CN107908191A - 一种串并联机器人的运动控制***和方法 - Google Patents

一种串并联机器人的运动控制***和方法 Download PDF

Info

Publication number
CN107908191A
CN107908191A CN201711384351.7A CN201711384351A CN107908191A CN 107908191 A CN107908191 A CN 107908191A CN 201711384351 A CN201711384351 A CN 201711384351A CN 107908191 A CN107908191 A CN 107908191A
Authority
CN
China
Prior art keywords
servomotor
series
robot
parallel robot
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711384351.7A
Other languages
English (en)
Other versions
CN107908191B (zh
Inventor
刘志恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhu Hit Robot Technology Research Institute Co Ltd
Original Assignee
Wuhu Hit Robot Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhu Hit Robot Technology Research Institute Co Ltd filed Critical Wuhu Hit Robot Technology Research Institute Co Ltd
Priority to CN201711384351.7A priority Critical patent/CN107908191B/zh
Publication of CN107908191A publication Critical patent/CN107908191A/zh
Application granted granted Critical
Publication of CN107908191B publication Critical patent/CN107908191B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

本发明揭示了一种串并联机器人的运动控制***,***设有由多个机器人单元组成的串并联机器人,每个所述机器人单元至少设有一个伺服电机,PC机用于串并联机器人运动控制方法的编写、调试,并将运动控制方法输送至控制器,控制器接收每个所述伺服电机的状态信号并输出控制信号至驱动器,驱动器根据控制信号输出驱动信号至每个所述伺服电机。本发明的优点在于实现串并联机器人的运动控制,能够控制机器人按照规划的末端轨迹运动,且运动平稳,效果良好;通过虚拟仿真多个机械结构,验证运动控制方法的可移植性强,二次开发简单,效果良好;并且该运动控制方法通用性强,对于不同的机械结构,只需要简单的开发即可。

Description

一种串并联机器人的运动控制***和方法
技术领域
本发明涉及工业机器人控制领域,并可扩展用到机床的运动控制领域。
背景技术
机器人运动控制是指对各个伺服轴的运动控制,包括单轴、多轴的控制。串并联机器人又称混联机器人,是指至少包括一个并联机构和一个或多个串联机构按照一定的方式组合在一起的复杂机械***,它综合了串联结构和并联机构的优良属性。对串并联机器人的伺服轴进行控制,应分别实现串联、并联的运动方式,且能对机器人整体结构的末端轨迹进行规划,实现示教、再现、编程等功能。
现有技术对于不同的机器人机械结构有不同的运动控制***和方法,市面上的控制器产品多是针对常规的串联或并联机器人的运动控制。因此,对于特殊结构的串并联机器人没有相应的运动控制***和方法。
发明内容
本发明所要解决的技术问题是实现一种串并联机器人运动控制***的通用运动控制方法。
为了实现上述目的,本发明采用的技术方案为:一种串并联机器人的运动控制***,***设有由多个机器人单元组成的串并联机器人,每个所述机器人单元至少设有一个伺服电机,***包括PC机、控制器和驱动器,所述PC机用于串并联机器人运动控制方法的编写、调试,并将运动控制方法输送至控制器,所述控制器接收每个所述伺服电机的状态信号并输出控制信号至驱动器,所述驱动器根据控制信号输出驱动信号至每个所述伺服电机。
所述控制器包括:
运动指令的解释规划模块:用于将运动控制方法分解、编号、归类为每个伺服电机的轨迹指令;
迹插补算法的实现模块:用于对每个轨迹指令进行插补,之后将各个轨迹指令组合在一起形成串并联机器人完整的运动轨迹;
运动学的坐标转换模块:根据每个所述伺服电机的状态信号获取各伺服轴的运动位置点,将各伺服轴的位置点转换为机器人末端空间坐标位置;
伺服轴的位置控制模块:用于驱动每个所述伺服电机,控制伺服轴按照规划的位置运动。
所述运动指令的解释规划模块接收PC机的运动控制方法信号,并输出轨迹指令至迹插补算法的实现模块,所述迹插补算法的实现模块输出轨迹函数至运动学的坐标转换模块,所述运动学的坐标转换模块输出信号至伺服轴的位置控制模块,所述伺服轴的位置控制模块与驱动器实时通讯。
所述轨迹指令为驱动伺服电机以直线、圆弧、过渡曲线的方式运动的执行信号。
所述控制器为嵌入式结构,所述控制器和驱动器之间通过EtherCAT通讯。
基于所述串并联机器人的运动控制***的控制方法:
步骤1、PC机将运动指令输送至控制器;
步骤2、控制器将运动指令转换为插补后的函数轨迹;
步骤3、控制器将轨迹函数按照插补周期输入到驱动器;
步骤4、驱动器执行轨迹函数驱动相应伺服电机工作。
所述步骤2包括以下四个步骤:
1)运动指令的解释规划:将用户输入的运动指令行分解、编号、归类处理,将运动指令处理为直线、圆弧、过渡曲线运动的执行信号并输出;
2)轨迹插补算法:对每个运动指令进行插补处理,将每个伺服电机的轨迹组合在一起,形成完整的运动轨迹并输出;
3)运动学的坐标转换:获取各伺服轴的运动位置点,将各伺服轴的位置状态转换为机器人末端空间坐标位置;
4)伺服轴的位置控制:与驱动器进行实时通讯,向驱动发送函数轨迹。
所述步骤2为离线运行步骤,所述3为在线运行步骤。
本发明的优点在于实现串并联机器人的运动控制,能够控制机器人按照规划的末端轨迹运动,且运动平稳,效果良好;通过虚拟仿真多个机械结构,验证运动控制方法的可移植性强,二次开发简单,效果良好;并且该运动控制方法通用性强,对于不同的机械结构,只需要简单的开发即可。
附图说明
下面对本发明说明书中每幅附图表达的内容作简要说明:
图1为串并联机器人的运动控制***框图;
图2为串并联机器人的运动控制方法流程图。
具体实施方式
串并联机器人是由伺服电机提供动力***,运动控制采用集中控制方式,通过嵌入式控制器控制驱动器,控制器和驱动器间采用EtherCAT通讯,通过上位机的控制器软件进行运动控制的实现。即整个运动控制***由PC机、(嵌入式)控制器、驱动器、伺服电机、串并联机器人机械结构组成,如图1所示。在PC机进行运动控制方法的编写、调试,通过控制器在线检测伺服轴的状态并控制驱动器的动作。
机器人运动控制的过程可划分为四个部分:运动指令的解释规划、轨迹插补算法的实现、运动学的坐标转换、伺服轴的位置控制。对上述四个部分进行封装,提供各部分间的接口,用于整个控制过程的逻辑实现。
运动指令的解释规划是指将用户输入的运动指令转换为机器理解的语言,并对运动过程进行分解、编号、归类,任何复杂的轨迹都可以拆分为直线、圆弧、过渡曲线等三种类型,最终将各类型的数据输出;轨迹插补算法对不同的轨迹进行不同的插补过程,然后将各轨迹组合在一起,最终形成完整的运动轨迹并输出;运动学的坐标转换是根据具体的机器人结构,将末端轨迹空间坐标点转换到关节空间,即各伺服轴的运动位置点,同时可以将各伺服轴的位置状态转换为机器人末端空间坐标位置;伺服轴的位置控制是指与驱动器进行实时通讯,发送位置信息,并控制伺服轴按照规划的位置运动。
运动控制过程的具体实现流程,如图2所示。在机器人运动之前,接收输入的运动指令,调用第一和第二部分的算法,将运动指令转换为插补后的函数轨迹,这是一个离线的过程,即在机器人运行之前,根据用户的输入得到与时间相关的轨迹函数,可在机器人运动之前进行轨迹可达性检测,并分析轨迹的速度、加速度的影响,提高轨迹的精度,降低对机械设备的损伤;运行机器人,调用第三和第四部分的算法,将轨迹函数按照插补周期输入到伺服驱动器,这是一个在线的过程,需要实时发送伺服轴的位置,建立以时间为顺序的运动过程,完成整个运动控制。
上面结合附图对本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种非实质性的改进,或未经改进将本发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围之内。

Claims (8)

1.一种串并联机器人的运动控制***,***设有由多个机器人单元组成的串并联机器人,每个所述机器人单元至少设有一个伺服电机,其特征在于:***包括PC机、控制器和驱动器,所述PC机用于串并联机器人运动控制方法的编写、调试,并将运动控制方法输送至控制器,所述控制器接收每个所述伺服电机的状态信号并输出控制信号至驱动器,所述驱动器根据控制信号输出驱动信号至每个所述伺服电机。
2.根据权利要求1所述的串并联机器人的运动控制***,其特征在于,所述控制器包括:
运动指令的解释规划模块:用于将运动控制方法分解、编号、归类为每个伺服电机的轨迹指令;
迹插补算法的实现模块:用于对每个轨迹指令进行插补,之后将各个轨迹指令组合在一起形成串并联机器人完整的运动轨迹;
运动学的坐标转换模块:根据每个所述伺服电机的状态信号获取各伺服轴的运动位置点,将各伺服轴的位置点转换为机器人末端空间坐标位置;
伺服轴的位置控制模块:用于驱动每个所述伺服电机,控制伺服轴按照规划的位置运动。
3.根据权利要求2所述的串并联机器人的运动控制***,其特征在于:所述运动指令的解释规划模块接收PC机的运动控制方法信号,并输出轨迹指令至迹插补算法的实现模块,所述迹插补算法的实现模块输出轨迹函数至运动学的坐标转换模块,所述运动学的坐标转换模块输出信号至伺服轴的位置控制模块,所述伺服轴的位置控制模块与驱动器实时通讯。
4.根据权利要求2或3所述的串并联机器人的运动控制***,其特征在于:所述轨迹指令为驱动伺服电机以直线、圆弧、过渡曲线的方式运动的执行信号。
5.根据权利要求4中任一项所述的串并联机器人的运动控制***,其特征在于:所述控制器为嵌入式结构,所述控制器和驱动器之间通过EtherCAT通讯。
6.基于权利要求1-5所述串并联机器人的运动控制***的控制方法,其特征在于:
步骤1、PC机将运动指令输送至控制器;
步骤2、控制器将运动指令转换为插补后的函数轨迹;
步骤3、控制器将轨迹函数按照插补周期输入到驱动器;
步骤4、驱动器执行轨迹函数驱动相应伺服电机工作。
7.根据权利要求6所述的控制方法,其特征在于,所述步骤2包括以下四个步骤:
1)运动指令的解释规划:将用户输入的运动指令行分解、编号、归类处理,将运动指令处理为直线、圆弧、过渡曲线运动的执行信号并输出;
2)轨迹插补算法:对每个运动指令进行插补处理,将每个伺服电机的轨迹组合在一起,形成完整的运动轨迹并输出;
3)运动学的坐标转换:获取各伺服轴的运动位置点,将各伺服轴的位置状态转换为机器人末端空间坐标位置;
4)伺服轴的位置控制:与驱动器进行实时通讯,向驱动发送函数轨迹。
8.根据权利要求6或7所述的控制方法,其特征在于:所述步骤2为离线运行步骤,所述3为在线运行步骤。
CN201711384351.7A 2017-12-20 2017-12-20 一种串并联机器人的运动控制***和方法 Active CN107908191B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711384351.7A CN107908191B (zh) 2017-12-20 2017-12-20 一种串并联机器人的运动控制***和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711384351.7A CN107908191B (zh) 2017-12-20 2017-12-20 一种串并联机器人的运动控制***和方法

Publications (2)

Publication Number Publication Date
CN107908191A true CN107908191A (zh) 2018-04-13
CN107908191B CN107908191B (zh) 2024-03-29

Family

ID=61869481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711384351.7A Active CN107908191B (zh) 2017-12-20 2017-12-20 一种串并联机器人的运动控制***和方法

Country Status (1)

Country Link
CN (1) CN107908191B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109240216A (zh) * 2018-08-27 2019-01-18 天津鼎成高新技术产业有限公司 并联伺服***的动态过程控制方法及信息数据处理终端
CN109254567A (zh) * 2018-07-11 2019-01-22 杭州电子科技大学 一种基于fpga的多轴工业机器人控制***
CN111103875A (zh) * 2018-10-26 2020-05-05 科沃斯机器人股份有限公司 避让的方法、设备及存储介质
CN111775145A (zh) * 2020-06-01 2020-10-16 上海大学 一种串并联机器人的控制***
CN112486070A (zh) * 2020-12-02 2021-03-12 南京工程学院 一种位置同步控制模式下的机器人随动控制***和方法
CN113910216A (zh) * 2020-07-09 2022-01-11 北京配天技术有限公司 一种电机轴控制方法、***、机器人及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204188A (ja) * 2007-02-20 2008-09-04 Nagoya Institute Of Technology モーションコントローラおよびモーションプランナおよび多軸サーボシステムおよびサーボアンプ
CN101811301A (zh) * 2009-10-28 2010-08-25 北京航空航天大学 串并联机器人联合加工***及其控制方法
CN102218596A (zh) * 2011-06-24 2011-10-19 江苏大学 一种串并联激光加工机床

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204188A (ja) * 2007-02-20 2008-09-04 Nagoya Institute Of Technology モーションコントローラおよびモーションプランナおよび多軸サーボシステムおよびサーボアンプ
CN101811301A (zh) * 2009-10-28 2010-08-25 北京航空航天大学 串并联机器人联合加工***及其控制方法
CN102218596A (zh) * 2011-06-24 2011-10-19 江苏大学 一种串并联激光加工机床

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109254567A (zh) * 2018-07-11 2019-01-22 杭州电子科技大学 一种基于fpga的多轴工业机器人控制***
CN109240216A (zh) * 2018-08-27 2019-01-18 天津鼎成高新技术产业有限公司 并联伺服***的动态过程控制方法及信息数据处理终端
CN109240216B (zh) * 2018-08-27 2021-08-10 天津鼎成高新技术产业有限公司 并联伺服***的动态过程控制方法及信息数据处理终端
CN111103875A (zh) * 2018-10-26 2020-05-05 科沃斯机器人股份有限公司 避让的方法、设备及存储介质
CN111775145A (zh) * 2020-06-01 2020-10-16 上海大学 一种串并联机器人的控制***
CN113910216A (zh) * 2020-07-09 2022-01-11 北京配天技术有限公司 一种电机轴控制方法、***、机器人及存储介质
CN113910216B (zh) * 2020-07-09 2023-01-24 北京配天技术有限公司 一种电机轴控制方法、***、机器人及存储介质
CN112486070A (zh) * 2020-12-02 2021-03-12 南京工程学院 一种位置同步控制模式下的机器人随动控制***和方法
CN112486070B (zh) * 2020-12-02 2022-02-11 南京工程学院 一种位置同步控制模式下的机器人随动控制***和方法

Also Published As

Publication number Publication date
CN107908191B (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
CN107908191A (zh) 一种串并联机器人的运动控制***和方法
JP4056542B2 (ja) ロボットのオフライン教示装置
CN101739865B (zh) 一种基于plc的教学用二维运动示教平台及其实现方法
CN107127751A (zh) 关节型机械臂驱控一体化控制***及控制方法
CN104942808A (zh) 机器人运动路径离线编程方法及***
CN104044049A (zh) 一种具备力反馈控制的五轴联动抛光***
Nagata et al. Development of CAM system based on industrial robotic servo controller without using robot language
CN105700465A (zh) 基于EtherCAT总线的机器人柔顺控制***和方法
CN105302070A (zh) 一种非正交摆头转台类五轴机床后置处理方法
CN108582071A (zh) 一种工业机器人编程轨迹诊断及速度优化的方法
CN108436915A (zh) 双机器人运动控制方法
CN105033996A (zh) 基于手推示教式五轴水平关节机器人的控制***
CN106873604A (zh) 基于无线通讯的智能多机器人控制***
CN105313119A (zh) 工业机器人的5轴6轴混合控制方法及其***
CN107671838A (zh) 机器人示教记录***、示教的工艺步骤及其算法流程
CN207571581U (zh) 一种串并联机器人的运动控制***
CN104353926B (zh) 一种适用于复杂曲线器件自动化焊接的运动控制方法
CN103552072B (zh) 一种基于嵌入式控制器的机器人控制方法和装置
US20230415341A1 (en) Numerical control device and numerical control system
JP2003165079A (ja) 産業用ロボット
Xu et al. Research on motion trajector planning of industrial robot based on ROS
WO2022131327A1 (ja) 数値制御装置及び数値制御システム
CN103809509A (zh) 工件加工速度自调整式轮廓控制数控机床
US20240160181A1 (en) Motion-path generation device, numerical control device, numerical control system, and non-transitory computer-readable medium storing computer program
WO2022176818A1 (ja) ロボット制御装置、ロボット制御システム、及びコンピュータプログラム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant