源V1的正极,开关MOS管Q2的漏极接直流供电电源V1的负极。
4.根据权利要求2所述的加辅助电路的全桥LLC谐振变换器,其特征在于,谐振网络包括主谐振沟槽和辅助谐振网络;主谐振沟槽包括谐振电感Lr、励磁电感Lm和谐振电容Cr1;辅助谐振网络包括谐振电感Lr、谐振电容Cr1、励磁电感Lm和辅助电容Cr2;其中,谐振电感Lr的一端连接在开关MOS管Q1和开关MOS管Q2之间的节点上,另一端依次串联励磁电感Lm和谐振电容Cr1,励磁电感Lm并联在变压器TR的原边绕组两端,谐振电容Cr1的另一端连接在开关MOS管Q3和开关MOS管Q4之间的节点上。
5.根据权利要求4所述的加辅助电路的全桥LLC谐振变换器,其特征在于,辅助电路包括辅助开关管Qf、并联在辅助开关管Qf漏极和源极上的体二极管Df和寄生电容Cf;辅助开关管Qf的漏极串接辅助电容Cr2后,并联在谐振电容Cr1两端。
6.根据权利要求1所述的加辅助电路的全桥LLC谐振变换器,其特征在于,输出整流滤波电路包括四个整流MOS管,每个整流MOS管均并联有体二极管和寄生电容;其中,变压器TR副边绕组与整流MOS管SR1的漏极和整流MOS管SR2的源极相连,整流MOS管SR1的源极和整流MOS管SR2的漏极相连,整流MOS管SR3的漏极和整流MOS管SR4的源极与变压器TR副边绕组相连,滤波电容Co和输出负载R并联在整流MOS管SR3的源极和整流MOS管SR4的漏极之间。
CN201711287200.XA 2017-12-07 2017-12-07 一种加辅助电路的全桥llc谐振变换器 Pending CN107947589A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711287200.XA CN107947589A (zh) 2017-12-07 2017-12-07 一种加辅助电路的全桥llc谐振变换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711287200.XA CN107947589A (zh) 2017-12-07 2017-12-07 一种加辅助电路的全桥llc谐振变换器

Publications (1)

Publication Number Publication Date
CN107947589A true CN107947589A (zh) 2018-04-20

Family

ID=61946162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711287200.XA Pending CN107947589A (zh) 2017-12-07 2017-12-07 一种加辅助电路的全桥llc谐振变换器

Country Status (1)

Country Link
CN (1) CN107947589A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631599A (zh) * 2018-05-18 2018-10-09 邵子腾 一种讯息仪表控制***
CN109302078A (zh) * 2018-11-23 2019-02-01 三峡大学 基于同步整流模式的dc-dc开关电源
CN109698627A (zh) * 2018-12-24 2019-04-30 东北大学 一种基于开关电容器的全桥dc/dc变换器及其调制策略
CN110224605A (zh) * 2019-05-07 2019-09-10 国电南瑞南京控制***有限公司 一种全桥变换电路
CN111817569A (zh) * 2020-06-30 2020-10-23 天津大学 一种谐振腔自适应调节的隔离型软开关llc-sc直流变换器
CN112688569A (zh) * 2020-12-21 2021-04-20 华南理工大学 Po模式增强型cllc谐振双向dc/dc变换器拓扑
CN113746342A (zh) * 2021-08-27 2021-12-03 西安交通大学 一种过流自动保护的llc全桥变换器主电路及控制方法
CN114244132A (zh) * 2021-12-11 2022-03-25 深圳市普德新星电源技术有限公司 一种提高输出保持时间的谐振半桥电路及开关电源

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106026674A (zh) * 2016-07-05 2016-10-12 陕西科技大学 一种加辅助lc谐振电路的全桥和半桥混合变换器
CN106100344A (zh) * 2016-07-05 2016-11-09 陕西科技大学 一种具有升高电压增益的llc谐振变换器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106026674A (zh) * 2016-07-05 2016-10-12 陕西科技大学 一种加辅助lc谐振电路的全桥和半桥混合变换器
CN106100344A (zh) * 2016-07-05 2016-11-09 陕西科技大学 一种具有升高电压增益的llc谐振变换器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.B.LEE等: "A High Efficiency Half-Bridge LLC Converter with Simple Hold-Up Compensation Circuit", 《9 TH INTERNATIONAL CONFERENCE ON POWER ELECTRONICS-ECCE ASIA,IEEE》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631599A (zh) * 2018-05-18 2018-10-09 邵子腾 一种讯息仪表控制***
CN109302078A (zh) * 2018-11-23 2019-02-01 三峡大学 基于同步整流模式的dc-dc开关电源
CN109302078B (zh) * 2018-11-23 2024-05-28 三峡大学 基于同步整流模式的dc-dc开关电源
CN109698627A (zh) * 2018-12-24 2019-04-30 东北大学 一种基于开关电容器的全桥dc/dc变换器及其调制策略
CN110224605A (zh) * 2019-05-07 2019-09-10 国电南瑞南京控制***有限公司 一种全桥变换电路
CN111817569A (zh) * 2020-06-30 2020-10-23 天津大学 一种谐振腔自适应调节的隔离型软开关llc-sc直流变换器
CN112688569A (zh) * 2020-12-21 2021-04-20 华南理工大学 Po模式增强型cllc谐振双向dc/dc变换器拓扑
CN112688569B (zh) * 2020-12-21 2021-11-23 华南理工大学 Po模式增强型cllc谐振双向dc/dc变换器拓扑
CN113746342A (zh) * 2021-08-27 2021-12-03 西安交通大学 一种过流自动保护的llc全桥变换器主电路及控制方法
CN113746342B (zh) * 2021-08-27 2023-03-28 西安交通大学 一种过流自动保护的llc全桥变换器主电路及控制方法
CN114244132A (zh) * 2021-12-11 2022-03-25 深圳市普德新星电源技术有限公司 一种提高输出保持时间的谐振半桥电路及开关电源

Similar Documents

Publication Publication Date Title
CN107947589A (zh) 一种加辅助电路的全桥llc谐振变换器
KR101223220B1 (ko) 직렬 공진형 컨버터 회로
JP5065188B2 (ja) 直列共振型コンバータ
CN105141138B (zh) 一种倍压式软开关型推挽直流变换器
Lai et al. A single-stage AC/DC converter based on zero voltage switching LLC resonant topology
CN106685231B (zh) 一种原边钳位型软开关全桥变换器及其不对称控制方法
US20150180350A1 (en) Resonant bidirectional converter, uninterruptible power supply apparatus, and control method
CN106026674A (zh) 一种加辅助lc谐振电路的全桥和半桥混合变换器
CN202424533U (zh) 一种宽范围高压输出变换器
Lin et al. Soft-switching converter with two series half-bridge legs to reduce voltage stress of active switches
CN211127590U (zh) 一种移相全桥零电压零电流软开关dc-dc变换器
CN108235509B (zh) 一种集成降压Cuk和LLC电路的单级LED驱动电路
CN104218813A (zh) 电感电容复合利用的级联型谐振dc-dc变换电路
Lin et al. New ZVS DC--DC converter with series-connected transformers to balance the output currents
CN111656661A (zh) 恒频dc / dc功率转换器
CN110829853A (zh) 大功率强复位移相全桥零电压零电流软开关直流变换器
CN108964473A (zh) 一种高效率高压电源变换电路
CN103782499A (zh) 具有正弦波变压器电压的隔离开关模式dc/dc转换器
CN201312262Y (zh) 一种具有较高转换效率的高频开关电源
CN110061523B (zh) 一种新型拓扑结构的多功能单相并网逆变***及方法
CN205754023U (zh) 一种高效率的大功率移相全桥零电压软开关电路
Chien et al. Implementation of an interleaved resonant converter for high-voltage applications
Lin et al. A new ZVS DC/DC converter with three APWM circuits
Balakrishnan et al. Phase Shift Controlled Full Bridge DC-DC Converter with Less Circulating Loss
CN104935174B (zh) 一种含有可调电感网络的全桥dc/dc变换器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180420

RJ01 Rejection of invention patent application after publication