CN107816907A - 一种微纳复合结构表面热沉及其强化换热的方法 - Google Patents

一种微纳复合结构表面热沉及其强化换热的方法 Download PDF

Info

Publication number
CN107816907A
CN107816907A CN201610821637.6A CN201610821637A CN107816907A CN 107816907 A CN107816907 A CN 107816907A CN 201610821637 A CN201610821637 A CN 201610821637A CN 107816907 A CN107816907 A CN 107816907A
Authority
CN
China
Prior art keywords
micro
heat sink
channel
nano
compound structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610821637.6A
Other languages
English (en)
Inventor
胡学功
栾义军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Engineering Thermophysics of CAS
Original Assignee
Institute of Engineering Thermophysics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Engineering Thermophysics of CAS filed Critical Institute of Engineering Thermophysics of CAS
Priority to CN201610821637.6A priority Critical patent/CN107816907A/zh
Publication of CN107816907A publication Critical patent/CN107816907A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明公开了一种微纳复合结构表面热沉及其强化换热的方法,用于大功率电子集成器件换热领域,解决高热流密度的散热问题。本发明的微纳复合结构表面热沉包括微槽群热沉和纳米涂层,在所述微槽群热沉的表面生成所述纳米涂层,所述微槽群热沉的表面材料是半导体、玻璃、陶瓷或金属及其合金,所述微槽群热沉的微槽道横截面是矩形、梯形或三角形,所述纳米涂层材料是金属、金属氧化物、金属氟化物、半导体材料或有机高聚物涂料。本发明通过所述纳米涂层强化微槽群热沉表面的换热性能,同时利用微槽群结构的表面扩展和毛细作用力因素,提升热沉的相变换热能力。

Description

一种微纳复合结构表面热沉及其强化换热的方法
技术领域
本发明涉及热能工程技术领域,特别涉及一种大功率电子集成器件热沉及其强化换热的方法。
背景技术
随着高新技术的发展,包括各种计算处理芯片、激光器件、大功率LED灯片等在内的大功率电子集成器件运行功率越来越大。其中,这些耗能元件在发挥有效功率的同时,有相当一部分电功率转化为热量,热量的产生必将伴随着这些高功率电子器件温度的升高。但是,高温对这些大功率电子器件的运行是非常不利的,例如,大功率LED灯若不加任何散热器,在通电工作几秒钟后即会烧毁;计算机或服务器的中央处理器(CPU),在大功率运行时运行效率会明显下降。目前对于这些高耗能设备及器件,尤其是对于大型的耗能设备机组,比较有效的制冷方案是采用大功率制冷空调机组进行冷却,制冷空调的使用带来的是大量电能的耗费。使用制冷空调的方案中,发热器件本身的耗电中有相当大一部分电能转化为无用热能,空调机组又耗费大量电能来完成制冷效果。在这一过程中,基础建设、运行、维护成本大大增加,故障率相应地会提高。单从散热角度上来说,制冷空调冷却的是发热设备机组所在空间内部的空气,再间接地利用冷空气对发热设备机组进行冷却,未能直接对发热源进行冷却,另有发热机组往往结构复杂,冷却空气往往形成流动“死区”,“死区”内的空气流动不畅,往往会存在较大温度梯度,热量难以快速散掉,这对散热是极其不利的。同时,发热设备机组所在空间,往往存在严重的冷量泄露,这又对能量造成浪费。而电子电气设备大功率化、集成化的发展趋势必然造成散热热流密度增加,因此,开发设计出更加高效的散热器对于从根本上解决这些大功率发热器件散热降温问题势在必行。
相变换热热沉在大功率电子集成器件换热方面得到广泛应用。然而目前相变换热热沉大多采用普通平面,或者附有较大尺度肋片等扩展面的优化换热面热沉,少数产品采用了微尺度加工的表面优化设计技术(包括普通平面上加工微槽道、微柱体、微肋体等微尺度表面优化技术)。实验研究中,对相变换热的研究也停留在微尺度下相变换热的研究阶段。现有技术所采用的相变换热取热热沉,未能充分发挥出换热表面的取热能力,难以解决高热流密度的散热问题。
发明内容
(一)要解决的技术问题
针对现有技术中的上述缺点,本发明提供了一种微纳复合结构表面热沉及其强化换热的方法,基于微纳尺度下相变换热的基本原理,提高热沉的换热能力,使转化为热量的那一部分电能以液体工质相变的形式迅速从高温热源处取走,并最终散失到空气及其他介质当中,大幅度减小从热源到散热最终介质(主要是空气)中去的中间热阻,从根本上解决了发热功能元件运行温度过高的问题。
(二)技术方案
本发明的技术方案如下:
本发明提出了一种微纳复合结构表面热沉,包括微槽群热沉,还包括纳米涂层,所述纳米涂层在所述微槽群热沉的表面生成:所述微槽群热沉的表面材料是半导体、玻璃、陶瓷或金属及其合金;所述微槽群热沉的微槽道横截面是矩形、梯形或三角形;所述纳米涂层材料是金属、金属氧化物、金属氟化物、半导体材料或有机高聚物涂料。
所述纳米涂层厚度为0~1000nm。所述矩形微槽道的微槽道宽度在0.05~2mm范围内,微槽道深度在0.05~2mm范围内,相邻微槽道间距在0.05~5mm范围内。所述梯形微槽道的梯形上底边长度为0.05~2mm,下底边长度为0.07~4mm,微槽道深度为0.05~8mm,相邻微槽道间距为0.05~5mm。所述三角形微槽道的槽底顶角为5°~120°,微槽道深度为0.05~8mm,相邻微槽道间距为0.05~5mm
本发明还提出了一种微纳复合结构表面热沉强化换热的方法,在微槽群热沉的表面增加纳米涂层:所述微槽群热沉的表面材料是半导体、玻璃、陶瓷或金属及其合金;所述微槽群热沉的微槽道横截面是矩形、梯形或三角形;所述纳米涂层材料是金属、金属氧化物、金属氟化物、半导体材料或有机高聚物涂料。
所述纳米涂层厚度为0~1000nm。所述矩形微槽道的微槽道宽度在0.05~2mm范围内,微槽道深度在0.05~2mm范围内,相邻微槽道间距在0.05~5mm范围内。所述梯形微槽道的梯形上底边长度为0.05~2mm,下底边长度为0.07~4mm,微槽道深度为0.05~8mm,相邻微槽道间距为0.05~5mm。所述三角形微槽道的槽底顶角为5°~120°,微槽道深度为0.05~8mm,相邻微槽道间距为0.05~5mm
(三)有益效果
1、本发明中的微纳复合结构表面热沉,明显增强了微槽群热沉表面的相变换热能力。
2、本发明中的微纳复合结构表面热沉,使热源所产生的无用且有害热量以表面液体工质为载体,通过相变迅速脱离热源,满足了降低发热元件表面温度的要求。
附图说明
图1是根据本发明的一种微纳复合结构表面热沉的实施例立体图;
图2是根据本发明实施例的一种微纳复合结构表面热沉的矩形微槽道微观结构图;
图3是根据本发明实施例的一种微纳复合结构表面热沉的梯形微槽道微观结构图;
图4是根据本发明实施例的一种微纳复合结构表面热沉的三角形微槽道微观结构图;
图5是根据本发明实施例的一种微纳复合结构表面热沉水平放置的实际工作效果图。
图6是根据本发明实施例的一种微纳复合结构表面热沉竖直放置的实际工作效果图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
为解决以上问题,本发明在已有的表面热沉相变换热实验研究基础上,从表面优化的角度上对微槽群热沉表面进行进一步的强化换热设计。在微槽群热沉表面应用纳米尺度材料加工技术生成纳米涂层,应用了纳米材料的尺寸效应、表面效应等特殊性质,改变了热沉表面粗糙度、润湿性、表面能等物理特性,利用纳米涂层与液体工质之间的亲和能力以及纳米涂层对相变换热中汽泡生成的强化作用,提高了热沉的相变换热能力。同时,利用微槽群热沉的微槽结构中弯月形液膜上所发生的多区域复合相变换热特性,使热沉具备高强度的微细尺度蒸发和沸腾复合相变换热能力。在这种微纳复合结构表面上,液体工质发生相变生成汽泡时,汽泡产生频率加快,脱离、爆裂尺寸减小。这就意味着在相变发生表面,汽泡生成处的干涸区域面积减小,周围液体工质由于与纳米涂层表面的亲和作用可以更加迅速地填充到产生汽泡的干涸处,即“液体工质取热——液体工质相变,产生汽泡——汽泡脱离或爆裂——新的液体重新填充到汽泡生成的干涸处”整个周期大大缩短,使得热源所产生的无用且有害热量以表面液体工质为载体,通过相变迅速脱离热源,满足了降低发热元件表面温度的要求。
本发明纳米涂层材料是金属、金属氧化物、金属氟化物、半导体材料或有机高聚物涂料等,如金、银、镍、二氧化钛、ITO薄膜等。纳米涂层厚度为0~1000nm。微槽群热沉的表面材料是半导体(硅、锗、砷化镓)、玻璃、陶瓷、金属及其合金等。
图1是根据本发明的一种微纳复合结构表面热沉的实施例立体图。本实施例中,在微槽的表面采用磁控溅射技术镀以钛纳米涂层薄膜,从而形成微纳复合结构表面热沉。微槽的表面材料为硅硼玻璃。纳米涂层厚度为0~1000nm。
图2是根据本发明实施例的一种微纳复合结构表面热沉的矩形微槽道微观结构图。热沉表面微槽道横截面为矩形,微槽道宽度在0.05~2mm范围内,微槽道深度在0.05~2mm范围内,相邻微槽道间距在0.05~5mm范围内。
图3是根据本发明实施例的一种微纳复合结构表面热沉的梯形微槽道微观结构图。热沉表面微槽道横截面为梯形,梯形的上底边长度为0.05~2mm,下底边长度为0.07~4mm,微槽道深度为0.05~8mm,相邻微槽道间距为0.05~5mm
图4是根据本发明实施例的一种微纳复合结构表面热沉的三角形微槽道微观结构图。热沉表面微槽道横截面为三角形,三角形的槽底顶角为5°~120°,微槽道深度为0.05~8mm,相邻微槽道间距为0.05~5mm。
图5是根据本发明实施例的一种微纳复合结构表面热沉水平放置的实际工作效果图。图6是根据本发明实施例的一种微纳复合结构表面热沉竖直放置的实际工作效果图。当微纳复合结构表面热沉水平放置时,利用热沉表面的铺展液层,通过沸腾相变换热对热源件进行散热冷却。当微纳复合结构表面热沉竖直放置时,液体工质在毛细力作用下被吸入到微槽道内,亲水性纳米涂层可增加微槽道内的润湿高度,降低液体工质上升阻力。水平布置和竖直布置这两种应用形式,针对实际工程实践中发热器件的布置条件择优选用,均可以发挥微纳复合结构所具有的强化换热特性,适用于不同场合和条件。在本发明实施例的微纳复合结构热沉的换热应用中,整体散热器也融合进了热管相关技术,微纳复合结构热沉表面相变所形成的气体工质,在靠近冷源的壁面上又迅速冷凝再次成为液体状态,返回到微纳复合结构表面,作为高热流密度热源的取热元件,在整体散热器完整的取热到散热过程中,是减小总热阻的最关键环节,从而可以满足高热流密度的取热及散热要求。在对本发明实施例的微纳复合结构表面的实验验证当中,通过数据分析可发现,在一定的热流密度范围内,取热表面平均温度具有较低的过热度,且具有较好的线性度。相比于微槽表面,在表面的钛纳米涂层达到250nm及以上时,表面相变汽泡明显细化,汽泡成核密度显著增加,从而大大增强了强化换热效果。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而己,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种微纳复合结构表面热沉,包括微槽群热沉,其特征在于,还包括纳米涂层,所述纳米涂层在所述微槽群热沉的表面生成:
所述微槽群热沉的表面材料是半导体、玻璃、陶瓷或金属及其合金;
所述微槽群热沉的微槽道横截面是矩形、梯形或三角形;
所述纳米涂层材料是金属、金属氧化物、金属氟化物、半导体材料或有机高聚物涂料。
2.根据权利要求1所述的微纳复合结构表面热沉,其特征在于,所述纳米涂层厚度为0~1000nm。
3.根据权利要求1所述的微纳复合结构表面热沉,其特征在于,所述矩形微槽道的微槽道宽度在0.05~2mm范围内,微槽道深度在0.05~2mm范围内,相邻微槽道间距在0.05~5mm范围内。
4.根据权利要求1所述的微纳复合结构表面热沉,其特征在于,所述梯形微槽道的梯形上底边长度为0.05~2mm,下底边长度为0.07~4mm,微槽道深度为0.05~8mm,相邻微槽道间距为0.05~5mm。
5.根据权利要求1所述的微纳复合结构表面热沉,其特征在于,所述三角形微槽道的槽底顶角为5°~120°,微槽道深度为0.05~8mm,相邻微槽道间距为0.05~5mm。
6.一种微纳复合结构表面热沉强化换热的方法,其特征在于,
在微槽群热沉的表面增加纳米涂层:
所述微槽群热沉的表面材料是半导体、玻璃、陶瓷或金属及其合金;
所述微槽群热沉的微槽道横截面是矩形、梯形或三角形;
所述纳米涂层材料是金属、金属氧化物、金属氟化物、半导体材料或有机高聚物涂料。
7.根据权利要求6所述的微纳复合结构表面热沉强化换热的方法,其特征在于,所述纳米涂层厚度为0~1000nm。
8.根据权利要求6所述的微纳复合结构表面热沉强化换热的方法,其特征在于,所述矩形微槽道的微槽道宽度在0.05~2mm范围内,微槽道深度在0.05~2mm范围内,相邻微槽道间距在0.05~5mm范围内。
9.根据权利要求6所述的微纳复合结构表面热沉强化换热的方法,其特征在于,所述梯形微槽道的梯形上底边长度为0.05~2mm,下底边长度为0.07~4mm,微槽道深度为0.05~8mm,相邻微槽道间距为0.05~5mm。
10.根据权利要求6所述的微纳复合结构表面热沉强化换热的方法,其特征在于,所述三角形微槽道的槽底顶角为5°~120°,微槽道深度为0.05~8mm,相邻微槽道间距为0.05~5mm。
CN201610821637.6A 2016-09-13 2016-09-13 一种微纳复合结构表面热沉及其强化换热的方法 Pending CN107816907A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610821637.6A CN107816907A (zh) 2016-09-13 2016-09-13 一种微纳复合结构表面热沉及其强化换热的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610821637.6A CN107816907A (zh) 2016-09-13 2016-09-13 一种微纳复合结构表面热沉及其强化换热的方法

Publications (1)

Publication Number Publication Date
CN107816907A true CN107816907A (zh) 2018-03-20

Family

ID=61601269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610821637.6A Pending CN107816907A (zh) 2016-09-13 2016-09-13 一种微纳复合结构表面热沉及其强化换热的方法

Country Status (1)

Country Link
CN (1) CN107816907A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108011008A (zh) * 2017-11-28 2018-05-08 西安科锐盛创新科技有限公司 Led封装结构
CN108696705A (zh) * 2018-03-22 2018-10-23 江苏蔚联机械股份有限公司 一种具有高光亮度镜面的电视机机脚及其制备方法
CN110267485A (zh) * 2019-05-27 2019-09-20 西安交通大学 一种蒸发-沸腾毛细芯耦合补液毛细芯组合结构
CN111707116A (zh) * 2020-04-30 2020-09-25 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种具有多级微槽道的微通道换热器及其制造方法
CN111834309A (zh) * 2020-07-21 2020-10-27 西安科技大学 混合润湿性微纳复合强化换热结构及该结构的制备方法
WO2022033289A1 (zh) * 2020-08-10 2022-02-17 深圳市顺熵科技有限公司 一种平板热管及其制备方法和换热器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228855A (ja) * 2004-02-12 2005-08-25 Yamagishi Kogyo:Kk 放熱器
CN101082468A (zh) * 2007-07-05 2007-12-05 上海交通大学 以碳纳米管悬浮液为工质的重力型微槽道平板热管
CN102235615A (zh) * 2010-04-21 2011-11-09 中国科学院工程热物理研究所 一种腔式发光二极管灯
CN202259261U (zh) * 2011-08-29 2012-05-30 江阴康强电子有限公司 一种含有热沉的引线框架
CN203071055U (zh) * 2012-12-06 2013-07-17 国网智能电网研究院 一种适用于存在局部热点的高热流密度电力电子元器件的微槽道换热器
CN103940273A (zh) * 2014-05-07 2014-07-23 浙江大学 一种有限空间内局部高热流的散热装置及方法
CN105716467A (zh) * 2016-02-25 2016-06-29 浙江大学 一种智慧型沸腾表面及其调控沸腾方法
CN206073779U (zh) * 2016-09-13 2017-04-05 中国科学院工程热物理研究所 一种微纳复合结构表面热沉

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005228855A (ja) * 2004-02-12 2005-08-25 Yamagishi Kogyo:Kk 放熱器
CN101082468A (zh) * 2007-07-05 2007-12-05 上海交通大学 以碳纳米管悬浮液为工质的重力型微槽道平板热管
CN102235615A (zh) * 2010-04-21 2011-11-09 中国科学院工程热物理研究所 一种腔式发光二极管灯
CN202259261U (zh) * 2011-08-29 2012-05-30 江阴康强电子有限公司 一种含有热沉的引线框架
CN203071055U (zh) * 2012-12-06 2013-07-17 国网智能电网研究院 一种适用于存在局部热点的高热流密度电力电子元器件的微槽道换热器
CN103940273A (zh) * 2014-05-07 2014-07-23 浙江大学 一种有限空间内局部高热流的散热装置及方法
CN105716467A (zh) * 2016-02-25 2016-06-29 浙江大学 一种智慧型沸腾表面及其调控沸腾方法
CN206073779U (zh) * 2016-09-13 2017-04-05 中国科学院工程热物理研究所 一种微纳复合结构表面热沉

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108011008A (zh) * 2017-11-28 2018-05-08 西安科锐盛创新科技有限公司 Led封装结构
CN108696705A (zh) * 2018-03-22 2018-10-23 江苏蔚联机械股份有限公司 一种具有高光亮度镜面的电视机机脚及其制备方法
CN110267485A (zh) * 2019-05-27 2019-09-20 西安交通大学 一种蒸发-沸腾毛细芯耦合补液毛细芯组合结构
CN111707116A (zh) * 2020-04-30 2020-09-25 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种具有多级微槽道的微通道换热器及其制造方法
CN111707116B (zh) * 2020-04-30 2021-08-31 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种具有多级微槽道的微通道换热器及其制造方法
CN111834309A (zh) * 2020-07-21 2020-10-27 西安科技大学 混合润湿性微纳复合强化换热结构及该结构的制备方法
CN111834309B (zh) * 2020-07-21 2021-10-01 西安科技大学 混合润湿性微纳复合强化换热结构及该结构的制备方法
WO2022033289A1 (zh) * 2020-08-10 2022-02-17 深圳市顺熵科技有限公司 一种平板热管及其制备方法和换热器

Similar Documents

Publication Publication Date Title
CN206073779U (zh) 一种微纳复合结构表面热沉
CN107816907A (zh) 一种微纳复合结构表面热沉及其强化换热的方法
Zhang et al. A review of the state-of-the-art in electronic cooling
Zhou et al. A two-phase liquid immersion cooling strategy utilizing vapor chamber heat spreader for data center servers
CN104851857B (zh) 一种芯片冷却***
CN201226636Y (zh) 一种带有蒸发腔体的液冷散热装置
Yang et al. Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling
CN201590985U (zh) 液冷板
CN105841535A (zh) 分段式复合结构平板传热管及其制备方法
CN104465562A (zh) 一种链式交错型微通道结构
CN206268818U (zh) 一种散热装置及具有该散热装置的大功率led灯具
TW201040478A (en) Structural improvement of thermosiphon panel
CN105845648A (zh) 一种微电子器件树形散热器
CN103429061A (zh) 空腹热管散热器
CN201854544U (zh) 一种冷凝辐射散热板
CN201611995U (zh) 一种均热板
Wang et al. Equivalent thermal resistance minimization for a circular disc heat sink with reverting microchannels based on constructal theory and entransy theory
CN102121802A (zh) 双面槽道板式脉动热管
Chiu et al. Numerical investigation on the temperature uniformity of micro-pin-fin heat sinks with variable density arrangement
Jiu et al. Investigation of a novel natural convection heat sink for LEDs based on U-shaped mini-heat pipe arrays
WO2005071747A1 (en) Heat pipe radiator of heat-generating electronic component
CN107887356B (zh) 一种针对密闭结构高热流密度器件的散热器
Chen et al. Enhanced boiling heat transfer performance on mini-pin-finned copper surfaces in FC-72
Zhou et al. Thermal performance evaluation of a novel ultra-thin vapor chamber with Laval-like nozzle composite wick under different air cooling conditions
CN202032930U (zh) 一种双面槽道板式脉动热管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180320

RJ01 Rejection of invention patent application after publication