CN107804874A - 一种气凝胶状二硫化钼纳米材料的制备方法 - Google Patents

一种气凝胶状二硫化钼纳米材料的制备方法 Download PDF

Info

Publication number
CN107804874A
CN107804874A CN201711250354.1A CN201711250354A CN107804874A CN 107804874 A CN107804874 A CN 107804874A CN 201711250354 A CN201711250354 A CN 201711250354A CN 107804874 A CN107804874 A CN 107804874A
Authority
CN
China
Prior art keywords
molybdenum disulfide
disulfide nano
solution
flower
airsetting glue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711250354.1A
Other languages
English (en)
Inventor
郑学军
裴大钊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201711250354.1A priority Critical patent/CN107804874A/zh
Publication of CN107804874A publication Critical patent/CN107804874A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明公开了一种气凝胶状二硫化钼纳米材料的制备方法,其制备方法是使用四水钼酸铵作为钼源,硫脲作为硫源,在反应温度220摄氏度,反应时间为24小时的水热条件下合成花状二硫化钼纳米球。水浴超声处理水热反应合成的花状纳米球1小时,接着在‑50摄氏度真空环境冷冻干燥超声处理后的二硫化钼36小时,获得气凝胶状二硫化钼纳米材料。所合成的材料因其具有介孔结构在锂离子电池和超级电容器等领域具有广阔的应用前景。

Description

一种气凝胶状二硫化钼纳米材料的制备方法
技术领域
本发明涉及一种气凝胶状二硫化钼纳米材料的制备方法,属于纳米材料制备领域。
背景技术
二硫化钼是一种典型的过渡金属硫化物,由六方晶系的单层或多层二硫化钼组成的具有“三明治夹心”结构的化合物。其中单层二硫化钼由三层原子层构成,上下两层均为硫原子层,中间一层为钼原子层,钼原子层被两层硫原子层所夹形成类“三明治”结构。这种结构使得层内存在较强的共价键,层间则存在较弱的范德华力,S原子暴露在MoS2晶体表面,对金属表面产生较强的吸附作用。多层二硫化钼由若干单层二硫化钼组成,层间距大约为0.65 纳米。作为一种重要的二维层状纳米材料,二硫化钼以其独特的“三明治夹心”结构在润滑剂、电催化、能源储备等众多领域得到了广泛的应用。
花状二硫化钼纳米球材料的制备方法多为水热法。Ke-Jing Huang等用Na2MoO4·2H2O作为钼源,L-半胱氨酸作为硫源,摩尔比为1:3混合搅拌成均匀溶液倒入聚四氟乙烯反应釜,在180摄氏度水热反应48小时得到花状二硫化钼。此方法得到二硫化钼样品的比表面积较低,抑制其作为储能电极材料时器件的电化学性能。
本发明专利基于水热法的基础上增加后续超声处理和冷冻干燥步骤,提供一种气凝胶状二硫化钼纳米材料的制备方法,这种气凝胶状二硫化钼纳米材料具有高的比表面积和介孔密度,提高二硫化钼在储能领域的应用性能。
发明内容
本发明的目的是提供一种高比表面积和介孔密度的气凝胶状二硫化钼纳米材料的制备方法。
本发明采用的技术方案步骤如下:
第一步:用去离子水溶解四水钼酸铵,得到溶液A;
第二步:将硫脲溶解到溶液A中,得到溶液B;
第三步:将溶液B磁力搅拌1小时得到均匀溶液C;
第四步:将溶液C转移至不锈钢高压反应釜的聚四氟乙烯内衬中,在220摄氏度反应24小时得到反应混合产物,待不锈钢高压反应釜自然冷却至室温后,先除去上层清液,随后将反应混合产物转移至烧杯中;
第五步:使用去离子水与乙醇分别清洗反应混合产物三次,静置沉淀除去上层清液后得到含乙醇的花状二硫化钼纳米球;
第六步:将含乙醇的花状二硫化钼纳米球放入真空干燥箱中,在50摄氏度下干燥8小时,得到干燥的花状二硫化钼纳米球;
第七步:将水热反应合成的花状二硫化钼粉末加入到去离子水中,超声波处理60分钟;
第八步:将超声波处理后的溶液放入冷冻干燥机,在-50摄氏度下冷冻12小时;
第九步:开启冷冻干燥机真空泵抽真空,待冰块完全升华后得到气凝胶状二硫化钼纳米材料。
上述四水钼酸铵与硫脲的摩尔比为1:15。
本发明的有益效果是:气凝胶状二硫化钼纳米材料具有高的比表面积和孔径密度,这种结构在储能领域具有广泛的应用。应用于超级电容器领域,作为电极材料高比表面积可提供更多的活性位点可增加超级电容器的比电容;应用于锂离子电池领域,作为锂离子电池负极材料利用多孔界面和表面的缺陷结构缓解嵌锂过程中的体积膨胀可提高锂离子电池的循环稳定性。
附图说明
图1是实施例1所得气凝胶状二硫化钼的XRD图谱。
图2是实施例1所得气凝胶状二硫化钼的Raman图谱。
图3是实施例1所得气凝胶状二硫化钼的低分辨率SEM照片。
图4是实施例1所得气凝胶状二硫化钼的高分辨率SEM照片。
图5是实施例1所得气凝胶状二硫化钼的氮吸附/脱附等温线图。
图6是实施例1所得气凝胶状二硫化钼的孔径分布图
具体实施方式
制备气凝胶状二硫化钼纳米材料,其主要步骤为:
实施例1:
(1) 分别称取1mmol 四水钼酸铵和15mmol 硫脲溶解在40ml 去离子水中,将溶液磁力搅拌1小时得到均匀溶液;
(2) 将溶液转移至不锈钢高压反应釜的聚四氟乙烯内衬中,在220摄氏度保温24小时得到反应混合产物,待不锈钢高压反应釜自然冷却至室温后,先除去上层清液,随后将反应混合产物转移至烧杯中;
(3) 使用去离子水与乙醇分别清洗反应混合产物三次,静置沉淀除去上层清液后得到含乙醇的花状二硫化钼纳米球;
(4) 将含乙醇的花状二硫化钼纳米球放入真空干燥箱中,在50摄氏度下干燥8小时,得到干燥的花状二硫化钼纳米球。将水热反应合成的花状二硫化钼粉末加入到去离子水中,超声波处理60分钟;
(5) 超声波处理后的溶液放入冷冻干燥机,在-50摄氏度下冷冻12小时;
(6) 开启冷冻干燥机真空泵抽真空,待冰块完全升华后得到气凝胶状二硫化钼纳米材料。

Claims (2)

1.一种气凝胶状二硫化钼纳米材料的制备方法,其特征在于:水热反应、超声处理和冷冻干燥。
2.根据权利要求1所述的一种气凝胶状二硫化钼纳米材料的制备方法,其特征在于:
第一步:用去离子水溶解四水钼酸铵,得到溶液A;
第二步:将硫脲溶解到溶液A中,得到溶液B;
第三步:将溶液B磁力搅拌1小时得到均匀溶液C;
第四步:将溶液C转移至不锈钢高压反应釜的聚四氟乙烯内衬中,在220摄氏度反应24小时得到反应混合产物,待不锈钢高压反应釜自然冷却至室温后,先除去上层清液,随后将反应混合产物转移至烧杯中;
第五步:使用去离子水与乙醇分别清洗反应混合产物三次,静置沉淀除去上层清液后得到含乙醇的花状二硫化钼纳米球;
第六步:将含乙醇的花状二硫化钼纳米球放入真空干燥箱中,在50摄氏度下干燥8小时,得到干燥的花状二硫化钼纳米球;
第七步:将水热反应合成的花状二硫化钼粉末加入到去离子水中,超声波处理60分钟;
第八步:将超声波处理后的溶液放入冷冻干燥机,在-50摄氏度下冷冻12小时;
第九步:开启冷冻干燥机真空泵抽真空,待冰块完全升华后得到气凝胶状二硫化钼纳米材料。
CN201711250354.1A 2017-12-01 2017-12-01 一种气凝胶状二硫化钼纳米材料的制备方法 Pending CN107804874A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711250354.1A CN107804874A (zh) 2017-12-01 2017-12-01 一种气凝胶状二硫化钼纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711250354.1A CN107804874A (zh) 2017-12-01 2017-12-01 一种气凝胶状二硫化钼纳米材料的制备方法

Publications (1)

Publication Number Publication Date
CN107804874A true CN107804874A (zh) 2018-03-16

Family

ID=61590902

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711250354.1A Pending CN107804874A (zh) 2017-12-01 2017-12-01 一种气凝胶状二硫化钼纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN107804874A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108786855A (zh) * 2017-05-04 2018-11-13 中国计量大学 一种介孔二硫化钼可见光催化剂材料的制备方法及其在降解抗生素废水领域中的应用
CN110853935A (zh) * 2019-11-21 2020-02-28 北京协同创新研究院 一种硫化钼超级电容器电极及其制备方法
CN111099658A (zh) * 2020-01-07 2020-05-05 南开大学 一种不同层间距二硫化钼纳米材料的制备方法
CN113522319A (zh) * 2021-07-05 2021-10-22 北京建筑大学 一种催化材料的制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393294A (zh) * 2014-11-27 2015-03-04 江苏理工学院 一种花状二硫化钼微球的制备方法
CN105366727A (zh) * 2015-12-22 2016-03-02 镇江市高等专科学校 二硫化钼花状纳米棒的制备方法
CN106732668A (zh) * 2016-11-18 2017-05-31 中国计量大学 一种花状二硫化钼/氧化铜复合纳米材料的水热制备方法
US9725332B2 (en) * 2013-10-24 2017-08-08 Empire Technology Development Llc Transition metal dichalcogenide aerogels and methods of preparation and use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9725332B2 (en) * 2013-10-24 2017-08-08 Empire Technology Development Llc Transition metal dichalcogenide aerogels and methods of preparation and use
US20170267543A1 (en) * 2013-10-24 2017-09-21 Empire Technology Development Llc Transition metal dichalcogenide aerogels and methods of preparation and use
CN104393294A (zh) * 2014-11-27 2015-03-04 江苏理工学院 一种花状二硫化钼微球的制备方法
CN105366727A (zh) * 2015-12-22 2016-03-02 镇江市高等专科学校 二硫化钼花状纳米棒的制备方法
CN106732668A (zh) * 2016-11-18 2017-05-31 中国计量大学 一种花状二硫化钼/氧化铜复合纳米材料的水热制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108786855A (zh) * 2017-05-04 2018-11-13 中国计量大学 一种介孔二硫化钼可见光催化剂材料的制备方法及其在降解抗生素废水领域中的应用
CN110853935A (zh) * 2019-11-21 2020-02-28 北京协同创新研究院 一种硫化钼超级电容器电极及其制备方法
CN111099658A (zh) * 2020-01-07 2020-05-05 南开大学 一种不同层间距二硫化钼纳米材料的制备方法
CN113522319A (zh) * 2021-07-05 2021-10-22 北京建筑大学 一种催化材料的制备方法及其应用

Similar Documents

Publication Publication Date Title
Xing et al. Facile synthesis of graphene nanosheets from humic acid for supercapacitors
CN107804874A (zh) 一种气凝胶状二硫化钼纳米材料的制备方法
Krishnamoorthy et al. Mechanically delaminated few layered MoS2 nanosheets based high performance wire type solid-state symmetric supercapacitors
Chen et al. N/O/P-rich three-dimensional carbon network for fast sodium storage
Fang et al. Biomass porous potatoes/MXene encapsulated PEG-based PCMs with improved photo-to-thermal conversion capability
Zhang et al. Bifunctional reduced graphene oxide/V2O5 composite hydrogel: fabrication, high performance as electromagnetic wave absorbent and supercapacitor
Wang et al. A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors
Jin et al. Ultra-efficient electromagnetic wave absorption with ethanol-thermally treated two-dimensional Nb2CTx nanosheets
CN102698774B (zh) 一种单层MoS2与石墨烯复合纳米材料的水热制备方法
CN103094563B (zh) 石墨烯与MoS2纳米复合材料及制备方法和应用
Huyan et al. MXene@ C heterogeneous nanocomposites with the 2D-0D structure for ultra-light and broadband electromagnetic wave absorption
Wang et al. MoS2/corncob-derived activated carbon for supercapacitor application
Zhang et al. Growth of nickel (111) plane: The key role in nickel for further improving the electrochemical property of hexagonal nickel hydroxide-nickel & reduced graphene oxide composite
CN107586537B (zh) 一种复合相变材料及其制备方法
Li et al. Porous biochar generated from natural Amorphophallus konjac for high performance supercapacitors
CN106058206A (zh) 一种花状碳负载MoS2纳米颗粒的复合材料及其制备方法和应用
Song et al. One-step self-assembly fabrication of three-dimensional copper oxide/graphene oxide aerogel composite material for supercapacitors
Zhang et al. Low-tortuosity carbon electrode derived from Wood@ ZIF-67 for supercapacitor applications
Zhang et al. Interface-induced enhanced electromagnetic wave absorption property of metal-organic frameworks wrapped by graphene sheets
CN108155028B (zh) 一种类花状二硫化钼高性能超级电容器电极的制备方法
Liu et al. Spraying Coagulation‐Assisted Hydrothermal Synthesis of MoS2/Carbon/Graphene Composite Microspheres for Lithium‐Ion Battery Applications
CN112435867A (zh) 柔性自支撑MXene/CuS超级电容器电极材料的制备方法
Kim et al. Hierarchical micro & mesoporous silicon carbide flakes for high-performance electrochemical capacitive energy storage
CN109019686A (zh) 一种气凝胶状二硫化钒纳米材料的制备方法和应用
Zhang et al. A water supply tunable bilayer evaporator for high-quality solar vapor generation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180316

WD01 Invention patent application deemed withdrawn after publication