CN107825701B - 基于五轴打印平台的无支撑3d打印方法 - Google Patents

基于五轴打印平台的无支撑3d打印方法 Download PDF

Info

Publication number
CN107825701B
CN107825701B CN201710814686.1A CN201710814686A CN107825701B CN 107825701 B CN107825701 B CN 107825701B CN 201710814686 A CN201710814686 A CN 201710814686A CN 107825701 B CN107825701 B CN 107825701B
Authority
CN
China
Prior art keywords
piecemeal
model
printing
angle
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710814686.1A
Other languages
English (en)
Other versions
CN107825701A (zh
Inventor
张海光
孙泽丰
胡庆夕
刘大利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201710814686.1A priority Critical patent/CN107825701B/zh
Publication of CN107825701A publication Critical patent/CN107825701A/zh
Application granted granted Critical
Publication of CN107825701B publication Critical patent/CN107825701B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)

Abstract

本发明涉及一种基于五轴打印平台的无支撑3D打印方法。本方法的操作步骤为:提取特征边、对模型进行分块旋转切片处理、确定各分块打印模型转换关系、重新组合G代码。通过五轴打印平台,可以通过平台的A、C轴旋转对应的角度,将需要支撑的模型旋转至有基底的平面上,从而实现无支撑打印。本方法的优势在于可以大大减少打印时间、节省打印材料、无需去支撑操作、软硬件开源并且操作简单,适合大多数基于FDM工艺原理的3D打印机,具有很广泛的使用前景。

Description

基于五轴打印平台的无支撑3D打印方法
技术领域
本发明主要涉及三维打印(Three Dimension Printing,3DP)领域,具体是涉及一种基于五轴打印平台的无支撑3D打印方法。
背景技术
近年来,由于3DP技术适合复杂三维结构的快速自由制造的优点,而被广泛地应用于新产品开发,极大地缩短了新产品的开发周期,提高了新产品的生产效率和制造柔性。其制造本质不再是去除不需要的材料,而是通过将材料层层叠加的方式来获得所需要的形状及其功能。例如在航天领域中,为了减轻飞船重量,不会将备用零件转载到飞船上,当出现某个零件的损坏时,3DP技术就可以帮助航天员在飞船中自行制作零件进行修复。总之,3DP技术被广泛应用到了众多领域,逐步显示出了越来越重要的地位和作用。
3DP技术的常见工艺主要包括三维印刷(3D Printing,3DP)、熔融挤出成型(FusedDeposition Modeling,FDM)、光固化成型(Stereo Lithoraphy Appearace,SLA)、选择性激光烧结(Selective Laser Sintering,SLS)和分层实体成型(Laminated ObjectManufacturing,LOM)等。其中由于FDM工艺具有材料利用效率高、污染小,成本低等优势,得到了较为广泛的关注和应用。其工艺过程通常采用对待加工对象的数据模型进行切片获取每层截面的打印路径,再层层打印,最终叠加起来形成打印件。利用该工艺打印悬臂及中空等类型的结构时,由于没有基底材料只能通过添加支撑的方式来实现打印,而在大多数打印件中通常都带有类似的结构,因此利用FDM工艺打印时,由于支撑的必不可少性,会导致打印时间长、打印材料浪费以及后处理过程繁琐,甚至在去除支撑材料时可能对打印件造成破坏等问题。
发明内容
针对上述由于支撑材料存在所产生的问题,本发明旨在提出一种基于五轴打印平台的无支撑3D打印方法,突破了对于某一特定模型只能单向切片打印的本质,将五轴数控加工技术引入,实现真正意义上的无支撑三维打印。该方法的优势在于可大大减少打印时间、节省打印材料、无需去支撑操作、软硬件开源并且操作简单,适合大多数基于FDM工艺原理的3D打印机。
为实现上述目的,本发明所提出的基于五轴打印平台的无支撑3D打印方法主要包括如下步骤:
(1)将需要打印的模型转换成由三角面片构成的STL模型(STL文件是在计算机图形应用***中,用于表示三角形网格的一种文件格式),提取打印模型的特征边;
(2)根据需要打印模型的特征边进行分块处理,分块后,确定主模块。需要打印的模型由于分块切割,会在主模块上留下截面,取截面的重心作为这个面的参考点;
(3)计算各个分块制造叠加方向与主模块制造叠加方向之间的夹角;
(4)按照步骤(3)中算出的夹角将各分块按X轴进行旋转;
(5)将模型旋转后的各个分块及主模块分别用切片软件进行切片处理;
(6)在生成各分块打印路径时,依据计算所得到的夹角,利用五轴打印平台,将接收平台旋转至对应的角度;
(7)确定各分块打印路径的坐标转换关系,最终生成各分块的G代码(3D打印切片生成的指令,其作用是快速定位);
(8)将各分块的G代码进行组合,上传至五轴打印平台的上位机控制软件中,实现无支撑打印。
模型分块的依据是特征边,因此在步骤(1)中,需要对模型中的特征边进行识别,主要通过遍历整个模型的三角面片,并计算相邻三角面片的二面角,从而判断结构特征。本发明假设相邻两个三角面片分别为A、B,两面之间的夹角(即二面角)为:
其中,N为A三角面片的法向量,J为B三角面片的法向量,为两个相邻三角面片之间的夹角。
本发明中设定当大于10°时,就认为两个面片的相交边为特征边。
步骤(2)主要是根据特征边,对模型进行分块,具体方法为:
(2-1)将不需要任何支撑就能打印的部分(即不是从三维模型上切割下来的模型)设为主模块;
(2-2)计算出三维模型切割截面的重心(aj,bj,cj);
(2-3)将分块之后的模型再次根据步骤(1)进行特征边识别,如果仍然有需要支撑才能打印的部分,则再次进行分块,并再次记录分块之后模块切割面重心的位置(aj1,bj1,cj1),直至不能再分块为止。
步骤(3)中,对于每个分块来说,制造叠加方向决定了切片过程。主模块的制造叠加方向与分块的制造叠加方向的夹角为:
其中,为分块制造叠加方向与主模块制造叠加方向之间的夹角,为主模块的制造方向,为分块的制造方向。
步骤(6)中,五轴打印平台的旋转通过下位机控制板的E1、E2(下位机控制板输出口分为X、Y、Z、E0、E1、E2)输出口控制平台中的摆动轴旋转由步骤(3)计算出的角度
步骤(7)中,各分块打印路径坐标转换方法如下:
(7-1)提取步骤(2-2)中的分块后获得的截面重心坐标,记为(aj,bj,cj),旋转之后重心坐标记为(asm,bsm,csm),变换公式为:
(7-2)由于分块之后切片软件进行切片是在底面上进行切片的,所以要重新计算分块的截面重心坐标,记为(af,bf,cf),将(af,bf,cf)带入公式(3),可以得到转换后的重心坐标,记为(am,bm,cm)。
(7-3)将XYZ的平移量记为Δa、Δb和Δc,Δa=asm-as,Δb=bsm-bs,Δc=csm-cs。将步骤(5)中各个分块切片出来的G代码进行变换,例如,步骤(5)中切片出来的G代码为G1Xx’Yy’Zz’E0.1,即G1Xx’Yy’Zz’E0.1转换成G1X(x’+Δa)Y(y’+Δb)Z(z’+Δc)E0.1。
(7-4)由于3D打印是通过将材料不断叠加而形成的,因此,在(7-3)的基础上在制造叠加方向(通常为Z轴方向)考虑层高,假定层高为0.1,则G代码变换成:G1X(x’+Δa)Y(y’+Δb)Z(z’+Δc+0.1)E0.1,变换之后的G代码即为旋转之后G代码。
与现有技术相比,本发明具有如下显而易见的突出实质性特点和显著技术进步:
(1)本发明提出的无支撑打印方法能实现真正的无支撑打印,从而大大减少了打印时间,同时节省了打印材料,简化了后处理过程,由于不存在去支撑过程,就不会存在剥离时对打印件造成损坏的可能性,因此间接地提高了打印件质量;
(2)本发明使用五轴打印平台实现了各分块的顺序打印,所获得的G代码可以直接用于现有的开源3D打印机,因此其适用性广;
(3)本发明解决了FDM类型工艺的支撑问题,而该类型的打印机应用场所十分广泛,因此该方法的未来应用前景广阔,包括民用、工业、医疗甚至航天航空领域。
附图说明
图1是常见的3D打印加支撑的三维模型图。
图2是本发明所需的五轴3D打印机。
图3是常见的相邻的三角面片的排列情况。
图4是主模块与分块制造叠加方向之间的夹角
图5是catia根据特征边模拟切割后截面图。
图6为计算出的重心位置。
图7为旋转90°后的重心。
图8为基于五轴打印平台的无支撑3D打印方法流程图。
具体实施方式
现结合附图对本发明的优选实施例进行详细描述。
实施例一:
参见图8,本实施例基于五轴打印平台的无支撑3D打印方法,其特征在于:操作步骤如下:(1)将需要打印的模型转换成由三角面片构成的STL模型(STL文件是在计算机图形应用***中,用于表示三角形网格的一种文件格式),提取打印模型的特征边;(2)根据需要打印模型的特征边进行分块处理,分块后,确定主模块。需要打印的模型由于分块切割,会在主模块上留下截面,取截面的重心作为这个面的参考点;(3)计算各个分块制造叠加方向与主模块制造叠加方向之间的夹角;(4)按照步骤(3)中算出的夹角将各分块按X轴进行旋转;(5)将模型旋转后的各个分块及主模块分别用切片软件进行切片处理;(6)在生成各分块打印路径时,依据计算所得到的夹角,利用五轴打印平台,将接收平台旋转至对应的角度;(7)确定各分块打印路径的坐标转换关系,最终生成各分块的G代码(3D打印切片生成的指令,其作用是快速定位);(8)将各分块的G代码进行组合,上传至五轴打印平台的上位机控制软件中,实现无支撑打印。
实施例二:
本实施例与实施例一基本相同,特别之处如下:
所述步骤(1)中,提取模型特征边的方法为:遍历整个模型的三角面片,并计算相邻三角面片的二面角,从而判断结构特征:
其中,N为A三角面片的法向量,J为B三角面片的法向量,为两个相邻三角面片之间的夹角,设定当大于10°时,就认为两个面片的相交边为特征边。
所述步骤(2)中,对模型分块的方法为:
(2-1)将不需要任何支撑就能打印的部分,即不是从三维模型上切割下来的模型设为主模块;
(2-2)计算出三维模型切割截面的重心(aj,bj,cj);
(2-3)将分块之后的模型再次根据步骤(1)进行特征边识别,如果仍然有需要支撑才能打印的部分,则再次进行分块,并再次记录分块之后模块切割面重心的位置(aj1,bj1,cj1),直至不能再分块为止。
所述步骤(3)中,主模块的制造叠加方向与分块的制造叠加方向的夹角为:
其中,为分块制造叠加方向与主模块制造叠加方向之间的夹角,为主模块的制造方向,为分块的制造方向。
所述步骤(6)中,五轴打印平台的旋转通过下位机控制板的E1、E2输出口控制平台中的摆动轴旋转由步骤(3)计算出的角度
所述步骤(7)中,各分块打印路径坐标转换方法如下:
(7-1)提取步骤(2-2)中的分块后获得的截面重心坐标,记为(aj,bj,cj),旋转之后重心坐标记为(asm,bsm,csm),变换公式为:
(7-2)由于分块之后切片软件进行切片是在底面上进行切片的,所以要重新计算分块的截面重心坐标,记为(af,bf,cf),将(af,bf,cf)带入公式(3),可以得到转换后的重心坐标,记为(am,bm,cm)。
(7-3)将XYZ的平移量记为Δa、Δb和Δc,Δa=asm-as,Δb=bsm-bs,Δc=csm-cs。将步骤(5)中各个分块切片出来的G代码进行变换,例如,步骤(5)中切片出来的G代码为G1Xx’Yy’Zz’E0.1,即G1Xx’Yy’Zz’E0.1转换成G1X(x’+Δa)Y(y’+Δb)Z(z’+Δc)E0.1。
(7-4)由于3D打印是通过将材料不断叠加而形成的,因此,在(7-3)的基础上在制造叠加方向(通常为Z轴方向)考虑层高,假定层高为0.1,则G代码变换成:G1X(x’+Δa)Y(y’+Δb)Z(z’+Δc+0.1)E0.1,变换之后的G代码即为旋转之后G代码。
实施例三:
如图1所示,图1左是需要打印的模型,图1右是需要打印的模型1及其支撑部分2。针对传统FDM工艺,如果不添加支撑,那么模型的两侧的悬臂部分将不能打印。
如图2所示,是本实例所需的五轴打印平台,一共有五个自由度,即X、Y、Z、A、C。其中,X、Y、Z是传统3D打印机已有的自由度,A、C两自由度分别实现接收平台绕Y和Z轴的旋转运动。基于该平台的无支撑3D打印方法,即通过增加的两个自由度,在打印悬臂类结构的部分时,通过旋转,使得该部分能够以已经成型的部分为基底进行后续打印,从而达到无支撑的目的。
如图3所示,本实例中,使用相邻两个三角面片的夹角的角度作为曲面弯曲程度的参数。通过公式(1)计算其二面角夹角,通过对二面角设定阈值来划分是否为特征边。a图中两个三角面片的法向量N、J呈平行状,则认为两个三角面片平行,b图中N、J向量呈非平行状。计算它们之间的夹角,通过与设定的阈值相比较,进而判断是否为特征边。按特征边进行分割,就能得到分割后的模型。
如图4所示,图中的夹角即为主模块与分块制造叠加方向之间的夹角。
如图5所示,图中箭头所指的就是在主模块上进行分块后截面的形状3。
如图6所示,图中箭头所指的就是计算出来的重心4。
如图7所示,图中箭头所指的就是经过旋转90°的重心5。
图8为基于五轴打印平台的无支撑3D打印方法的流程图。如图8所示,本实例其主要过程为:首先判断是否满足分块条件,若满足,则进行分块处理。将分块之后的模型分别用cure软件进行切片处理,并计算出各分块与主模块打印路径之间的关系,最终生成各分块真正的G代码,将分块与主模块的G代码耦合起来,载入到上位机软件中,进行无支撑打印。

Claims (4)

1.一种基于五轴打印平台的无支撑3D打印方法,其特征在于:操作步骤如下:
(1)将需要打印的模型转换成由三角面片构成的STL模型,提取打印模型的特征边;
(2)根据需要打印模型的特征边进行分块处理,分块后,确定主模块;需要打印的模型由于分块切割,会在主模块上留下截面,取截面的重心作为这个面的参考点;
所述步骤(2)中,对模型分块的方法为:
(2-1)将不需要任何支撑就能打印的部分,即不是从三维模型上切割下来的模型,设为主模块;
(2-2)计算出三维模型切割截面的重心(aj,bj,cj);
(2-3)将分块之后的模型再次根据步骤(1)进行特征边识别,如果仍然有需要支撑才能打印的部分,则再次进行分块,并再次记录分块之后模块切割面重心的位置(aj1,bj1,cj1),直至不能再分块为止;
(3)计算各个分块制造叠加方向与主模块制造叠加方向之间的夹角;
(4)按照步骤(3)中算出的夹角将各分块按X轴进行旋转;
(5)将模型旋转后的各个分块及主模块分别用切片软件进行切片处理;
(6)在生成各分块打印路径时,依据计算所得到的夹角,利用五轴打印平台,将接收平台旋转至对应的角度;
(7)确定各分块打印路径的坐标转换关系,最终生成各分块的G代码,G代码是3D打印切片生成的指令,其作用是快速定位;
所述步骤(7)中,各分块打印路径坐标转换的方法为:
(7-1)提取步骤(2-2)中的分块后获得的截面重心坐标,记为(aj,bj,cj),旋转之后重心坐标记为(asm,bsm,csm),变换公式为:
(7-2)由于分块之后切片软件进行切片是在底面上进行切片的,所以要重新计算分块的截面重心坐标,记为(af,bf,cf),将(af,bf,cf)带入公式(3),得到转换后的重心坐标,记为(am,bm,cm);
(7-3)将XYZ的平移量记为Δa、Δb和Δc,Δa=asm-as,Δb=bsm-bs,Δc=csm-cs;将步骤(5)中各个分块切片出来的G代码进行变换;
(7-4)由于3D打印是通过将材料不断叠加而形成的,因此,在(7-3)的基础上在制造叠加方向考虑层高;
(8)将各分块的G代码进行组合,上传至五轴打印平台的上位机控制软件中,实现无支撑打印。
2.根据权利要求1所述的基于五轴打印平台的无支撑3D打印方法,其特征在于:所述步骤(1)中,提取模型特征边的方法为:通过遍历整个模型的三角面片,并计算相邻三角面片的二面角,从而判断结构特征:
φ=arccos(N*J) (1)
其中,N为A三角面片的法向量,J为B三角面片的法向量,φ为两个相邻三角面片之间的夹角,设定当φ大于10°时,就认为两个面片的相交边为特征边。
3.根据权利要求1所述的基于五轴打印平台的无支撑3D打印方法,其特征在于:所述步骤(3)中,主模块的制造叠加方向与分块的制造叠加方向的夹角的计算方法为:
其中,为分块制造叠加方向与主模块制造叠加方向之间的夹角,为主模块的制造方向,为分块的制造方向。
4.根据权利要求1所述的基于五轴打印平台的无支撑3D打印方法,其特征在于:所述步骤(6)中,五轴打印平台的旋转通过下位机控制板的E1、E2输出口控制平台中的摆动轴旋转由步骤(3)计算出的角度
CN201710814686.1A 2017-09-12 2017-09-12 基于五轴打印平台的无支撑3d打印方法 Active CN107825701B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710814686.1A CN107825701B (zh) 2017-09-12 2017-09-12 基于五轴打印平台的无支撑3d打印方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710814686.1A CN107825701B (zh) 2017-09-12 2017-09-12 基于五轴打印平台的无支撑3d打印方法

Publications (2)

Publication Number Publication Date
CN107825701A CN107825701A (zh) 2018-03-23
CN107825701B true CN107825701B (zh) 2019-11-19

Family

ID=61643287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710814686.1A Active CN107825701B (zh) 2017-09-12 2017-09-12 基于五轴打印平台的无支撑3d打印方法

Country Status (1)

Country Link
CN (1) CN107825701B (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108500423B (zh) * 2018-04-09 2021-04-16 南京理工大学 基于trio运动控制器的金属打印运动***及实现方法
CN109228353B (zh) * 2018-08-06 2021-01-12 上海大学 一种动态切片算法的无支撑3d打印方法
CN109531996B (zh) * 2018-08-08 2021-02-05 南京航空航天大学 一种基于工位变换的五轴3d打印***及其打印方法
CN109049714B (zh) * 2018-09-26 2021-01-22 蒋青 一种3d打印方法及打印***
CN109304861B (zh) * 2018-09-30 2021-02-02 电子科技大学 一种基于材料自支撑性的stl格式3d模型支撑结构生成方法
JP7123738B2 (ja) * 2018-10-24 2022-08-23 株式会社神戸製鋼所 積層造形物の製造方法及び積層造形物
CN109466065B (zh) * 2018-11-05 2019-12-27 山东大学 面向3d打印的免支撑非均匀三周期极小曲面生成方法及***
CN109367014B (zh) * 2018-11-13 2021-01-12 上海大学 一种基于五轴打印平台沿轴向打印弯管的3d打印方法
CN109759586B (zh) * 2019-01-29 2021-04-23 东北大学 一种内通道结构的无支撑分层切片方法
CN109759587B (zh) * 2019-01-30 2021-12-24 东南大学 一种无辅助支撑加工金属悬垂结构件的增材制造方法
CN109808172A (zh) * 2019-03-26 2019-05-28 华南理工大学 Fdm式3d打印机区域精度控制方法、***设备及介质
CN111941826B (zh) * 2019-05-14 2022-08-12 中国商用飞机有限责任公司 复杂零件的分块增材制造方法
CN110227874B (zh) * 2019-05-21 2020-10-13 南京衍构科技有限公司 一种金属工件的电弧增材制造方法
CN110605391B (zh) * 2019-09-09 2021-08-27 江西宝航新材料有限公司 一种壶形薄壁件的3d打印增材制造方法
CN111361145B (zh) * 2020-03-17 2021-06-15 华南理工大学 一种基于面曝光式的多自由度3d打印方法、装置及***
CN111483138B (zh) * 2020-04-16 2021-10-29 杭州喜马拉雅信息科技有限公司 一种用于减少3d打印支撑使用的打印平台
CN111604501B (zh) * 2020-06-05 2022-04-12 北京航天控制仪器研究所 一种钛合金横孔的激光选区熔化无支撑成形方法
CN112373042A (zh) * 2020-10-19 2021-02-19 上海大学 一种五轴3d打印机位姿的监控方法及***
CN112659544B (zh) * 2020-12-02 2022-06-07 西安交通大学 五轴3d打印机的薄壁管状模型切片方法、***及打印方法
CN113147022A (zh) * 2020-12-09 2021-07-23 南京航空航天大学 一种基于五轴3d打印软件的路径输出方法
CN112659556A (zh) * 2020-12-30 2021-04-16 广州迈普再生医学科技股份有限公司 一种peek颅骨修补片专用打印机
CN113284252B (zh) * 2021-03-03 2023-05-05 山东交通学院 一种基于vtk的断骨模型的复位方法及复位***
CN113320150B (zh) * 2021-05-31 2022-04-05 西安交通大学 一种可实现无支撑打印的粉末床基板旋转装置
CN113619101A (zh) * 2021-07-19 2021-11-09 芜湖职业技术学院 一种3d四轴打印机及打印方法
CN113650289A (zh) * 2021-10-19 2021-11-16 恒新增材制造研究中心(佛山)有限公司 一种带悬臂结构的大型构件3d打印成型装置及成型方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104626585A (zh) * 2015-01-27 2015-05-20 清华大学 一种用于sla3d打印机的平面分割方法及装置
CN105479742A (zh) * 2015-09-06 2016-04-13 华南理工大学 一种基于nsdtf-dem数据的纸基3d打印方法
CN105904729A (zh) * 2016-04-22 2016-08-31 浙江大学 一种基于倾斜分层的无支撑三维打印方法
CN106126129A (zh) * 2016-06-20 2016-11-16 安阳工学院 用于3d模型对象的特征参数表达方法及打印格式和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104626585A (zh) * 2015-01-27 2015-05-20 清华大学 一种用于sla3d打印机的平面分割方法及装置
CN105479742A (zh) * 2015-09-06 2016-04-13 华南理工大学 一种基于nsdtf-dem数据的纸基3d打印方法
CN105904729A (zh) * 2016-04-22 2016-08-31 浙江大学 一种基于倾斜分层的无支撑三维打印方法
CN106126129A (zh) * 2016-06-20 2016-11-16 安阳工学院 用于3d模型对象的特征参数表达方法及打印格式和方法

Also Published As

Publication number Publication date
CN107825701A (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
CN107825701B (zh) 基于五轴打印平台的无支撑3d打印方法
Zhao et al. Nonplanar slicing and path generation methods for robotic additive manufacturing
CN109228353B (zh) 一种动态切片算法的无支撑3d打印方法
Wu et al. RoboFDM: A robotic system for support-free fabrication using FDM
Zhao et al. Shape and performance controlled advanced design for additive manufacturing: a review of slicing and path planning
CN108312548B (zh) 基于模型表面特征混合自适应切片的五轴联动3d打印方法
Wang et al. Research and implementation of a non-supporting 3D printing method based on 5-axis dynamic slice algorithm
CN109367014B (zh) 一种基于五轴打印平台沿轴向打印弯管的3d打印方法
Llewellyn-Jones et al. Curved layer fused filament fabrication using automated toolpath generation
US10642253B2 (en) System, method, and computer program for creating geometry-compliant lattice structures
Haipeng et al. Generation and optimization of slice profile data in rapid prototyping and manufacturing
CN104669626A (zh) 一种立体列印对象的组合列印方法及装置
Liu et al. An approach to partition workpiece CAD model towards 5-axis support-free 3D printing
WO2017080135A1 (zh) 一种面向3d打印的模型分解与排列方法
Kumar et al. Preprocessing and postprocessing in additive manufacturing
CN109304870A (zh) 3d打印方法及设备
US20160059513A1 (en) Folded composite preforms with integrated joints
CN110435156A (zh) 一种基于rpm技术在回转体圆弧表面实现3d打印的切片方法
CN110450406A (zh) 一种基于rpm技术在回转体圆弧表面实现3d打印的方法
CN114474741B (zh) 一种多轴无支撑3d打印曲面切片方法、装置和服务器
Nagata et al. Generation of triangulated patches smoothed from original point cloud data with noise and its application to robotic machining
Doherty et al. Selective directional reinforcement of structures for multi-axis additive manufacturing
Zivanović et al. Rapid prototyping of art sculptural shapes according to the sample
Navangul et al. A vertex translation algorithm for adaptive modification of STL file in layered manufacturing
Liu et al. Design of extendable Tool Path Generation software for 3D printing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant