CN107930551A - 一种生产二氧化碳阴离子自由基的方法、一种处理含六价铬废水的方法 - Google Patents

一种生产二氧化碳阴离子自由基的方法、一种处理含六价铬废水的方法 Download PDF

Info

Publication number
CN107930551A
CN107930551A CN201711085605.5A CN201711085605A CN107930551A CN 107930551 A CN107930551 A CN 107930551A CN 201711085605 A CN201711085605 A CN 201711085605A CN 107930551 A CN107930551 A CN 107930551A
Authority
CN
China
Prior art keywords
carbon dioxide
formic acid
radical anion
hexavalent chromium
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711085605.5A
Other languages
English (en)
Inventor
唐海
秦宝雨
张昊楠
***
李洋
王健
邢庭其
李日强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Polytechnic University
Original Assignee
Anhui Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Polytechnic University filed Critical Anhui Polytechnic University
Priority to CN201711085605.5A priority Critical patent/CN107930551A/zh
Publication of CN107930551A publication Critical patent/CN107930551A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Removal Of Specific Substances (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明提供了一种生产二氧化碳阴离子自由基的方法和一种处理含六价铬废水的方法,用紫外辐射活化甲酸产生二氧化碳阴离子自由基。并以此处理Cr(VI)废水,结果表明二氧化碳阴离子自由基能快速还原Cr(VI)变成Cr(III)。该发明相比传统活化技术,处理成本低,反应体系温和,反应产物为H2O和CO2,无任何二次污染。特别是对低浓度的含铬废水,能快速高效的去除,有较高的商业应用价值。

Description

一种生产二氧化碳阴离子自由基的方法、一种处理含六价铬 废水的方法
技术领域
本发明涉及废水处理领域,具体涉及一种生产二氧化碳阴离子自由基的方法、一种处理含六价铬废水的方法。
背景技术
六价铬Cr(VI)是属于致癌、致畸、致突变的剧毒物质,被美国环保署(USEPA)列为最具毒性的污染物之一,也是国家重点控制的五类重金属污染物之一,因此,含铬废水必须严格控制六价铬的质量浓度,达标后才能允许排放。根据污水综合排放标准(GB 8978-1996)规定,Cr(VI)属于第一类污染物,其最高允许排放最高浓度为0.5mg/L。当前我国涉铬行业众多,特别是电镀、制革等工业企业产生大量含Cr(VI)废水,直接排放将对生态环境和人类健康造成极大危害,因此对含铬废水处理技术的研究日益重要。
含Cr(VI)废水的常规处理技术较多,从原理来分析一般可以有两种途径:
一、将Cr(VI)与体系通过物化手段予以分离,具体来说包括如下技术:(a)反渗透(RO):通过加压使水分子通过半透膜,实现Cr(VI)的浓缩,达到分离的目的,反渗透一般不涉及到二次污染物,但是膜污染问题时所产生的膜氧化仍是制约当前商品反渗透膜广泛应用的重要因素;(b)离子交换法:利用阴离子交换树脂中的阴离子和水中的Cr(VI)进行交换,进而达到分离目的,Cr(VI)在废水中以铬酸根形式存在,其中涉及到树脂再生问题;(c)电渗析法:电渗析法指在直流电的作用下,使水中阴、阳离子选择性地透过阴阳离子膜,可以实现实现Cr(VI)的浓缩,但是对于高质量浓度的含Cr(VI)废水则不适宜采用电渗析法处理,电能消耗较大;(d)吸附法:利用吸附剂对Cr(VI)进行吸附,达到分离目的,当前广泛使用的吸附剂有活性炭、沸石等无机吸附剂及木屑、玉米芯及其改性产品等具有生物活性的生物体,对于吸附法唯一的不足之处在于经济投入问题,以废治废是当前寻求的最佳方案。
二、将过Cr(VI)转变为低毒易沉淀的Cr(III),具体来说包括如下技术:(a)化学还原-沉淀法:通过化学还原反应使Cr(VI)变为Cr(III),Cr(III)在碱性条件下生成Cr(OH)3通过沉淀和上清液分离达到去除。当前高效价廉的还原剂包括:铁粉(纳米零价铁)、亚硫酸钠、硫代硫酸钠、硫酸亚铁,水合肼、SO2等。特别是废铁屑,在酸性条件下有微电解效应,生成大量的亚铁离子,具有很强的还原作用。考虑到成本问题当前工业上广泛使用硫酸亚铁还原一石灰沉淀技术。尽管如此使用还原剂所产生的二次污染仍是当前最值得关注的问题,成岳等采用环境友好型矿物材料硅藻泥包埋纳米零价铁(nZVI)得到复合材料(D-nZV)于铬废水的处理中,发现:pH=3.0,D-nZV用量为16g/L,Cr(VI)浓度为10mg/L,去除率达到99%(成岳,李泳,余淑贞.硅藻泥包埋纳米零价铁处理含铬废水的研究[J].环境科学学报,2017,37(05):1780-1786.);(b)电解法:采用铁板做阳极和阴极,在直流电的作用下,电极不断溶解产生亚铁离子可将Cr(VI)还原成Cr(III);(c)铁氧体法:向含铬废水中投加废铁粉或硫酸亚铁时,Cr(VI)可被还原成Cr(III),再加热、加碱、通过空气搅拌,便成为铁氧体在通过沉淀予以分离;(d)光催化还原法:在光激发下,光催化剂材料(例如TiO2)的电子从价带跃迁到导带,形成电子-空穴对,利用激发态电子的还原性可把Cr(VI)还原成Cr(III),由于光催化法无二次污染,当前对高效光催化材料的研发得到了广泛的关注(Xu S C,PanS S,Xu Y,et al.Efficient removal of Cr(VI)from wastewater under sunlight byFe(II)-doped TiO2spherical shell[J].Journal of Hazardous Materials,2015,283:7-13;Zhao Y,Chang W,Huang Z,et al.Enhanced removal of toxic Cr(VI)in tannerywastewater by photo electrocatalysis with synthetic TiO2hollow spheres[J].Applied Surface Science,2017,405:102-110.);(f)生物转化法:通过特定生物(藻类、细菌、微生物和植物等)生物代谢活动将Cr(VI)转化为低毒性、弱迁移性的Cr(III)。
随着环保要求越来越严格,含铬废水治理中实现Cr(VI)高效去除和杜绝二次污染方面仍然是当前的研究热点。
发明内容
本发明的目的在于提供一种生产二氧化碳阴离子自由基的方法,用紫外辐射活化甲酸产生二氧化碳阴离子自由基。
本发明还提供了一种处理含六价铬废水的方法,利用紫外辐射活化甲酸产生的二氧化碳阴离子自由基处理Cr(VI)废水。处理成本低,反应体系温和,反应产物为H2O和CO2,无任何二次污染。特别是对低浓度的含铬废水,能快速高效的去除,有较高的商业应用价值。
本发明提供的一种生产二氧化碳阴离子自由基的方法,包括以下步骤:
常温下将甲酸置于紫外光源下照射进行反应,即可。
具体方法为:
将甲酸置于光化学反应仪中内置的石英玻璃圆底试管中,开启紫外光源,即可。
运用电子顺磁共振(EPR)自旋捕捉技术对反应体系产生的自由基进行了鉴定,由EPR图谱可以验证二氧化碳阴离子自由基的存在。
本发明提供的一种处理含六价铬废水的方法,利用上述生产的二氧化碳阴离子自由基处理含六价铬废水。
具体为:
将含六价铬废水与甲酸混合后,置于紫外光源下进行反应,利用生成的二氧化碳阴离子自由基还原六价Cr变成三价Cr,即可。
初始含六价铬废水中Cr(VI)浓度为1-10mg/L,甲酸投加量为10-50mM;
所述反应具体为:反应温度为20-50℃,反应时间为10-180min。
进一步的,反应在搅拌条件下进行。
与现有技术相比,本发明构建了一种利用紫外辐射活化甲酸产生二氧化碳阴离子自由基新技术并以此处理Cr(VI)废水,结果表明二氧化碳阴离子自由基能快速还原Cr(VI)变成Cr(III)。该发明相比传统活化技术,处理成本低,反应体系温和,反应产物为H2O和CO2,无任何二次污染。特别是对低浓度的含铬废水,能快速高效的去除,有较高的商业应用价值。
附图说明
图1为UV、FA和UV/FA对Cr(VI)去除效果对比图;
图2为本发明原理图;
图3为EPR谱图。
具体实施方式
实施例1
一种生产二氧化碳阴离子自由基的方法,具体方法为:
将甲酸置于光化学反应仪中内置的石英玻璃圆底试管中,开启紫外光源,即可。
一种处理含六价铬废水的方法,包括以下步骤:
将重铬酸钾(K2Cr2O7)预先在120℃烘干2h,然后,称取0.2829g重铬酸钾溶于去离子水中,移入1000ml容量瓶,稀释至标线,摇匀,配置Cr(VI)浓度为1000mg/L铬标准贮备液,进一步配置不同初始浓度的含Cr(VI)模拟废水。
取制备的Cr(VI)初始浓度为10mg/L的模拟废水,不调节初始pH,直接加入甲酸(HCOOH,简称FA),投加量为40mM,使反应总体积为50mL,
先取一定体积Cr(VI)浓度为100mg/L的模拟废水,不调节初始pH,然后加入一定体积100mM的甲酸(HCOOH,简称FA),最后用去离子水定容至50mL,控制Cr(VI)和甲酸分别为10mg/L和40mM
立刻将其置于入光化学反应仪里(北京普林塞斯有限公司,PL-02,电压U=50V,电功率P=250W)内置的石英玻璃圆底试管中,开启磁力搅拌,使溶液充分混合,再开启紫外光源(UV)进行反应,用二苯碳酰二肼分光光度法测定反应体系不同时间中Cr(VI)浓度,测定0-180min不同时间段反应出水Cr(VI)浓度,。
根据测试结果,对比单一UV、单一FA和UV/FA对Cr(VI)去除效果:
结果如图1所示,可以看出,单独的UV辐射和单独FA下,对Cr(VI)几乎没有去除,而UV/FA下在有较好的效果,当反应时间分别为60min和120min时,Cr(VI)去除率分别达到54.3%和99%,出水Cr(VI)浓度分别为4.57mg/L和0.1mg/L;而在150min时,去除率则可达到100%,完全能完全满足现有污水综合排放标准(GB 8978-1996)要求。这种现象主要归因于紫外辐射活化甲酸产生二氧化碳阴离子自由基能快速高效的将Cr(VI)还原变成Cr(III),甲酸最终反应产物为H2O和CO2,原理图见图2。
实施例2
实验过程同实施例1,设置不同初始Cr(VI)浓度(1、5和10mg/L),不同FA投加量(5、10、20、30、40mM),测定0-180min不同时间段反应出水Cr(VI)浓度,结果见表1。可以看出,当Cr(VI)初始浓度为10mg/L时,甲酸投加量为20M,不调节初始pH,紫外辐射反应到150min;当Cr(VI)初始浓度为10mg/L时,甲酸投加量为30M,不调节初始pH,紫外辐射反应到120min;当Cr(VI)初始浓度为10mg/L时,甲酸投加量为40M,不调节初始pH,紫外辐射反应到60min;当Cr(VI)初始浓度为5mg/L时,甲酸投加量为40M,不调节初始pH,紫外辐射反应到60min;当Cr(VI)初始浓度为1mg/L时,甲酸投加量为40M,不调节初始pH,紫外辐射反应到20min,等以上条件对Cr(VI)的去除率均达到100%,出水Cr(VI)检测不到,能完全满足根据《污水综合排放标准》Cr(VI)属于第一类污染物的排放标准(小于0.5mg/L)。
表1:处理结果
本发明处理成本低,反应体系温和,反应产物为H2O和CO2,无任何二次污染。特别是对低浓度的含铬废水,能快速高效的去除。

Claims (6)

1.一种生产二氧化碳阴离子自由基的方法,其特征在于,所述方法包括以下步骤:
常温下将甲酸置于紫外光源下照射进行反应,即可。
2.根据权利要求1所述的方法,其特征在于,将甲酸置于光化学反应仪中内置的石英玻璃圆底试管中,开启紫外光源,即可。
3.一种利用权利要求1或2产的二氧化碳阴离子自由基处理含六价铬废水的方法,包括以下步骤:
将含六价铬废水与甲酸混合后,置于紫外光源下进行反应,利用生成的二氧化碳阴离子自由基还原六价Cr变成三价Cr,即可。
4.根据权利要求3所述的方法,其特征在于,初始含六价铬废水中Cr(VI)浓度为1-10mg/L,甲酸投加量为10-50mM。
5.根据权利要求3所述的方法,其特征在于,所述反应具体为:反应温度为20-50℃,反应时间为10-180min。
6.根据权利要求3所述的方法,其特征在于,反应在搅拌条件下进行。
CN201711085605.5A 2017-11-07 2017-11-07 一种生产二氧化碳阴离子自由基的方法、一种处理含六价铬废水的方法 Pending CN107930551A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711085605.5A CN107930551A (zh) 2017-11-07 2017-11-07 一种生产二氧化碳阴离子自由基的方法、一种处理含六价铬废水的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711085605.5A CN107930551A (zh) 2017-11-07 2017-11-07 一种生产二氧化碳阴离子自由基的方法、一种处理含六价铬废水的方法

Publications (1)

Publication Number Publication Date
CN107930551A true CN107930551A (zh) 2018-04-20

Family

ID=61933447

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711085605.5A Pending CN107930551A (zh) 2017-11-07 2017-11-07 一种生产二氧化碳阴离子自由基的方法、一种处理含六价铬废水的方法

Country Status (1)

Country Link
CN (1) CN107930551A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109646861A (zh) * 2019-02-02 2019-04-19 常熟理工学院 一种同步实现焚烧飞灰解毒以及铬渣还原固化的方法
CN110078280A (zh) * 2019-05-24 2019-08-02 安徽工程大学 一种同步去除废水中低浓度柠檬酸络合铜和六价铬的方法及其应用
CN111422964A (zh) * 2019-01-10 2020-07-17 北京化工大学 一种含Cr(VI)废水的光化学处理方法
CN111675429A (zh) * 2020-06-10 2020-09-18 哈尔滨工业大学 一种基于光催化高级还原的含铬制革废水处理方法
CN111777241A (zh) * 2020-05-19 2020-10-16 浙江工业大学 一种废水中aox和no3--n的协同处理方法
CN115287637A (zh) * 2022-06-22 2022-11-04 南京航空航天大学 一种耐氧化铜材料及其光或射线诱导制备方法
CN115710019A (zh) * 2022-11-15 2023-02-24 东华理工大学 光催化还原六价铀的方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502916A (zh) * 2011-10-28 2012-06-20 中国科学院过程工程研究所 一种光还原六价铬的方法
CN104310569A (zh) * 2014-11-10 2015-01-28 中国石油大学(华东) 利用Cr(VI)/SO32-水处理氧化的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502916A (zh) * 2011-10-28 2012-06-20 中国科学院过程工程研究所 一种光还原六价铬的方法
CN104310569A (zh) * 2014-11-10 2015-01-28 中国石油大学(华东) 利用Cr(VI)/SO32-水处理氧化的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
华兆哲等: "甲酸光催化降解过程中的过氧化氢生成机制", 《化工学报》 *
高磊等: "热活化过硫酸钠耦合甲酸技术研究——处理水溶液中四氯化碳与六价铬污染", 《中国环境科学》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111422964A (zh) * 2019-01-10 2020-07-17 北京化工大学 一种含Cr(VI)废水的光化学处理方法
CN109646861A (zh) * 2019-02-02 2019-04-19 常熟理工学院 一种同步实现焚烧飞灰解毒以及铬渣还原固化的方法
CN110078280A (zh) * 2019-05-24 2019-08-02 安徽工程大学 一种同步去除废水中低浓度柠檬酸络合铜和六价铬的方法及其应用
CN111777241A (zh) * 2020-05-19 2020-10-16 浙江工业大学 一种废水中aox和no3--n的协同处理方法
CN111675429A (zh) * 2020-06-10 2020-09-18 哈尔滨工业大学 一种基于光催化高级还原的含铬制革废水处理方法
CN115287637A (zh) * 2022-06-22 2022-11-04 南京航空航天大学 一种耐氧化铜材料及其光或射线诱导制备方法
CN115710019A (zh) * 2022-11-15 2023-02-24 东华理工大学 光催化还原六价铀的方法和应用
CN115710019B (zh) * 2022-11-15 2024-05-07 东华理工大学 光催化还原六价铀的方法和应用

Similar Documents

Publication Publication Date Title
CN107930551A (zh) 一种生产二氧化碳阴离子自由基的方法、一种处理含六价铬废水的方法
Zhang et al. Photocatalysis activation of peroxodisulfate over the supported Fe3O4 catalyst derived from MIL-88A (Fe) for efficient tetracycline hydrochloride degradation
Tang et al. Fe3O4 nanoparticles three-dimensional electro-peroxydisulfate for improving tetracycline degradation
Yang et al. Improved removal capacity of magnetite for Cr (VI) by electrochemical reduction
Wang et al. Superior fenton-like degradation of tetracycline by iron loaded graphitic carbon derived from microplastics: Synthesis, catalytic performance, and mechanism
You et al. Magnetic cobalt ferrite biochar composite as peroxymonosulfate activator for removal of lomefloxacin hydrochloride
CN106944098B (zh) 碳材料负载铜钴双金属硫化物复合材料及其制法和在废水处理中的应用
Wang et al. Photocatalytic degradation of sulfonamides by Bi2O3-TiO2/PAC ternary composite: Mechanism, degradation pathway
CN105731624B (zh) 一种利用非均相类Fenton反应催化氧化处理反渗透浓水的方法
Zou et al. High-efficiency core-shell magnetic heavy-metal absorbents derived from spent-LiFePO4 Battery
Pourali et al. Enhanced three-dimensional electrochemical process using magnetic recoverable of Fe3O4@ GAC towards furfural degradation and mineralization
Costa et al. Techniques of nickel (II) removal from electroplating industry wastewater: Overview and trends
Zhang et al. Synthesis of magnetic NiFe2O4/CuS activator for degradation of lomefloxacin via the activation of peroxymonosulfate under simulated sunlight illumination
CN103553249A (zh) 电镀废液中酸分离与重金属回收方法
Qiao et al. The removal efficiencies and mechanism of aniline degradation by peroxydisulfate activated with magnetic Fe-Mn oxides composite
Song et al. Volcanic rock: a new type of particle electrode with excellent performance, which can efficiently degrade norfloxacin
Wang et al. Synthesis of carbon microsphere-supported nano-zero-valent iron sulfide for enhanced removal of Cr (VI) and p-nitrophenol complex contamination in peroxymonosulfate system
CN107892375A (zh) 含氯溶液中氯离子的去除方法
CN106423272A (zh) 一种负载型二氧化钛/氧化石墨烯小球及其制备方法与应用
Song et al. Sulfur-zinc modified kaolin/steel slag: A particle electrode that efficiently degrades norfloxacin in a neutral/alkaline environment
CN110227461A (zh) 一种具有磁性的非均相光合Fenton催化剂及其制备方法与应用
Wu et al. Heterogeneous Fenton-like degradation of an azo dye reactive brilliant orange by the combination of activated carbon–FeOOH catalyst and H2O2
Kamani et al. Degradation of reactive red 198 dye from aqueous solutions by combined technology advanced sonofenton with zero valent iron: Characteristics/effect of parameters/kinetic studies
Berhe et al. Synthesis of Fe3O4/CNT/ACF cathode-based electro-fenton system for efficient mineralization of methylene blue dye: Kinetics and mechanism
CN110342628A (zh) 一种络合铜废水的处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180420

RJ01 Rejection of invention patent application after publication