CN107937427A - 一种基于CRISPR/Cas9体系的同源修复载体构建方法 - Google Patents

一种基于CRISPR/Cas9体系的同源修复载体构建方法 Download PDF

Info

Publication number
CN107937427A
CN107937427A CN201710981059.7A CN201710981059A CN107937427A CN 107937427 A CN107937427 A CN 107937427A CN 201710981059 A CN201710981059 A CN 201710981059A CN 107937427 A CN107937427 A CN 107937427A
Authority
CN
China
Prior art keywords
pcr
plasmid
phde
gel electrophoresis
agarose gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710981059.7A
Other languages
English (en)
Inventor
欧阳乐军
李莉梅
徐锡荣
刘雅丽
柳镜炬
梁裕华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Petrochemical Technology
Original Assignee
Guangdong University of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Petrochemical Technology filed Critical Guangdong University of Petrochemical Technology
Priority to CN201710981059.7A priority Critical patent/CN107937427A/zh
Publication of CN107937427A publication Critical patent/CN107937427A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种基于CRISPR/Cas9体系的同源修复载体构建方法,属于基因工程技术领域;其步骤为:以质粒PCBC与野生型拟南芥基因组为模板,通过PCR分别扩增含打靶序列的目的条带AS‑gRNA与AS同源修复模板片段,电泳、切胶回收目的条带;将质粒PHDE‑mCH用Bsa1酶切;将酶切完全的PHDE‑mCh载体与ASgRNA经同源重组酶组装连接,形成重组质粒PHDE‑ASgRNA,转化和测序鉴定,再将测序正确的PHDE‑ASgRNA质粒用EcoR1酶切后与AS同源修复模板片段同源重组酶连接,经转化和测序鉴定,构建PHDE‑ASgRNA‑AS同源修复载体,本发明技术能真正实现对目标生物基因组的定点编辑功能的CRISPR/Cas9***的方法,载体构建只需通过一步PCR,简单易行,无需对酶切载体与PCR产物纯化回收,组装效率高。

Description

一种基于CRISPR/Cas9体系的同源修复载体构建方法
技术领域
本发明涉及一种基于CRISPR/Cas9体系的同源修复载体构建方法,具体涉及一种用于构建cDNA文库构建筛选的质粒载体的方法,属于基因工程技术领域。
背景技术
CRISPR/Cas9基因组定向编辑技术是近几年发展起来的对基因组进行定向精确修饰的一种技术。通过将外源的DNA导入受体细胞染色体的特定位点上,从而特异地改造基因组,研究基因的功能。该技术可以对基因组中的靶位点进行缺失、敲入、核苷酸修正等操作。2013年,科学家第一次将CRISPR/Cas9应用到人类和小鼠细胞系中对基因进行敲除,随后人们在模式植物和其他农作物中也成功获得了应用,经过改造的 CRISPR/Cas9***也迅速地被应用到拟南芥、烟草、高粱、水稻、小麦、玉米等不同植物基因组的定向编辑研究中,并且获得较高的诱导突变率和可稳定遗传的基因组编辑植株。相对于转基因技术,CRISPR/Cas9***具有操作简单、快捷、不需要巨大的资金投入、在遗传编辑之后不留下转基因的痕迹,无须引用外源基因,因而生物安全性高,不具有转基因争议。
目前为止,利用CRISPR/Cas9统实现基因组的定向编辑还只能对内源基因的定向敲除,还无法实现定点引入外源基因,对全面研究基因的功能起到一定的限制作用。因此,以现有的CRISPR/Cas9载体为基础,构建一种能实将外源基因定点交换到内源基因位置,真正实现对目标生物基因组的定点编辑功能的CRISPR/Cas9***,为植物定点转基因改良、新基因定点引入等具有重要意义。
发明内容
本发明的目的是提供一种能实将外源基因定点交换到内源基因位置,真正实现对目标生物基因组的定点编辑功能的CRISPR/Cas9***的方法,载体构建只需通过一步 PCR,简单易行,无需对酶切载体与PCR产物纯化回收,组装效率高。
为实现上述发明的目的,本发明采取的技术方案如下:
一种基于CRISPR/Cas9体系的同源修复载体构建方法,包括如下步骤:
(1)靶位点设计
sgRNA靶位点的选择使用CRISPR在线设计工具(http://crispr.dbcls.jp/),以拟南芥AS基因为靶基因,选择靠近5'端得分最高的G-N19-NGG 23bp序列,其中第一个G 是小RNA转录的起始信号位点,NGG是Cas9基因定位的PAM序列,需要***gRNA 载体的是G-N19共20bp序列,共设计两个打靶位点的Target,实现大片段敲除;同时在AS基因的打靶载体上装入AS基因的同源修复片段,实现AS基因在CAS9敲除的同时,以载体上的AS基因的同源臂做模板进行修复。
(2)引物设计
所用引物见表1。
表1本研究所用引物信息
Table 1Primersμsedinthis stμdy
注:下划线部分表示同源末端序列,加粗斜体部分为靶位点序列
Note,Μnderlinedis thehomologoμs arms ofPHDE andtheboldseqμence isthe target locμs.
(3)打靶载体PHDE-ASgRNA的构建
①PCR扩增目的片段:PCR反应总体积共100μL,平均分装至2个PCR小管;PCR 反应条件为98℃预热4min,40个循环(98℃45s,55℃10s,72℃30s),72℃保温;
②琼脂糖凝胶电泳纯化与目的片段回收:1.5%琼脂糖凝胶电泳PCR产物,在紫外透照台上切下目的条带,将目的条带装入1.5mL EP管,-4℃冷冻20min,15000rpm低温离心20min,吸取上清液于PCR小管中,测定浓度,记录OD260/OD280,-20℃保存;
③PHDE质粒的酶切和鉴定:酶切体系总体积20μL,50℃恒温过夜,然后以酶切前的PHDE质粒作对照,配制0.5%的琼脂糖凝胶进行电泳分析;
④目的片段与载体重组:取一个PCR小管,先后加入0.3μL线性化PHDE载体、 3μL重组酶以及1.2μL回收的AS基因片段,采用重组酶技术,将回收纯化后的AS基因片段与BsaI酶切线性化的载体重组连接,组装条件为50℃恒温反应1h;
⑤重组子转化与鉴定:将重组产物利用热击法转化DH5a感受态大肠杆菌,复苏培养12h,挑单菌落摇床培养3~4h,做菌液PCR鉴定,用0.5%琼脂糖凝胶电泳分析,PCR 反应条件为:94℃3min,30个循环(94℃30S,55℃30S,72℃45S),72℃2min;
⑥重组质粒的提取和鉴定:将阳性克隆过夜培养后用碱裂解法提取质粒,测定浓度,记录OD260/OD280,以该质粒为模板进行PCR分析,用1.2%浓度的琼脂糖凝胶电泳PCR 产物,0.5%浓度的琼脂糖凝胶电泳提取的重组质粒;
⑦重组质粒送样测序:将质粒PCR鉴定为阳性的质粒送至生工广州分公司测序验证,测序引物为Μ626-IDF。
(4)同源重组修复模板载体PHDE-ASgRNA-AS的构建
①PCR扩增AS基因同源臂片段:PCR反应体系与前述相同,总体积共100μL,混匀后平均分装至2个PCR小管,PCR反应条件为98℃预热4min,40个循环(98℃45s, 55℃10s,72℃30s),72℃保温;
②琼脂糖凝胶电泳纯化与目的片段回收:将1.5%琼脂糖凝胶电泳后切胶回收目的条带,测浓度,记录OD260/OD280,-20℃保存;
③PHDE-ASgRNA质粒的酶切和鉴定:酶切体系总体积20μL,37℃恒温反应15min,用0.5%琼脂糖凝胶进行电泳分析;
④目的片段与载体重组:取PCR小管,先后加入0.3μL线性化PHDE-ASgRNA载体、3μL重组酶以及1.2μL回收的同源臂片段,组装条件为50℃恒温反应1h;
⑤重组子转化与鉴定:将重组产物利用热击法转化DH5a感受态大肠杆菌,复苏培养12h,挑单菌落摇床培养3~4h,做菌液PCR鉴定,用0.5%琼脂糖凝胶电泳分析;PCR 反应条件为:94℃3min,30个循环(94℃30S,55℃30S,72℃45S),72℃2min;
⑥重组质粒的提取和鉴定:将阳性克隆过夜培养后提取质粒,测定浓度,记录OD260/OD280,以该质粒为模板进行PCR分析,用1.2%浓度的琼脂糖凝胶电泳PCR产物, 0.5%浓度的琼脂糖凝胶电泳提取的重组质粒;
⑦重组质粒送样测序:将质粒PCR鉴定为阳性的质粒送样到生工广州分公司测序,测序引物为EcoR1-F。
本发明的有益效果是:
(1)PHDE-ASgRNA-AS重组质粒是在PHDE-ASgRNA重组质粒的基础上,在特定位点装入与AS基因敲除序列同源但缺失部分碱基序列的同源臂(EcoR1位点***),作为同源重组修复的模板,达到定点引入回复突变基因的目的。
(2)采用同源重组技术,通过PCR扩增目的条带、回收,载体的酶切线性化,组装等过程将基因敲除目标片段与同源重组修复臂片段先后克隆到同一载体上,能实将外源基因定点交换到内源基因位置,真正实现对目标生物基因组的定点编辑功能的 CRISPR/Cas9***的方法,载体构建只需通过一步PCR,简单易行,无需对酶切载体与PCR产物纯化回收,组装效率高。
具体实施方式
下面通过实例对本发明做进一步详细说明,这些实例仅用来说明本发明,并不限制本发明的范围。
采用粗皮桉无菌苗下胚轴为外植体进行组培再生,具体方法如下:
1拟南芥幼苗的培植
取50-80粒种子于1.5mL离心管,加入1mL 75%的酒精缓慢晃动6min,使种子充分消毒,弃酒精,加入1mL无水乙醇,摇匀后静置5min以上,用1mL移液枪轻轻将种子从离心管吸出打在无菌滤纸上干燥。将干燥后的种子均匀撒在基本培养基中(MS 培养基+7g/L琼脂+20g/L蔗糖,pH5.8),用报纸包好培养基(防止见光)置于冰箱4℃过夜处理,使种子春化,以促进花芽形成和花器发育。整个操作过程需在超净工作台中完成。第二天将低温过夜处理的培养基(去掉报纸)置于光照培养箱中23℃培养7天,幼苗移栽至花盆,继续放置在光照培养箱中23℃培养供后续实验。
2靶位点设计
sgRNA的靶位点是符合(N)20NGG的序列。本文针对拟南芥AS1基因设计了两个靶位点。AS1序列信息如下,5’端下划线部分为靶位点1,3’端下划线序列为靶位点2。带波浪下划线为PAM的序列。
5’-GCGGGATCACTGGGTTAGGAGGCTGAACTTGTTGTTCAGAATGTAAAAACCCTCCATTCGAATTAGCCATCACAACCGTTGCAGCAGCGGCAGCAGCAGGGACAACGTTAGACCGCTCTTTGACAAGCTTCTCAGCGAAACTCTCGAGAATCCGATCGTACTTACTCTCGTCAATAGGCTCAACTCTCTTGTTACTCTCTTTCTCTTCTCTCTGTTGCTTCTCCTTAAACACTTCCCACCACTTCCCTAACCGCTTTGCCGTCCTCCCGGGAACCTCAGCAGCAATCTTCTTCCACTTGTTGCCGTGTTTCTCCTGAAGACGGATCACAAGCCTCTGCTCTTCCTCTGTCAAAGACCCTTTCTTGATCCCTGGCTTAAGATAATTCTTCCATCTCTCTAAACAAGACTTGGCGTCACGGTTCAAAGGTTTGTTCATACGCTCAGACACAAGATGCCATTCTCTCGGACCGAACTGTCTAACGTAAGCACGTAACAATGCATCTTCTTCACCACTCCAACGTTGTCTCTCTTTCATCTCCTACTCCTCCTGACATCACTTCTTCCCATCTCACCATCCTTCTTCATC-3’
3引物设计
本实验表达载体的构建采用同源重组法,因此引物设计上有所不同。sgRNA的引物设计时需额外在上下游引物5’端各自加上20bp的与载体酶切后两端同源的序列,作为重组的接头,其他引物正常设计。本文所用引物见表2。
表2本文所用的PCR引物序列
注:下划线部分表示同源末端序列,加粗斜体部分为靶位点序列。
4表达载体PHDE-ASgRNA的构建
4.1PCR扩增目的基因
PCR反应体系(PrimeSTAR Max DNAPolymerase)见表3。总体积共100μL,混匀后迷你离心机离心(使管壁上液体收集至管底)1秒,用移液枪轻轻吹打后(离心后管底浓度高)平均分装至2个PCR小管。整个操作过程需在冰上操作,迅速完成。
PCR反应条件(PrimeSTARMax DNAPolymerase)为98℃预热4min,40个循环(98℃45s,55℃10s,72℃30s),72℃保温。
表3 AS-gRNA基因PCR扩增反应体系
4.2琼脂糖凝胶电泳纯化与目的片段回收
(1)琼脂糖凝胶配制(3孔梳)称取0.42g琼脂糖溶于28mL 1×TAE缓冲液,即 1.5%琼脂糖凝胶;
(2)电泳将PCR产物全部加入一个胶孔,100bp marker为比对,电压100V,电流50mA,功率50W,时间1h,电泳液为1×TAE;
(3)凝胶成像***上拍照记录,然后在紫外透照台上切下目的条带;
(4)将目的条带装入1.5mL EP管,-4℃冷冻20min,15000rpm低温离心20min,最后吸取上清液于PCR小管中,测定浓度,记录OD260/OD280,-20℃保存。
4.3 PHDE-mCh质粒的酶切(线性化)和鉴定
酶切体系见表4,总体积20μL,50℃恒温过夜;
电泳分析:以酶切前的PHDE-mCh质粒作对照,配制0.5%的琼脂糖凝胶进行电泳。
表4 PHDE-mCh载体酶切体系
4.4目的片段与载体重组
取一个PCR小管,先后加入0.3μL线性化PHDE-mCh载体、3μL重组酶以及1.2μL 回收的AS基因片段。采用重组酶技术,将回收纯化后的AS基因片段与BsaI酶切线性化的载体重组连接。组装条件为50℃恒温反应1h。
4.5重组子转化与鉴定
(1)转化:取出1管(100μL)制备好的DH5a感受态细胞,放在冰上融化;将重组产物(约4.5μL)全部加入管中,轻轻混匀,在冰上放置30分钟;将离心管放置42℃热击90秒,勿摇动离心管,快速将离心管转移至冰浴2分钟以上;
(2)复苏:加500μL无抗生素的LB液体培养基,150rpm摇菌40-60分钟;
(3)培养:5000rpm离心1min,弃上清,剩下约100μL管底菌涂平板(加50mg/L 卡那霉素的YEP固体培养基),设置阳性对照(不加卡那霉素的YEP固体平板涂布少量菌液)和阴性对照(加50mg/L卡那霉素的YEP固体培养基,涂布100μL无菌水),倒置培养皿,于37℃培养12h,观察菌落;
(4)筛选重组子:挑取一个单菌落至1.5mL离心管,加入500μL含50mg/L卡那霉素的YEP液体培养基(挑取单菌落数不少于10个),200rpm、37℃摇菌3-4h;做菌液PCR(体系见表3-4),PCR反应条件为:94℃3min,30个循环(94℃30S,55℃30S, 72℃45S),72℃2min,并以1.2%琼脂糖凝胶电泳鉴定产物。
表5菌液PCR体系
4.6重组质粒的提取和鉴定
准备灭菌的10mL离心管,加入3mL含50mg/L卡那霉素的液体YEP培养基,选取阳性克隆各100μL分别加入各管,37℃、200rpm摇床过夜培养。第二天提取质粒,测定浓度,记录OD260/OD280,以该质粒为模板进行PCR分析,体系见表6。用1.2%浓度的琼脂糖凝胶电泳PCR产物,0.5%浓度的琼脂糖凝胶电泳提取的重组质粒。
质粒提取操作步骤:
(1)取1.5mL培养液倒入1.5mLEppendorf管中,10000rmp离心1min,弃上清,重复收集一次,将管倒置于滤纸上使残余菌液流尽;
(2)菌体沉淀重悬浮于200μL溶液Ⅰ中(需剧烈振荡,可以用涡旋,使菌体分散混匀,放置2分钟以上);
(3)加入溶液Ⅱ300μL,盖紧管口,快速温和颠倒Eppendorf管数次,以混匀内容物(千万不要振荡,要轻柔,不要超过2分钟);
(4)加入预冷的溶液Ⅲ300μL,盖紧管口,将管温和颠倒数次混匀,见白色絮状沉淀。15000rmp离心10min;
(5)取750μL上清液移入加有750μL异丙醇的Eppendorf管,颠倒数次匀,15000rmp离心10min;
(6)弃上清,加入1mL 75%乙醇,颠倒数次,然后15000rmp离心2min;
(7)将管倒置于滤纸尽量使液体流尽,室温干燥30分钟;
(8)加入30μL灭菌的ddH2O溶解沉淀,浓度测定,记录OD260/OD280
表6重组质粒PCR分析反应体系
注:总体积10μL,反应条件为98℃预热4min,40个循环(98℃45s,55℃10s,72℃30s), 72℃保温。
4.7重组质粒送样测序
将质粒PCR鉴定为阳性的质粒送至生工广州分公司测序验证。测序引物为Μ626-IDF。
5同源重组修复表达载体PHDE-ASgRNA-AS的构建
PHDE-ASgRNA-AS重组质粒是在PHDE-ASgRNA-mCh重组质粒的基础上,在特定位点装入与AS1基因敲除序列同源但缺失部分碱基序列的同源臂(EcoR1位点***),作为同源重组修复的模板,达到定点引入回复突变基因的目的。
5.1 PCR扩增同源臂片段
PCR反应体系(PrimeSTAR Max DNAPoLymerase)见表7。总体积共100μL,混匀后平均分装至2个PCR小管。整个操作过程需在冰上操作,迅速完成。
PCR反应条件(PrimeSTAR Max DNAPoLymerase)为98℃预热4min,40个循环 (98℃45s,55℃10s,72℃30s),72℃保温。
表7同源臂EcoR1PCR扩增反应体系
5.2琼脂糖凝胶电泳纯化与目的片段回收
(1)琼脂糖凝胶配制(大梳子)称取0.42g琼脂糖溶于28mL 1×TAE缓冲液,即1.5%琼脂糖凝胶;
(2)电泳将PCR产物全部加入一个胶孔,100bp marker为比对,电压100V,电流50mA,功率50W,时间1h,电泳液为1×TAE;
(3)凝胶成像***上拍照记录,然后在紫外透照台上切下目的条带;
(4)将目的条带装入1.5mL EP管,-4℃冷冻20min,15000rpm低温离心20min,吸取上清液于PCR小管中,测定浓度,记录OD260/OD280,-20℃保存。
5.3 PHDE-ASgRNA-mCh质粒的酶切(线性化)和鉴定
酶切体系见表8,总体积20μL,37℃恒温反应15min;
电泳分析:以酶切前的PHDE-ASgRNA-mCh质粒作对照,配制0.5%的琼脂糖凝胶进行电泳分析。
表8 PHDE-ASgRNA-mCh载体酶切体系
5.4目的片段与载体重组
取一个PCR小管,先后加入0.3μL线性化PHDE-ASgRNA-mCh载体、3μL重组酶以及1.2μL回收的同源臂片段。组装条件为50℃恒温反应1h。
5.5重组子转化与鉴定
将同源臂片段与线性化的PHDE-ASgRNA-mCh载体的重组产物利用热击法转化DH5a感受态大肠杆菌,复苏培养12h,挑单菌落摇床培养3~4h,做菌液PCR鉴定,用 0.5%琼脂糖凝胶电泳分析。PCR反应体系见表9,PCR反应条件为:94℃3min,30个循环(94℃30S,55℃30S,72℃45S),72℃2min。
表9菌液PCR体系
5.6重组质粒的提取和鉴定
准备灭菌的10mL离心管若干支,每管加入3mL含50mg/L卡那霉素的液体YEP 培养基,选取阳性克隆各100μL分别加入各管,37℃、200rpm摇床过夜培养。第二天提取质粒(操作见3.3.6质粒提取),测定浓度,记录OD260/OD280,以该质粒为模板进行PCR分析,体系见表10。用1.2%浓度的琼脂糖凝胶电泳PCR产物,0.5%浓度的琼脂糖凝胶电泳提取的重组质粒。
表10重组质粒PCR分析反应体系
注:总体积10μL,反应条件为98℃预热4min,40个循环(98℃45s,55℃10s,72℃30s),72℃。
5.7重组质粒送样测序
将质粒PCR鉴定为阳性的质粒送样到生工广州分公司测序,测序引物为ECOR1-F。
序列表
<110> 广东石油化工学院
<120> 一种基于CRISPR/Cas9体系的同源修复载体构建方法
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2400
<212> DNA
<213> 未知(Unknown)
<400> 1
ttctgtcttc tacttgaatt tacacatgta aagatataaa tcgattttat ttataaacca 60
aagtgttgca gctgactaaa tcaacatcaa gcttgagaaa acaaagccat ggataaactg 120
aagtgataaa tggaacacaa aggtaaaaga aacaaataca aagctgaggt aaggaaccca 180
aaagtctaag taaacattgg agacacccaa atgatcaaag acaaaaaaaa acaaaaaaaa 240
acaaaaaaaa aaccttacat tacattacaa gttacaacaa agagtttagg agacggtggg 300
gcggtctaat ctgcaaccca tttgttgttc aagaaacttg gtgagtctga tatgcctaga 360
ggtccattga tcagccagtt tctggtcttt ggcctctgcg tctcgcctca aaccaacgag 420
ctgttctctg tactctcctt cgatcttctc cattgcgttc ttctgctctt ccctaagagc 480
tttcatcttt gcctcaatct cctccatctt ctccctttgt ctacacgtct tctctgactc 540
tagctgcagc tccagccttc ttagcctcca tgcagcctct ttcttatggt ctgcccaagc 600
tcggtgccct tcctccaact ctctacaaca ctccacaagc tctgacaaga acacactctc 660
gctactccca ctacaagacg gcatcatact ccctaacaca agtccccctg gaccgttctc 720
tgctctctca ggctgttgct gctgcagcca cgggattggc ggttgaggcg cagctgcagc 780
cactgtggaa ggcgataatg tcaaagttac cgagggaggc cttgcaacaa cattgttccc 840
attgttagaa gtagctaacc aaggcgggat cactgggtta ggaggctgaa cttgttgttc 900
agaatgtaaa aaccctccat tcgaattagc catcacaacc gttgcagcag cggcagcagc 960
agggacaacg ttagaccgct ctttgacaag cttctcagcg aaactctcga gaatccgatc 1020
gtacttactc tcgtcaatag gctcaactct cttgttactc tctttctctt ctctctgttg 1080
cttctcctta aacacttccc accacttccc taaccgcttt gccgtcctcc cgggaacctc 1140
agcagcaatc ttcttccact tgttgccgtg tttctcctga agacggatca caagcctctg 1200
ctcttcctct gtcaaagacc ctttcttgat ccctggctta agataattct tccatctctc 1260
taaacaagac ttggcgtcac ggttcaaagg tttgttcata cgctcagaca caagatgcca 1320
ttctctcgga ccgaactgtc taacgtaagc acgtaacaat gcatcttctt caccactcca 1380
acgttgtctc tctttcatct cctactcctc ctgacatcac ttcttcccat ctcaccatcc 1440
ttcttcatct gtaccaaatt caaaatcaac ccgtttcata aatctctcca attcaaaact 1500
ctaaaagatc gaaacaaatc tacaagatct gtcgaatttt cgaattagaa attacaaagt 1560
ctgaaaaatt tccgtttcaa gaaatgaaaa tgacaaaaac tttgacaatg tttgaagcaa 1620
aacttggaat aatttgttat tatcacacta tacaacctat attctggaaa ccaaacaggg 1680
gaaattaatg ctgaccccaa aacactatta agcaaagact tattaagaag ataagagagt 1740
taaaattatt actataaaac aaaataaaaa tgcttaccaa atgatattga aaagataaat 1800
aatcccaaac tcaagagcaa cttccatcac acagatttgc tctctctctc actttttttt 1860
ttttatatag ttggagaaaa tggaagagag aaaacgaaaa gaccaaagtg agagaggctt 1920
ttaaaaccag acgacgtaca cgattagacc acagagacgg cataattaaa ataaaatctt 1980
taaaaaaaaa aagagagaaa aagtttaccg actgagacac agacgttttc ccctttttac 2040
atcacaagtg gggaaaaaaa aaactctgac agaggcgcgt ggaggtgaaa agttgaaatt 2100
ccataagttc gttgtttgtc attgacaata ttaaaccttt ttttatatat atttactaca 2160
ttgggatctc aaaattcatt tttctataac attatgagaa ataaaatgac aatctaatgt 2220
aggggatgct ttaaatttaa atgaaaaagt gttgtacttt agtggctgaa aagtcattta 2280
cttgtcaaaa tgatagaaga aaaactaacc attcaagaaa ataatgctcc atttataaac 2340
aactccttca ctcaaacaat agaattttat gtccaatttg agtaacatta atttccactt 2400
<210> 2
<211> 60
<212> DNA
<213> 未知(Unknown)
<400> 2
ctagagtcga agtagtgatt ggcgggatca ctgggttagg gttttagagc tagaaatagc 60
<210> 3
<211> 60
<212> DNA
<213> 未知(Unknown)
<400> 3
tgctatttct agctctaaaa ctctcaccat ccttcttcat caatctctta gtcgactcta 60
<210> 4
<211> 40
<212> DNA
<213> 未知(Unknown)
<400> 4
taattgattg acaacgaatt gcgcagctgc agccactgtg 40
<210> 5
<211> 40
<212> DNA
<213> 未知(Unknown)
<400> 5
acagctatga catgattacg gggaagaagt gatgtcagga 40
<210> 6
<211> 25
<212> DNA
<213> 未知(Unknown)
<400> 6
tgtcccagga ttagaatgat taggc 25

Claims (1)

1.一种基于CRISPR/Cas9体系的同源修复载体构建方法,其特征在于:包括如下步骤:
(1)靶位点设计
sgRNA靶位点的选择使用CRISPR在线设计工具,以拟南芥AS基因:序列1为靶基因,选择靠近5'端得分最高的G-N19-NGG 23bp序列,其中第一个G是小RNA转录的起始信号位点,NGG是Cas9基因定位的PAM序列,需要***gRNA载体的是G-N19共20bp序列,共设计两个打靶位点的Target,实现大片段敲除;同时在AS基因的打靶载体上装入AS基因的同源修复片段,实现AS基因在CAS9敲除的同时,以载体上的AS基因的同源臂做模板进行修复;
(2)进行引物设计
As-gRNA-F序列2:
CTAGAGTCGAAGTAGTGATTGGCGGGATCACTGGGTTAGGGTTTTAGAGCTAGAAATAGC
As-gRNA-R序列3:
TGCTATTTCTAGCTCTAAAACTCTCACCATCCTTCTTCATC
AATCTCTTAGTCGACTCTA
EcoR1-F序列4:
TAATTGATTGACAACGAATTGCGCAGCTGCAGCCACTGTG
EcoR1-R序列5:
ACAGCTATGACATGATTACGGGGAAGAAGTGATGTCAGGA
μ626-IDF序列6:
TGTCCCAGGATTAGAATGATTAGGC
(3)打靶载体PHDE-ASgRNA的构建
①PCR扩增目的片段:PCR反应总体积共100μL,平均分装至2个PCR小管;PCR反应条件为98℃预热4min,40个循环98℃45s,55℃10s,72℃30s,72℃保温;
②琼脂糖凝胶电泳纯化与目的片段回收:1.5%琼脂糖凝胶电泳PCR产物,在紫外透照台上切下目的条带,将目的条带装入1.5mL EP管,-4℃冷冻20min,15000rpm低温离心20min,吸取上清液于PCR小管中,测定浓度,记录OD260/OD280,-20℃保存;
③PHDE质粒的酶切和鉴定:酶切体系总体积20μL,50℃恒温过夜,然后以酶切前的PHDE质粒作对照,配制0.5%的琼脂糖凝胶进行电泳分析;
④目的片段与载体重组:取一个PCR小管,先后加入0.3μL线性化PHDE载体、3μL重组酶以及1.2μL回收的AS基因片段,采用重组酶技术,将回收纯化后的AS基因片段与BsaI酶切线性化的载体重组连接,组装条件为50℃恒温反应1h;
⑤重组子转化与鉴定:将重组产物利用热击法转化DH5a感受态大肠杆菌,复苏培养12h,挑单菌落摇床培养3~4h,做菌液PCR鉴定,用0.5%琼脂糖凝胶电泳分析,PCR反应条件为:94℃3min,30个循环94℃30S,55℃30S,72℃45S,72℃2min;
⑥重组质粒的提取和鉴定:将阳性克隆过夜培养后用碱裂解法提取质粒,测定浓度,记录OD260/OD280,以该质粒为模板进行PCR分析,用1.2%浓度的琼脂糖凝胶电泳PCR产物,0.5%浓度的琼脂糖凝胶电泳提取的重组质粒;
⑦重组质粒送样测序:将质粒PCR鉴定为阳性的质粒送至生工广州分公司测序验证,测序引物为Μ626-IDF;
(4)同源重组修复模板载体PHDE-ASgRNA-AS的构建
①PCR扩增AS基因同源臂片段:PCR反应体系与前述相同,总体积共100μL,混匀后平均分装至2个PCR小管,PCR反应条件为98℃预热4min,40个循环98℃45s,55℃10s,72℃30s,72℃保温;
②琼脂糖凝胶电泳纯化与目的片段回收:将1.5%琼脂糖凝胶电泳后切胶回收目的条带,测浓度,记录OD260/OD280,-20℃保存;
③PHDE-ASgRNA质粒的酶切和鉴定:酶切体系总体积20μL,37℃恒温反应15min,用0.5%琼脂糖凝胶进行电泳分析;
④目的片段与载体重组:取PCR小管,先后加入0.3μL线性化PHDE-ASgRNA载体、3μL重组酶以及1.2μL回收的同源臂片段,组装条件为50℃恒温反应1h;
⑤重组子转化与鉴定:将重组产物利用热击法转化DH5a感受态大肠杆菌,复苏培养12h,挑单菌落摇床培养3~4h,做菌液PCR鉴定,用0.5%琼脂糖凝胶电泳分析;PCR反应条件为:94℃3min,30个循环94℃30S,55℃30S,72℃45S,72℃2min;
⑥重组质粒的提取和鉴定:将阳性克隆过夜培养后提取质粒,测定浓度,记录OD260/OD280,以该质粒为模板进行PCR分析,用1.2%浓度的琼脂糖凝胶电泳PCR产物,0.5%浓度的琼脂糖凝胶电泳提取的重组质粒;
⑦重组质粒送样测序:将质粒PCR鉴定为阳性的质粒送样到生工广州分公司测序,测序引物为EcoR1-F。
CN201710981059.7A 2017-10-20 2017-10-20 一种基于CRISPR/Cas9体系的同源修复载体构建方法 Pending CN107937427A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710981059.7A CN107937427A (zh) 2017-10-20 2017-10-20 一种基于CRISPR/Cas9体系的同源修复载体构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710981059.7A CN107937427A (zh) 2017-10-20 2017-10-20 一种基于CRISPR/Cas9体系的同源修复载体构建方法

Publications (1)

Publication Number Publication Date
CN107937427A true CN107937427A (zh) 2018-04-20

Family

ID=61936290

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710981059.7A Pending CN107937427A (zh) 2017-10-20 2017-10-20 一种基于CRISPR/Cas9体系的同源修复载体构建方法

Country Status (1)

Country Link
CN (1) CN107937427A (zh)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
CN108841845A (zh) * 2018-06-21 2018-11-20 广东石油化工学院 一种带有筛选标记的CRISPR/Cas9载体及其构建方法
CN109880851A (zh) * 2019-03-28 2019-06-14 西北农林科技大学 用于富集CRISPR/Cas9介导的同源重组修复细胞的筛选报告载体及筛选方法
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
CN112210573A (zh) * 2020-10-14 2021-01-12 浙江大学 一种用基因编辑改造原代细胞的dna模板及定点***方法
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014186686A3 (en) * 2013-05-17 2015-01-08 Two Blades Foundation Targeted mutagenesis and genome engineering in plants using rna-guided cas nucleases
CN105112435A (zh) * 2015-08-09 2015-12-02 中国水稻研究所 植物多基因敲除载体的构建及应用
US20160145631A1 (en) * 2013-06-14 2016-05-26 Cellectis Methods for non-transgenic genome editing in plants
CN106222197A (zh) * 2013-07-16 2016-12-14 中国科学院上海生命科学研究院 植物基因组定点修饰方法
CN107034229A (zh) * 2017-04-07 2017-08-11 江苏贝瑞利生物科技有限公司 一种植物中高效筛选CRISPR/CAS9基因编辑***候选sgRNA***及应用
CN107236737A (zh) * 2017-05-19 2017-10-10 上海交通大学 特异靶向拟南芥ILK2基因的sgRNA序列及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014186686A3 (en) * 2013-05-17 2015-01-08 Two Blades Foundation Targeted mutagenesis and genome engineering in plants using rna-guided cas nucleases
US20160145631A1 (en) * 2013-06-14 2016-05-26 Cellectis Methods for non-transgenic genome editing in plants
CN106222197A (zh) * 2013-07-16 2016-12-14 中国科学院上海生命科学研究院 植物基因组定点修饰方法
CN105112435A (zh) * 2015-08-09 2015-12-02 中国水稻研究所 植物多基因敲除载体的构建及应用
CN107034229A (zh) * 2017-04-07 2017-08-11 江苏贝瑞利生物科技有限公司 一种植物中高效筛选CRISPR/CAS9基因编辑***候选sgRNA***及应用
CN107236737A (zh) * 2017-05-19 2017-10-10 上海交通大学 特异靶向拟南芥ILK2基因的sgRNA序列及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DANIEL G. GIBSON ET AL: "Complete Chemical Synthesis,Assembly,and Cloning of a Mycoplasma genitalium Genome", 《SCIENCE》 *
LIN,X. ET AL: "ACCESSION NO.NM_129319,Arabidopsis thaliana myb-like HTH transcriptional regulator family protein (AS1),mRNA", 《GENBANK》 *
XIUHUA GAO ET AL: "An Effective Strategy for Reliably Isolating Heritable and Cas9-Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing", 《PLANT PHYSIOLOGY》 *
ZHENGYAN FENG ET AL: "Mutigeneration analysis reveals the inheritance specificity,and patterns of CRISPR/Cas-induced gene modifications in Arabiposis", 《PNAS》 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CN108841845A (zh) * 2018-06-21 2018-11-20 广东石油化工学院 一种带有筛选标记的CRISPR/Cas9载体及其构建方法
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
CN109880851A (zh) * 2019-03-28 2019-06-14 西北农林科技大学 用于富集CRISPR/Cas9介导的同源重组修复细胞的筛选报告载体及筛选方法
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN112210573A (zh) * 2020-10-14 2021-01-12 浙江大学 一种用基因编辑改造原代细胞的dna模板及定点***方法

Similar Documents

Publication Publication Date Title
CN107937427A (zh) 一种基于CRISPR/Cas9体系的同源修复载体构建方法
CN108103092A (zh) 利用CRISPR-Cas***修饰OsHPH基因获得矮化水稻的***及其应用
CN106367435A (zh) 一种水稻miRNA定向敲除的方法
CN107326042A (zh) 水稻tms10基因的定点敲除***及其应用
CN108034671B (zh) 一种质粒载体及利用其建立植物群体的方法
Cody et al. Direct delivery and fast-treated Agrobacterium co-culture (Fast-TrACC) plant transformation methods for Nicotiana benthamiana
Semiarti et al. Application of CRISPR/Cas9 genome editing system for molecular breeding of orchids
CN109642235A (zh) 用于植物中的基因组修饰的方法和组合物
BRPI0922922A2 (pt) métodos para regenerar plantas de jatropha curcas para transformação mediada por agrobacterium de plantas de jatropha curcas
CN108841826A (zh) 拟南芥长链非编码RNA AtHAL6在调控植物高温胁迫耐性中的应用
CN107815452A (zh) 一种植物叶片特异性表达的启动子及其应用
CN104593380B (zh) 用于提高植物耐盐性的编码玉米HKT转运蛋白的基因ZmHKT1;1a及其应用
CN103739686A (zh) 与植物产量提高和品质改良相关的蛋白及编码基因与应用
CN106868036A (zh) 一种定点突变创制玉米紧凑株型种质的方法及其应用
CN108795978A (zh) 一种通过基因编辑创制雄性不育作物新种质的方法及其应用
CN105018521B (zh) 培育荧光蛋白mCherry标记微管蛋白的转基因植物的方法及其相关生物材料
CN103172717B (zh) 植物耐低钾胁迫相关蛋白GmWRKY50及其编码基因与应用
CN102021199A (zh) 一种调控百合花期的方法
Cody et al. BiBAC Modification and Stable Transfer into Maize (Zea mays) Hi‐II Immature Embryos via Agrobacterium‐Mediated Transformation
CN113913440B (zh) GhD1119基因调控陆地棉开花方面的应用
CN112980876B (zh) GhGPAT12蛋白和GhGPAT25蛋白在调控棉花雄性生殖发育中的应用
CN109371059A (zh) 一种棉花的基因编辑方法
CN110106171A (zh) 长链非编码rna及其在调控植物耐低温中的应用
CN106244595B (zh) 杉木植物磺肽素clpsk1基因及其应用
CN108823214A (zh) 一种氮高效融合基因sa及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination