CN107946556B - 一种石墨烯基硅碳复合材料的制备方法 - Google Patents

一种石墨烯基硅碳复合材料的制备方法 Download PDF

Info

Publication number
CN107946556B
CN107946556B CN201711064440.3A CN201711064440A CN107946556B CN 107946556 B CN107946556 B CN 107946556B CN 201711064440 A CN201711064440 A CN 201711064440A CN 107946556 B CN107946556 B CN 107946556B
Authority
CN
China
Prior art keywords
graphene
solvent
stirring
keeping
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711064440.3A
Other languages
English (en)
Other versions
CN107946556A (zh
Inventor
沈晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia Xinyuan graphene Technology Co.,Ltd.
Original Assignee
Inner Mongolia Xinyuan Graphene Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia Xinyuan Graphene Technology Co ltd filed Critical Inner Mongolia Xinyuan Graphene Technology Co ltd
Priority to CN201711064440.3A priority Critical patent/CN107946556B/zh
Publication of CN107946556A publication Critical patent/CN107946556A/zh
Application granted granted Critical
Publication of CN107946556B publication Critical patent/CN107946556B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种石墨烯基硅碳复合材料的制备方法,首先将质量比为1‑2:1的氧化石墨烯和马来酸盐分散到水中,搅拌、喷雾干燥,使其成为粉末状,高温处理,得到球形石墨烯微球;将纳米硅、球形石墨烯微球分散在溶剂中,经过超声、搅拌,待混合均匀后除去溶剂,在惰性气体下高温处理,得到纳米硅/球形石墨烯微球复合物;再将复合物与有机碳源分散在溶剂中,经过超声、搅拌,待混合均匀后除去溶剂,在惰性气体下高温处理,得到石墨烯基硅碳复合材料。本发明有益效果是:球形石墨烯微球高度分散,马来酸盐、硅和碳分布均匀,首次放电容量可达750以上,首次库伦效率达92%以上,0.1C下充放电,500次循环后容量保持率85%以上。

Description

一种石墨烯基硅碳复合材料的制备方法
技术领域
本发明涉及石墨烯基硅碳复合材料的制备方法,属于锂离子电池负极材料制备技术领域。
背景技术
随着生产的需求和环境保护意识的提高,新能源成为各国争相发展的重点,锂离子电池以其比能量大、工作电压高、自放电率小、体积小、重量轻等优势早已占据3C领域大部分市场。
目前商业化的锂离子电池负极材料主要为石墨,但理论容量仅为372mAh/g,已逐渐不能满足市场对高能量密度的需求。
硅具有超高的理论比容量(4200mAh/g)和较低的嵌脱锂电位(<0.5V),且硅的电压平台略高于石墨,在充电时较难引起表面析锂,安全性能更好。硅作为锂离子电池负极材料时缺点也非常明显。首先,硅是半导体材料,自身的电导率较低;其次,在电化学循环过程中,锂离子的嵌入和脱出会使硅基材料体积发生300%以上的膨胀与收缩,由此产生的机械作用力会使硅基材料逐渐粉化,造成结构坍塌,最终导致电极活性物质与集流体脱离,丧失电接触,进而使得锂离子电池的循环性能大大降低。
发明内容
为了解决现有技术中石墨理论容量低、硅脱嵌锂造成结构坍塌的技术问题,本发明的目的是提供一种石墨烯基硅碳复合材料的制备方法。
本发明的技术方案是:
一种石墨烯基硅碳复合材料的制备方法,首先将质量比为1-2:1的氧化石墨烯和马来酸盐分散到水中,在70-90℃搅拌2h后得到分散液,然后在150-200℃下喷雾干燥,使其成为粉末状,220-250℃处理5h后,再在300-350℃处理5h后,450-500℃处理5h,再在750-800℃处理5h,得到球形石墨烯微球;将纳米硅、球形石墨烯微球分散在溶剂中,经过超声、搅拌,待混合均匀后除去溶剂,在惰性气体下50-100℃保持10-20min,200-300℃保持20-30min,700-800℃保持5-6h,得到纳米硅/球形石墨烯微球复合物;再将复合物与有机碳源分散在溶剂中,经过超声、搅拌,待混合均匀后除去溶剂,在惰性气体下50-100℃保持10-20min,200-300℃保持20-30min,700-800℃保持5-6h,850-900℃保持8-10h,得到石墨烯基硅碳复合材料。
优选的是:首先将质量比为1.5:1的氧化石墨烯和马来酸盐分散到水中,在80℃搅拌2h后得到分散液,然后在180℃下喷雾干燥,使其成为粉末状,240℃处理5h后,再在320℃处理5h后,480℃处理5h,再在780℃处理5h,得到球形石墨烯微球;将纳米硅、球形石墨烯微球分散在溶剂中,经过超声、搅拌,待混合均匀后除去溶剂,在惰性气体下80℃保持10-20min,260℃保持20-30min,780℃保持5-6h,得到纳米硅/球形石墨烯微球复合物;再将复合物与有机碳源分散在溶剂中,经过超声、搅拌,待混合均匀后除去溶剂,在惰性气体下80℃保持10-20min,260℃保持20-30min,780℃保持5-6h,880℃保持8-10h,得到石墨烯基硅碳复合材料。
本发明还提供一种石墨烯基硅碳复合材料,采用上述方法制备。
本发明还提供一种锂离子电池负极材料,采用上述石墨烯基硅碳复合材料。
本发明还提供一种锂离子电池,采用上述负极材料。
本发明有益效果是:球形石墨烯微球高度分散,马来酸盐、硅和碳分布均匀,首次放电容量可达750以上,首次库伦效率达92%以上,0.1C下充放电,500次循环后容量保持率85%以上。
具体实施方式
下面对本发明的技术方案进行详细说明。
实施例1
首先将质量比为1:1的氧化石墨烯和马来酸盐分散到水中,在70℃搅拌2h后得到分散液,然后在150℃下喷雾干燥,使其成为粉末状,220℃处理5h后,再在300℃处理5h后,450℃处理5h,再在750℃处理5h,得到球形石墨烯微球;将纳米硅、球形石墨烯微球分散在溶剂中,经过超声、搅拌,待混合均匀后除去溶剂,在惰性气体下50℃保持10min,200℃保持20min,800℃保持6h,得到纳米硅/球形石墨烯微球复合物;再将复合物与有机碳源分散在溶剂中,经过超声、搅拌,待混合均匀后除去溶剂,在惰性气体下100℃保持20min,300℃保持20min,800℃保持5h,850℃保持8h,得到石墨烯基硅碳复合材料。
实施例2
首先将质量比为1.5:1的氧化石墨烯和马来酸盐分散到水中,在80℃搅拌2h后得到分散液,然后在180℃下喷雾干燥,使其成为粉末状,240℃处理5h后,再在320℃处理5h后,480℃处理5h,再在780℃处理5h,得到球形石墨烯微球;将纳米硅、球形石墨烯微球分散在溶剂中,经过超声、搅拌,待混合均匀后除去溶剂,在惰性气体下80℃保持10-20min,260℃保持20-30min,780℃保持5-6h,得到纳米硅/球形石墨烯微球复合物;再将复合物与有机碳源分散在溶剂中,经过超声、搅拌,待混合均匀后除去溶剂,在惰性气体下80℃保持10-20min,260℃保持20-30min,780℃保持5-6h,880℃保持8-10h,得到石墨烯基硅碳复合材料。
实施例3
首先将质量比为2:1的氧化石墨烯和马来酸盐分散到水中,在90℃搅拌2h后得到分散液,然后在200℃下喷雾干燥,使其成为粉末状,250℃处理5h后,再在350℃处理5h后,500℃处理5h,再在800℃处理5h,得到球形石墨烯微球;将纳米硅、球形石墨烯微球分散在溶剂中,经过超声、搅拌,待混合均匀后除去溶剂,在惰性气体下50℃保持20min,200℃保持30min,800℃保持6h,得到纳米硅/球形石墨烯微球复合物;再将复合物与有机碳源分散在溶剂中,经过超声、搅拌,待混合均匀后除去溶剂,在惰性气体下100℃保持20min,200-300℃保持20min,700℃保持5h,850℃保持8h,得到石墨烯基硅碳复合材料。
取实施例1~3制备的材料作为负极材料,与粘结剂(LA132),导电剂(Super-P)和分散剂(水和乙醇,体积比位1:3)调成浆料、涂敷在铜箔上,并经真空干燥,辊压,制备成负极片;正极采用金属锂片,使用的有机电解液为1MLiPF6/EC+PC+DEC(摩尔比为1:1:1),隔膜为聚丙烯,制成CR2025型扣式电池。测试条件为常温,0.1C下充放电,充放电电压限制为0.005~1.5V。
表1半电池测试性能
Figure BDA0001455440540000031

Claims (5)

1.一种石墨烯基硅碳复合材料的制备方法,其特征在于:首先将质量比为1-2:1的氧化石墨烯和马来酸盐分散到水中,在70-90℃搅拌2h后得到分散液,然后在150-200℃下喷雾干燥,使其成为粉末状,220-250℃处理5h后,再在300-350℃处理5h后,450-500℃处理5h,再在750-800℃处理5h,得到球形石墨烯微球;将纳米硅、球形石墨烯微球分散在溶剂中,经过超声、搅拌,待混合均匀后除去溶剂,在惰性气体下50-100℃保持10-20min,200-300℃保持20-30min,700-800℃保持5-6h,得到纳米硅/球形石墨烯微球复合物;再将复合物与有机碳源分散在溶剂中,经过超声、搅拌,待混合均匀后除去溶剂,在惰性气体下50-100℃保持10-20min,200-300℃保持20-30min,700-800℃保持5-6h,850-900℃保持8-10h,得到石墨烯基硅碳复合材料。
2.如权利要求1所述一种石墨烯基硅碳复合材料的制备方法,其特征在于:首先将质量比为1.5:1的氧化石墨烯和马来酸盐分散到水中,在80℃搅拌2h后得到分散液,然后在180℃下喷雾干燥,使其成为粉末状,240℃处理5h后,再在320℃处理5h后,480℃处理5h,再在780℃处理5h,得到球形石墨烯微球;将纳米硅、球形石墨烯微球分散在溶剂中,经过超声、搅拌,待混合均匀后除去溶剂,在惰性气体下80℃保持10-20min,260℃保持20-30min,780℃保持5-6h,得到纳米硅/球形石墨烯微球复合物;再将复合物与有机碳源分散在溶剂中,经过超声、搅拌,待混合均匀后除去溶剂,在惰性气体下80℃保持10-20min,260℃保持20-30min,780℃保持5-6h,880℃保持8-10h,得到石墨烯基硅碳复合材料。
3.一种石墨烯基硅碳复合材料,其特征在于:采用如权利要求1或2所述方法制备。
4.一种锂离子电池负极材料,其特征在于:采用如权利要求3所述石墨烯基硅碳复合材料。
5.一种锂离子电池,其特征在于:采用如权利要求4所述负极材料。
CN201711064440.3A 2017-11-02 2017-11-02 一种石墨烯基硅碳复合材料的制备方法 Active CN107946556B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711064440.3A CN107946556B (zh) 2017-11-02 2017-11-02 一种石墨烯基硅碳复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711064440.3A CN107946556B (zh) 2017-11-02 2017-11-02 一种石墨烯基硅碳复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN107946556A CN107946556A (zh) 2018-04-20
CN107946556B true CN107946556B (zh) 2020-07-21

Family

ID=61934165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711064440.3A Active CN107946556B (zh) 2017-11-02 2017-11-02 一种石墨烯基硅碳复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN107946556B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306757A (zh) * 2011-08-26 2012-01-04 上海交通大学 锂离子电池硅石墨烯复合负极材料及其制备方法
CN104591177A (zh) * 2015-02-03 2015-05-06 辽宁工程技术大学 一种自支撑三维多孔石墨烯复合微球的制备方法
CN105304884A (zh) * 2015-05-18 2016-02-03 深圳市国创新能源研究院 石墨烯基硅碳复合负极材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306757A (zh) * 2011-08-26 2012-01-04 上海交通大学 锂离子电池硅石墨烯复合负极材料及其制备方法
CN104591177A (zh) * 2015-02-03 2015-05-06 辽宁工程技术大学 一种自支撑三维多孔石墨烯复合微球的制备方法
CN105304884A (zh) * 2015-05-18 2016-02-03 深圳市国创新能源研究院 石墨烯基硅碳复合负极材料及其制备方法

Also Published As

Publication number Publication date
CN107946556A (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
CN106784640B (zh) 锂离子电池用硅基复合负极材料、其制备方法及包含该材料的锂离子电池负极
CN108321369B (zh) 一种可用于锂硫电池的大孔碳/氧化锌/硫复合材料及其制备方法与应用
CN107611411B (zh) 一种三维分级多孔氮掺杂碳包硅复合材料的制备方法及应用
CN108394884A (zh) 一种壳聚糖基高比表面积氮/磷共掺杂碳纳米片的制备方法
CN103560233A (zh) 一种锂离子电池负极材料碳包覆的硅石墨及其制备方法
CN105489866B (zh) 一种锂离子电池及其负极复合材料和制备方法
CN106207177B (zh) 含人造sei层高体积比容量及循环性能的硅碳负极材料
CN106784741B (zh) 一种碳硅复合材料、其制备方法及包含该复合材料的锂离子电池
CN110416533B (zh) 一种离子电池复合材料及其制备方法和离子电池
CN110690433B (zh) 一种锂离子电池用硅基负极材料及其制备方法
KR20220104684A (ko) 리튬 이온 전지용 실리콘-탄소 음극재 및 그 제조 방법
CN112652757B (zh) 一种改性硅碳负极材料及其制备方法与应用
CN104659333A (zh) 锂离子二次电池Mg2Si/SiOx/C复合负极材料膜电极的制备方法
CN107732192B (zh) 锂离子电池负极用硅碳复合材料及其制备方法
CN115566170A (zh) 一种高能量密度快充锂离子电池负极材料的制备方法
CN104393275A (zh) 一种碳包覆钛酸锂电池材料的制备方法
CN110931727A (zh) 一种导电型聚合物包覆硅基负极材料的制备方法
CN113690420B (zh) 一种氮硫掺杂硅碳复合材料及其制备方法和应用
CN105047870A (zh) 一种掺氮碳包覆硅复合材料及其制备方法
CN108695509B (zh) 高储能效率复合型锂电池正极及其制备方法和锂电池
CN114497508A (zh) 一种功率型人造石墨复合材料及其制备方法
CN110148713B (zh) 一种碳包覆的富氮g-C3N4和负极材料及其制备方法
CN104766961B (zh) 钠离子电池的低比表面积炭/炭复合负极材料的制备方法
CN111313004A (zh) 一种锂离子电池用氧化亚硅-钛酸锂基复合负极材料及其制备方法
CN108288705B (zh) 一种锂离子电池用硅碳负极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200629

Address after: 012400 the Inner Mongolia Autonomous Region Wulanchabu city Chahar Right Banner white town building materials chemical industry park Hua Yuan company factory

Applicant after: Inner Mongolia Xinyuan graphene Technology Co.,Ltd.

Address before: 266072 Building 202, No. 127 Ningxia Road, Shinan District, Qingdao City, Shandong Province

Applicant before: Shen Chen

GR01 Patent grant
GR01 Patent grant