CN107890875B - 一种AgIn5S8-ZnS量子点及其制备方法和用途 - Google Patents

一种AgIn5S8-ZnS量子点及其制备方法和用途 Download PDF

Info

Publication number
CN107890875B
CN107890875B CN201710823546.0A CN201710823546A CN107890875B CN 107890875 B CN107890875 B CN 107890875B CN 201710823546 A CN201710823546 A CN 201710823546A CN 107890875 B CN107890875 B CN 107890875B
Authority
CN
China
Prior art keywords
agin
quantum dots
cysteine
zns quantum
zns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710823546.0A
Other languages
English (en)
Other versions
CN107890875A (zh
Inventor
毛宝东
杨亚林
刘艳红
谭丽丽
张科伟
余芙荣
杨少霞
夏正龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201710823546.0A priority Critical patent/CN107890875B/zh
Publication of CN107890875A publication Critical patent/CN107890875A/zh
Application granted granted Critical
Publication of CN107890875B publication Critical patent/CN107890875B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • C09K11/623Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及光催化制氢技术领域,特指一种AgIn5S8‑ZnS量子点及其制备方法和用途,可用于可见光下光催化制氢。称取硝酸银、硝酸铟、醋酸锌、不同量的L‑半胱氨酸混合溶于水溶液中,用NaOH调节溶液pH值为8.5,接着加入硫代乙酰胺超声搅拌,之后加入相对应于L‑半胱氨酸不同量的MPA搅拌,然后在110度条件下水热反应4小时,反应结束后经过酒精离心洗涤干燥,得到AgIn5S8‑ZnS纳米晶。通过可见光照射光分解水制氢的实验证明所制备的混合配体催化剂具有较好的光催化活性。

Description

一种AgIn5S8-ZnS量子点及其制备方法和用途
技术领域
本发明涉及光催化制氢技术领域,利用L-半胱氨酸和三巯基丙酸不同比例的混合配体制备AgIn5S8-ZnS量子点,并测量其量子点的光催化制氢性能。
背景技术
随着世界经济的发展,世界能源消耗量逐年上升,更加加剧了化石燃料的枯竭。并且使用化石燃料也带来了一切严重的环境问题,所以发现清洁的新型的替代化石燃料的能源已经迫在眉睫。而氢能一直以来被认为是清洁无污染的绿色能源。在过去几十年中,光催化制氢一直被认为是最有潜力的将取之不尽用之不竭的太阳能转化为氢能的最有效途径。而AgIn5S8-ZnS量子点因为其合成方法简单,并且其具有较好的光吸收带而受到广范的重视。但是AgIn5S8-ZnS量子点的光催化稳定性较差和现有的合成方法量子点敏化剂在氧化物基质低负荷也是一个需要解决的问题。Yang等人(Journal of Materials Chemistry A2(2014) 20882-20888)引入了TGA配体,TGA修饰的量子点很容易附着在TiO2衬底上,表现出更好的电子性能和理想的电子传输速率,从而在合成太阳能电池中表现出更好的光伏性能。Wang等人(RSC Advances 3(2013)8899-8908),研究了利用L-半胱氨酸和三巯基丙酸混合配体***制备CdTe量子点,并且研究了制备的量子点的生长过程和性质。MPA修饰的量子点具有更好的稳定性和更高的效率,通过适当的设计,可以采用混合配体制备的量子点具有优化的亮度、色纯度和提高光稳定性,Liu等人(RSC Advances 2(2012)819–825)利用MPA合成CuInS2量子点,其量子点具有良好的荧光发射光谱并且具有很好的稳定性,用MPA作为稳定剂合成的亲水CuInS2量子点可以存放在水溶液中的几个月而不变质。所以我们就研究了L-半胱氨酸和三巯基丙酸混合配体对AgIn5S8-ZnS量子点光催化性能和其稳定性的研究。
发明内容
本发明目的在于利用L-半胱氨酸和三巯基丙酸混合配体***制备 AgIn5S8-ZnS量子点方法,该方法以硝酸银、硝酸铟、二水合乙酸锌、L-半胱氨酸、硫代乙酰胺、三巯基丙酸为原料,利用水热法来合成具有良好可见光催化活性和稳定性的纳米光催化剂的方法。
本发明通过以下步骤实现:
AgIn5S8-ZnS纳米晶的制备方法为:称取硝酸银、硝酸铟、二水合乙酸锌、不同量的L-半胱氨酸混合溶于去离子水中,用NaOH水溶液调节溶液pH值为 8.5,接着加入硫代乙酰胺超声搅拌之后加入相对于L-半胱氨酸(L-Cys)不同量的3-巯基丙酸(MPA)再次搅拌,然后在110℃条件下水热反应4小时,反应结束后经过离心干燥,得到混合配体制成的AgIn5S8-ZnS纳米晶。
所述Ag、In和Zn的物质的量之比为2:10:5。
所述L-半胱氨酸与3-巯基丙酸的物质的量之和与硝酸银的物质的量之比为: 5:0.34。
所述NaOH水溶液的浓度为1moL/L。
所述超声搅拌的时间为10min。
所述再次搅拌的时间为10min。
所述硫代乙酰胺的浓度为0.1moL/L,硫代乙酰胺与硝酸银的物质的量之比为:1:9.56。
所述硝酸银与去离子水的比例为0.34mmol:5.5ml。
所述L-Cys与MPA的物质量之比为1:9-9:1。
(2)本发明所利用混合配体制备的AgIn5S8-ZnS光催化剂,晶化完全,分散性良好。
(3)利用X射线衍射仪(XRD)、X光电子能谱仪等仪器对产物进行结构分析,进行光催化制氢,通过紫外-可见分光光度计测量吸光度,显示出优异的光催化活性;本发明工艺非常简单,价廉易得,成本低廉,便于批量生产,无毒无害,符合环境友好要求。
总的来说,我们采用混合配体量子点原位生长技术研究了混合配体对ZAIS 量子点光催化性能的影响。我们发现随着L-半胱氨酸和3-巯基丙酸的比例的增加,量子点的带隙发生很微弱的先增加后减少,同时载流子寿命和量子效率也呈现先增加后减少的趋势,这个现象的原因可能是随着MPA的加入使得量子点内部缺陷增多。在加入牺牲剂的条件下,优化的L-Cys/MPA=5:5的量子点可见光光催化分解水制氢速率为纯的L-半胱氨酸合成量子点的3.8倍。并且经过三次循环,其产氢量并没有变化,说明其具催化剂有很好的稳定性。从中我们可以得知,混合配体可以通过改变其内外部的缺陷,混合配体在量子点表面交替存在,这样可以提高电子的转移速率来提高光生电子和空穴的分离效率使得光催化活性的提高。
附图说明
图1为L-半胱氨酸和MPA不同比例情况下所制备的AgIn5S8-ZnS光催化剂的XRD衍射谱图。
图2为L-半胱氨酸和MPA不同比例的荧光(a)和吸收图(b),荧光图中实线为荧光强度上升,虚线为荧光强度下降。
图3为AgIn5S8-ZnS的EDS图,插图是其对应比例元素含量图
图4为L-半胱氨酸和MPA不同比例的量子效率图
图5为L-半胱氨酸和MPA不同比例所制备AgIn5S8-ZnS量子点的(a)光催化产氢曲线(b)产氢速率。
具体实施方式
实施例1 L-半胱氨酸和MPA不同比例AgIn5S8-ZnS光催化剂的制备
AgIn5S8-ZnS纳米晶的制备方法为:称取硝酸银、硝酸铟、二水合乙酸锌、不同量L-半胱氨酸混合溶于水溶液中,用NaOH调节溶液pH值为8.5,接着加入硫代乙酰胺超声搅拌10min,之后加入相对于L-半胱氨酸不同量的MPA 再次搅拌10min,然后在110度条件下水热反应4小时,反应结束后经过离心干燥,得到混合配体制成AgIn5S8-ZnS纳米晶。控制L-半胱氨酸和MPA的比例0:10、 1:9,、2:8、3:7、5:5、6:4、8:2、9:1、10:0。
实施例2 AgIn5S8-ZnS光催化剂的表征分析
图1,从图中可以看出尽管随着L-半胱氨酸和MPA的量的变化,仍主要是 AgIn5S8-ZnS纳米晶的峰并没有出现其他的杂峰。
图2,从图中可以看出随着MPA量的增多其都在可见光区相应,而其荧光图则呈现出先增加后减少的趋势,造成这一现象的原因可能是随着MPA的增加其量子点的尺寸增大。
图3,从图中可以看出随着MPA的增加元素银离子的百分含量会有减少,可能是MPA较多地替代了量子点表面的原子。
图4,从图中可以看出量子效率随着MPA的加入呈现出先增加后减少的趋势,并且在比例为5:5时量子效率是最高的,说明合适的比例能够提高其量子效率。
与纯L-半胱氨酸的含量相比,MPA含量的增加其荧光寿命的也是增加当L- 半胱氨酸和MPA的比例是6:4,荧光寿命是588.8ns.后期荧光寿命的减少可能原因是随着MPA的增加AgIn5S8-ZnS量子点表面缺陷增加,导致他们的电子空穴不能结合。
图5,从图中可以看出随着比例的变化其产氢速率先增加后减少,造成这一现象的原因造成这种现象的原因可能是MPA增加量子点的表面缺陷,从而抑制电子和空穴的复合,提高载流子的迁移率。
实施例3 AgIn5S8-ZnS光催化剂的可见光催化制氢实验
(1)配置5M的硫化钠溶液。
(2)分别称取不同比例的AgIn5S8-ZnS催化剂样品20mg,置放于反应瓶中。
(3)之后再称量0.4725g的亚硫化钠与1ml的(1)放于反应瓶中,并超声 5min。
(4)之后放于九通道上进行光照,每照1h取一次样用气相色谱进行检测。之后进行数据处理就可以得到图5的产氢图。在加入牺牲剂的条件下,优化的 Cys/MPA=5:5的量子点可见光光催化分解水制氢速率为纯的l-半胱氨酸合成量子点的3.8倍。说明混合配体包裹的AgIn5S8-ZnS量子点进一步提高了催化剂的产氢性能。

Claims (8)

1.一种AgIn5S8-ZnS量子点,其特征在于,采用如下方法制备:称取硝酸银、硝酸铟、二水合乙酸锌、不同量的L-半胱氨酸混合溶于去离子水中,用NaOH水溶液调节溶液pH值为8.5,接着加入硫代乙酰胺超声搅拌之后加入相对于L-半胱氨酸(L-Cys)等量的3-巯基丙酸(MPA)再次搅拌,然后在110℃条件下水热反应4小时,反应结束后经过离心干燥,得到混合配体制成的AgIn5S8-ZnS纳米晶量子点;所述L-Cys与MPA的物质量之比为1:1。
2.如权利要求1所述的一种AgIn5S8-ZnS量子点,其特征在于,所述Ag、In和Zn的物质的量之比为 2:10:5。
3.如权利要求1所述的一种AgIn5S8-ZnS量子点,其特征在于,所述L-半胱氨酸与3-巯基丙酸的物质的量之和与硝酸银的物质的量之比为:5:0.34。
4.如权利要求1所述的一种AgIn5S8-ZnS量子点,其特征在于,所述NaOH水溶液的浓度为1moL/L。
5.如权利要求1所述的一种AgIn5S8-ZnS量子点,其特征在于,所述超声搅拌的时间为10min;所述再次搅拌的时间为10min。
6.如权利要求1所述的一种AgIn5S8-ZnS量子点,其特征在于,所述硫代乙酰胺的浓度为0.1moL/L,硫代乙酰胺与硝酸银的物质的量之比为:1:9.56。
7.如权利要求1所述的一种AgIn5S8-ZnS量子点,其特征在于,所述硝酸银与去离子水的比例为0.34mmol:5.5ml。
8.如权利要求1-7任一所述的AgIn5S8-ZnS量子点在光催化分解水制氢领域的用途。
CN201710823546.0A 2017-09-13 2017-09-13 一种AgIn5S8-ZnS量子点及其制备方法和用途 Active CN107890875B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710823546.0A CN107890875B (zh) 2017-09-13 2017-09-13 一种AgIn5S8-ZnS量子点及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710823546.0A CN107890875B (zh) 2017-09-13 2017-09-13 一种AgIn5S8-ZnS量子点及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN107890875A CN107890875A (zh) 2018-04-10
CN107890875B true CN107890875B (zh) 2020-07-31

Family

ID=61803456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710823546.0A Active CN107890875B (zh) 2017-09-13 2017-09-13 一种AgIn5S8-ZnS量子点及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN107890875B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109021970B (zh) * 2018-08-06 2021-08-27 桂林电子科技大学 一种AgInS2或CuInS2超小量子点及其制备方法和应用
CN109081305B (zh) * 2018-08-16 2021-06-25 陕西师范大学 一种同时降解生物质和光降解水产氢的方法
CN109365001B (zh) * 2018-09-18 2021-12-21 江苏大学 一种Ag-In-Zn-S/CQDs异质结材料的合成方法
CN109999837B (zh) * 2019-04-29 2022-04-12 淮北师范大学 一种表面缺陷态修饰的金属硫化物催化剂的制备方法
CN110368954B (zh) * 2019-05-13 2022-02-15 江苏大学 水热掺杂法制备Cu:Ag-In-Zn-S量子点光催化剂及其应用
CN110743575B (zh) * 2019-11-21 2021-10-26 南昌航空大学 一种具有吸附-光催化协同效应的AgIn5S8/SnS2固溶体催化剂的制备方法
CN113368876B (zh) * 2021-06-29 2022-07-22 江苏大学 碳点辅助Zn-AgIn5S8/Co9S8量子点的制备方法及应用于光水解制氢
CN114011435A (zh) * 2021-12-07 2022-02-08 合肥工业大学 一种水溶性银铟硫量子点光催化剂及室温制备方法
CN115770590A (zh) * 2022-12-20 2023-03-10 江苏大学 一种具备界面缺陷的Bi2S3/ZnS复合光催化剂及其制备方法、应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897700A (zh) * 2014-03-28 2014-07-02 东华大学 一种L-半胱氨酸/巯基丙酸修饰的CdTe量子点的制备方法
CN105950140A (zh) * 2016-04-28 2016-09-21 江苏大学 一种制备Ag:ZnIn2S4发光量子点和光催化剂的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103265948B (zh) * 2013-04-28 2015-04-08 温州大学 一种掺杂型四元多色荧光Ag-Zn-In-S量子点的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897700A (zh) * 2014-03-28 2014-07-02 东华大学 一种L-半胱氨酸/巯基丙酸修饰的CdTe量子点的制备方法
CN105950140A (zh) * 2016-04-28 2016-09-21 江苏大学 一种制备Ag:ZnIn2S4发光量子点和光催化剂的方法

Also Published As

Publication number Publication date
CN107890875A (zh) 2018-04-10

Similar Documents

Publication Publication Date Title
CN107890875B (zh) 一种AgIn5S8-ZnS量子点及其制备方法和用途
Tang et al. Novel Z‐scheme In2S3/BiVO4 composites with improved visible-light photocatalytic performance and stability for glyphosate degradation
Zhao et al. Coproduction of hydrogen and lactic acid from glucose photocatalysis on band-engineered Zn1-xCdxS homojunction
CN102963934B (zh) 钨酸铋量子点及其与石墨烯复合材料的制备方法
CN106669744B (zh) 一种Ag2Mo2O7@AgBr复合光催化剂及其制备方法
Li et al. Enhanced photocatalytic activity in ZnFe2O4–ZnO–Ag3PO4 hollow nanospheres through the cascadal electron transfer with magnetical separation
CN109365001B (zh) 一种Ag-In-Zn-S/CQDs异质结材料的合成方法
CN107376944B (zh) 过渡金属硫化物负载Mn-Cd-S固溶体在光催化产氢方面的应用
CN105727999B (zh) 一种制备四元硫化物量子点基异质结高效光催化剂方法
Jabbar et al. Design and construction of a robust ternary Bi5O7I/Cd0. 5Zn0. 5S/CuO photocatalytic system for boosted photodegradation of antibiotics via dual-S-scheme mechanisms: environmental factors and degradation intermediates
CN107138167B (zh) 一种特殊形貌的混合晶相异质结纳米硫化镉的制备方法
CN105195144A (zh) 一种合成Au/ZnO棒状异质结光催化剂的方法
CN104437550B (zh) 一种制备钨酸锌‑硫化镉异质结光催化剂的方法
CN110102322B (zh) 花状的Ag@AgBr/ZnO光催化材料的制备方法
CN106693996B (zh) 硫化铋-铁酸铋复合可见光催化剂的制备方法及其应用
Zhang et al. Cu 2 O/MoS 2 composites: a novel photocatalyst for photocatalytic degradation of organic dyes under visible light
CN108671951B (zh) 一种氮化碳复合光催化剂及其制备方法和应用
CN111450828A (zh) 一种八面体结构的铜/氧化亚铜光催化剂的快速制备方法
Wang et al. One-pot preparation of novel Bi/BiOBr/Bi2O2CO3 heterojunction for pollutant degradation under visible light: catalyst generation insights, reaction mechanism, degradation pathways, and toxicological effects
Zou et al. Oxalic acid modified hexagonal ZnIn2S4 combined with bismuth oxychloride to fabricate a hierarchical dual Z-scheme heterojunction: Accelerating charge transfer to improve photocatalytic activity
Wang et al. Preparation of a high-performance N-defect ZnO@ g-C3N4 nanocomposite and its photocatalytic degradation of tetracycline
CN110368954B (zh) 水热掺杂法制备Cu:Ag-In-Zn-S量子点光催化剂及其应用
CN103041772A (zh) 一维氧化锌/石墨化碳核壳结构异质结及其制备方法
CN107876052B (zh) 一种催化材料Ag/BiV1-xMoxO4的制备方法
Li et al. Facile synthesis, optical properties regulation and boosted photocatalytic degradation performance for organic pollutants of Mn: CuInS2/CdS nanocrystals

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant