CN107774136B - 用于正渗透程序的离子液体与正渗透程序 - Google Patents

用于正渗透程序的离子液体与正渗透程序 Download PDF

Info

Publication number
CN107774136B
CN107774136B CN201611089665.XA CN201611089665A CN107774136B CN 107774136 B CN107774136 B CN 107774136B CN 201611089665 A CN201611089665 A CN 201611089665A CN 107774136 B CN107774136 B CN 107774136B
Authority
CN
China
Prior art keywords
ionic liquid
forward osmosis
extracting solution
water
extract
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611089665.XA
Other languages
English (en)
Other versions
CN107774136A (zh
Inventor
刘柏逸
鐘琍菁
方峙翔
何佳桦
邵信
黄盟舜
洪仁阳
梁德明
张敏超
杨翠容
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN107774136A publication Critical patent/CN107774136A/zh
Application granted granted Critical
Publication of CN107774136B publication Critical patent/CN107774136B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/005Osmotic agents; Draw solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/13Dicarboxylic acids
    • C07C57/145Maleic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • C07D207/2632-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms
    • C07D207/2672-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • C07F9/5407Acyclic saturated phosphonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/10Temperature control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本揭露提供一种用于正渗透程序的离子液体与正渗透程序。所述正渗透程序是以半透膜分隔提取液端与进水端;将离子液体置入提取液端;将盐水置入进水端,且盐水的渗透压低于离子液体的渗透压,盐水中的纯水渗透穿过半透膜,并进入提取液端与离子液体混合成提取液;自提取液端取出提取液;以及于室温下静置提取液,使提取液分层成水层与离子液体层。离子液体包括
Figure DDA0001168386020000011
Figure DDA0001168386020000012
本发明的用于正渗透程序的离子液体以及正渗透程序是可有效降低现有正渗透程序在提取液与水相分离的耗能。

Description

用于正渗透程序的离子液体与正渗透程序
技术领域
本揭露关于用于正渗透程序的离子液体,即,正渗透所用的提取液溶质(离子液体),以及正渗透程序。
背景技术
正渗透(forward osmosis,FO)脱盐程序的技术原理是利用半透膜两端溶液或溶质间的渗透压差作为驱动力,即是使低渗透压的进水(feed water)端的水,渗透穿过半透膜至高渗透压的提取液(draw solution)端。而穿过半透膜的水与提取液的混合溶液,可藉由各种分离浓缩的方式,使水与提取液产生分离,达到提取液的回收和产生纯水。正渗透技术应用于水处理上的优点在于低耗能与低薄膜阻塞率,可大幅提升功能稳定性与成本效益。
提取液需具(1)高渗透压(2)亲水性佳和(3)易于分离等特点,其中又以提取液与过膜水的分离,以及提取液的回收是决定正渗透技术能耗的关键因素。目前有一些技术采用离子液体作为提取溶质(draw solute),但其与水混合后的分离方式需加热至35℃至50℃之间,使提取液中的离子液体与水分层。明显地,上述方式存有加热耗能的问题。
综上所述,目前仍需新的提取溶质克服上述问题。
发明内容
本揭露一实施例提供的用于正渗透程序的离子液体,包括:
Figure BDA0001168386000000011
其中R1是C4-6的烷基;R2是C4-14的烷基;R3是C3-16的烷基;R4是C1-8的烷基;
Figure BDA0001168386000000012
Figure BDA0001168386000000021
CF3COO-
Figure BDA0001168386000000022
Br-
Figure BDA0001168386000000023
Figure BDA0001168386000000024
Figure BDA0001168386000000025
或上述的组合,
Figure BDA00011683860000000213
是HSO4 -、NO3 -、Cl-、或上述的组合。
本揭露一实施例提供的正渗透程序,以半透膜分隔提取液端与进水端;将离子液体置入提取液端;将盐水置入进水端,且盐水的渗透压低于离子液体的渗透压,盐水中的纯水渗透穿过半透膜,并进入提取液端与离子液体混合成提取液;自提取液端取出提取液;以及于室温下静置提取液,使提取液分层成水层与离子液体层。离子液体包括
Figure BDA0001168386000000026
Figure BDA0001168386000000027
R1是C4-6的烷基,R2是C4-14的烷基,R3是C3-16的烷基,R4是C1-8的烷基。
Figure BDA00011683860000000212
Figure BDA0001168386000000028
CF3COO-
Figure BDA0001168386000000029
Br-
Figure BDA00011683860000000210
Figure BDA0001168386000000031
Figure BDA0001168386000000032
或上述的组合。
Figure BDA0001168386000000033
是HSO4 -、NO3 -、Cl-、或上述的组合。
与现有技术相比,本发明提供的用于正渗透程序的离子液体以及正渗透程序是采用特定结构的离子液体作为正渗透的提取液,其可自盐水提取纯水,且两者的混合液(在特定比例下)静置于室温下即可自动分层而不需加热,可有效降低现有正渗透程序在提取液与水相分离的耗能。
附图说明
图1是本揭露一实施例中,正渗透程序的示意图;
图2是本揭露一实施例中,混合液其离子液体浓度与渗透压的关系图;
图3是本揭露一实施例中,混合液其离子液体浓度与导电度的关系图;
图4是本揭露一实施例中,进水端与提取液端的重量变化(水通量)与提取液端的导电度与时间的关系图;
图5是本揭露一实施例中,采用不同离子液体的混合液其分层温度与浓度的关系图;
其中,符号说明:
11 半透膜 13 进水端
15 提取液端 17 盐水
19 离子液体 21 纯水。
具体实施方式
本揭露一实施例提供的正渗透程序,包括:以半透膜11分隔进水端13与提取液端15,如图1所示。接着将盐水17置入进水端13,并将离子液体19置入提取液端15。由于盐水17的渗透压低于离子液体19的渗透压,使盐水中的纯水21渗透穿过半透膜11,进入提取液端15与离子液体19混合成提取液。
在一实施例中,可进一步搅拌提取液,使提取液端15中的提取液不致分层形成水层与离子液体层,以避免影响提取液端15的渗透压,进而降低水通量。当提取液的含水量到达一定浓度后,再将提取液自提取液端15取出,并于室温下静置。
在一实施例中,可采用管线将提取液导入另一槽中静置。由于提取液端15的离子液体阴/阳离子经调控设计后的结构组成,会因离子液体本身的阴离子或两种离子液体相互混合后的高吸水能力(通过氢键),使阴离子于某一浓度范围时,产生内部结构变化(conformational change),如自身分子氢键(intramolecular hydrogen bonding)或其他方式而降低亲水性,增加与疏水性阳离子间的联聚(aggregation)能力,进而使其在特定的浓度范围内产生聚集。如此一来,静置后的提取液将分层形成水层与离子液体层,不需额外供给能量而即达到与水分离纯化离子液体19的目的。
在一实施例中,在提取液分层形成水层与离子液体层后,可将离子液体层再置入提取液端15进行回用。举例来说,可采用管线将另一槽中的离子液体层导回提取液端15,以达重复使用离子液体的效果。在一实施例中,将盐水置入进水端的步骤可为连续地导入海水,以维持进水端13中的盐水渗透压浓度维持恒定。如此一来,自盐水提取的纯水21渗透至提取液端15不会导致进水端13中盐水17的浓度与渗透压增加,避免降低纯水21渗透至提取液端15的通量。在其他实施例中,盐水可为废水,其来源可为工厂、住家、或实验室。
在一实施例中,提取液分层成该水层与该离子液体层的步骤中,该离子液体层与该水层的重量比介于10:90至50:50之间。若提取液中的离子液体的重量比例过低或过高,则提取液无法在室温分层成离子液体层与水层。在一实施例中,上述室温介于15℃至30℃之间。若具相变分离特性的提取液(含离子液体)分层所需的温度过高(比如高于室温),则需额外加热提取液使其分层,额外加热步骤即是能耗损失的主要缺点。
上述离子液体包括
Figure BDA0001168386000000041
Figure BDA0001168386000000051
上述R1是C4-6的烷基,R2是C4-14的烷基,R3是C3-16的烷基,且R4是C1-8的烷基。
Figure BDA00011683860000000513
Figure BDA0001168386000000052
CF3COO-
Figure BDA0001168386000000053
Br-
Figure BDA0001168386000000054
Figure BDA0001168386000000055
Figure BDA0001168386000000056
或上述的组合。
Figure BDA00011683860000000514
是HSO4 -、NO3 -、Cl-、或上述的组合。
在一实施例中,
Figure BDA00011683860000000515
Figure BDA0001168386000000057
Figure BDA0001168386000000058
Figure BDA0001168386000000059
中两者的组合,且两种阴离子的一者与另一者的摩尔比例介于1:0.2至1:1之间。
在一实施例中,离子液体是
Figure BDA0001168386000000061
在此实施例中,提取液分层成水层与离子液体层的步骤中,离子液体层与水层的重量比介于30:70至50:50之间。
在另一实施例中,离子液体是
Figure BDA0001168386000000062
在此实施例中,提取液分层成水层与离子液体层的步骤中,离子液体层与水层的重量比介于10:90至40:60之间。
由上述可知,本揭露采用特定结构的离子液体作为正渗透的提取溶质,其可自盐水提取纯水,且的离子液体与纯水混合液(在特定比例下)静置于室温下即可自动分层而不需加热,可有效降低现有正渗透程序在分离提取溶质的耗能。
为了让本揭露的上述和其他目的、特征、和优点能更明显易懂,下文特举数实施例配合所附附图,作详细说明如下:
实施例
实施例1
取1摩尔份的四丁基氢氧化磷与1摩尔份的马来酸混合后,于常温下搅拌24小时。接着以二氯甲烷萃取有机层,浓缩后再以减压蒸馏法去除残留水份,即得离子液体[P4444][Mal]。上述反应如下式所示:
Figure BDA0001168386000000063
取不同重量比的离子液体[P4444][Mal]与水混合后,静置于室温下一段时间,观察是否产生相分离,如表1所示。离子液体[P4444][Mal]与水具备浓度敏化相分离的特性。离子液体[P4444][Mal]浓度介于60-70wt%时属于均相溶液,随水含量增加而浓度逐渐稀释至30-50%时产生相分离,属于自发性相变行为,不需额外供给热能。若离子液体浓度降低至20wt%(或更低)时,离子液体与水将混合而非相分离。
表1(不同浓度的离子液体[P4444][Mal]的相分离)
Figure BDA0001168386000000071
使用渗透压仪器(OSMOMAT 030,GONOTEC)量测离子液体[P4444][Mal]的渗透压,采用冰点下降法进行分析,原理为使用急速降温冷冻法测定凝固点温度。当摩尔溶质(如离子液体)可使1斤水的凝固点下降1.86℃,则此溶质的渗透压定义为1Osmol/kg。
实验结果显示离子液体[P4444][Mal]浓度范围在5-25wt%时,水与离子液体[P4444][Mal]的混合液的渗透压呈线性关系,如图2所示。当混合液中的离子液体[P4444][Mal]浓度为25wt%时,渗透压为1.0Osmol/kg,与海水的渗透压(1.2Osmol/kg)相近。
此外,含有高浓度的离子液体[P4444][Mal]的混合液其渗透压已超出仪器可侦测范围,因此以含有5-25wt%的离子液体[P4444][Mal]的混合液的渗透压的实测值所得关系式,进一步推估含有30-70wt%的离子液体[P4444][Mal]的混合液其渗透压,如表2所示。实验结果显示含有30-70wt%离子液体[P4444][Mal]的混合液的渗透压为海水的渗透压的2-5倍,具高渗透压的特性。
表2
离子液体[P<sub>4444</sub>][Mal]浓度 30wt% 40wt% 50wt% 60wt% 70wt%
混合液渗透压(osmol/Kg) 1.3 1.9 2.8 4.1 6.3
*海水渗透压(0.6M NaCl)为1.2Osmol/kg
含有不同浓度的离子液体[P4444][Mal]的混合液,其离子液体浓度与导电度的关系如图3所示。含高浓度离子液体的混合液其初始导电度约为4mS/cm,然而随着水含量增加而导电度上升。这是因为离子液体富集相(ionic liquid-rich)属于离子对(ion pair)形式存在,随着水含量增加会降低自身聚集现象,形成独立存在的阴/阳离子。藉由离子液体这样的特性,可稳定操作并有效提升正渗透的水通量,其优于无机盐类作为正渗透提取溶质的表现。
使用自组装式实验室级设备,正渗透模块为平板式,流道设计为双通道内循环式,使用Dow-filmtec公司生产的薄膜(TW30-1812),薄膜有效面积为64cm2,使用泵浦输送进水端及提取液端溶液,扫流速率为25cm/s,记录不同时间点的进水端与提取液端重量,再藉由重量变化、薄膜面积与实验时间求出水通量,如图4所示。将离子液体[P4444][Mal]输送至提取液端,将纯水(DI water)输送至进水端。在实验初期,导电度与水通量随时间增加。稳定操作8小时后,水通量与导电度仍维持一定,证明离子液体[P4444][Mal]作为正渗透的提取溶质具稳定操作的优势。
实施例2
取1摩尔份的N-辛基吡咯烷酮(NOP)与1摩尔份的硫酸混合后置入冰浴中,反应24小时后即得离子液体[HNOP][HSO4]。
Figure BDA0001168386000000081
取不同重量比的离子液体[HNOP][HSO4]与水混合后,静置于室温下一段时间,观察是否产生相分离,如表3所示。离子液体[HNOP][HSO4]与水具备浓度敏化相分离的特性。离子液体[HNOP][HSO4]浓度介于50-70wt%时属于均相溶液,随水含量增加而浓度逐渐稀释至40%以下时产生相分离,属于自发性相变行为,不需额外供给热能。
表3(不同浓度的离子液体[HNOP][HSO4]的相分离)
Figure BDA0001168386000000091
比较例1
取实施例1的离子液体[P4444][Mal]与水于低温(接近10℃)下分别混合成10wt%、30wt%、50wt%、与70wt%的均相溶液后,慢慢升温并观查不同浓度的均相溶液分层的温度,如图5所示。
接着取市售的离子液体[P4444][TSO](86933,购自ALDRICH)与水于低温(接近10℃)下分别混合成10wt%、30wt%、与50wt%的均相溶液后,慢慢升温并观查不同浓度的均相溶液分层的温度,如图5所示。
由图5可知,离子液体[P4444][Mal]与水的混合溶液(30wt%至50wt%)在室温下即可分层,而市售离子液体[P4444][TSO]与水的混合溶液的分层温度均高于室温。与离子液体[P4444][TSO]相较,离子液体[P4444][Mal]与水的混合液在正渗透程序中不需加热即可产生分层,可进一步节省正渗透程序中分离提取溶质与水的热能损失。
虽然本揭露已以数个实施例揭露如上,然其并非用以限定本揭露,任何本技术领域中具有通常知识者,在不脱离本揭露的精神和范围内,当可作任意的更动与润饰,因此本揭露的保护范围当视后附的申请专利范围所界定者为准。

Claims (4)

1.一种正渗透程序,包括:
以半透膜分隔提取液端与进水端;
将离子液体置入所述提取液端;
将盐水置入所述进水端,且所述盐水的渗透压低于所述离子液体的渗透压,
所述盐水中的纯水渗透穿过所述半透膜,并进入所述提取液端与所述离子液体混合成提取液;
自所述提取液端取出所述提取液;以及
于室温下静置所述提取液,使所述提取液分层成水层与离子液体层,其中所述室温介于15℃至30℃之间,且所述离子液体是
Figure FDA0002614358620000011
其中所述提取液分层成水层与离子液体层的步骤中,所述离子液体层与所述水层的重量比介于10:90至40:60之间。
2.如权利要求1所述的正渗透程序,更包括在所述提取液分层成水层与离子液体层后,将所述离子液体层置入所述提取液端进行回用。
3.如权利要求1所述的正渗透程序,其中将所述盐水置入所述进水端的步骤是连续地导入海水。
4.如权利要求1所述的正渗透程序,更包括搅拌所述提取液端中提取液,以使得其中的纯水与离子液体不至分层。
CN201611089665.XA 2016-08-30 2016-12-01 用于正渗透程序的离子液体与正渗透程序 Active CN107774136B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662381187P 2016-08-30 2016-08-30
US62/381,187 2016-08-30

Publications (2)

Publication Number Publication Date
CN107774136A CN107774136A (zh) 2018-03-09
CN107774136B true CN107774136B (zh) 2020-10-27

Family

ID=59688276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611089665.XA Active CN107774136B (zh) 2016-08-30 2016-12-01 用于正渗透程序的离子液体与正渗透程序

Country Status (4)

Country Link
US (1) US10016725B2 (zh)
JP (1) JP2018034149A (zh)
CN (1) CN107774136B (zh)
TW (1) TWI586681B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109316965B (zh) * 2018-10-22 2020-11-24 华中科技大学 有机膦酸盐作为正渗透汲取溶质的应用以及正渗透装置
TWI776116B (zh) * 2019-12-30 2022-09-01 財團法人工業技術研究院 離子液體與利用其之正滲透程序
US11235283B2 (en) 2019-12-30 2022-02-01 Industrial Technology Research Institute Ionic liquid and forward osmosis process employing the same
US11273410B2 (en) 2019-12-31 2022-03-15 Industrial Technology Research Institute Extracted material for forward osmosis, preparation method thereof, and forward-osmosis water desalination system using the same
TWI769425B (zh) * 2019-12-31 2022-07-01 財團法人工業技術研究院 薄膜的清洗方法
US11738310B2 (en) 2019-12-31 2023-08-29 Industrial Technology Research Institute Method for cleaning membrane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1880303A (zh) * 2005-06-17 2006-12-20 广东工业大学 一种取代吡咯烷酮合成的离子液体及合成方法
WO2014178655A1 (ko) * 2013-04-30 2014-11-06 한국화학연구원 유도물질 내재형 정삼투 분리막, 이의 제조방법 및 이를 포함하는 정삼투 장치
CN104729878A (zh) * 2013-12-24 2015-06-24 南开大学 一种基于固定化离子液体的新型水体被动采样技术
WO2015147749A1 (en) * 2014-03-25 2015-10-01 Nanyang Technological University A draw solute for a forward osmosis process

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3341580A (en) * 1965-06-21 1967-09-12 Carlisle Chemical Works Tetrahydrocarbyl phosphonium acid carboxylates
US5294644A (en) * 1986-06-27 1994-03-15 Isp Investments Inc. Surface active lactams
EP2295399A3 (en) * 2001-03-26 2018-04-04 Nisshinbo Industries, Inc. Liquid electrolytes for electrical storage devices
NO20016012L (no) * 2001-12-07 2003-06-10 Statkraft Sf Hydrofil semipermeabel membran
CN1772739A (zh) * 2004-11-12 2006-05-17 中国科学院兰州化学物理研究所 以n-质子化内酰胺为阳离子基团的布朗斯特酸性室温离子液体及其制备方法
US8083942B2 (en) * 2004-12-06 2011-12-27 Board of Regents of the Nevada System of Higher Education, on Behalf of the Universary of Nevada, Reno Systems and methods for purification of liquids
CN101153018A (zh) * 2006-09-29 2008-04-02 武汉大学 含N-烷基吡咯烷酮基团的Brφnsted酸性离子液体及其制备方法和用途
CN101284913A (zh) * 2008-05-22 2008-10-15 高小山 以离子液体为溶剂的纤维素膜的制备方法
JP5378841B2 (ja) * 2009-03-18 2013-12-25 一般財団法人石油エネルギー技術センター 炭酸ガス分離膜
AU2010337293B2 (en) * 2009-12-15 2014-08-21 Cytec Technology Corp. Methods and compositions for the removal of impurities from an impurity-loaded ionic liquid
EP2534106B1 (en) 2010-02-10 2019-10-16 Queen's University At Kingston Method for modulating ionic strength
US10363336B2 (en) 2011-08-26 2019-07-30 Battelle Energy Alliance, Llc Methods and systems for treating liquids using switchable solvents
NL2007353C2 (en) * 2011-09-05 2013-03-07 Kwr Water B V Solution comprising an osmotic agent and method of extracting water using said solution.
US9447239B2 (en) 2012-03-19 2016-09-20 Samsung Electronics Co., Ltd. Thermosensitive copolymers, forward osmosis water treatment devices including the same, and methods of producing and using the same
WO2013148289A1 (en) 2012-03-30 2013-10-03 Hydration Systems, Llc Use of novel draw solutes and combinations in forward osmosis system
KR20140099695A (ko) 2013-02-04 2014-08-13 삼성전자주식회사 정삼투용 유도 용질, 이를 이용한 정삼투 수처리 장치, 및 정삼투 수처리 방법
US11007482B2 (en) * 2013-04-26 2021-05-18 Nanyang Technological University Draw solute and an improved forward osmosis method
EP2988853B1 (en) 2013-04-26 2019-08-14 Nanyang Technological University Use of a temperature sensitive draw solute for forward osmosis
JP6149627B2 (ja) * 2013-09-12 2017-06-21 Jfeエンジニアリング株式会社 半透膜による水処理方法
KR20150068829A (ko) 2013-12-12 2015-06-22 삼성전자주식회사 알킬 암모늄염 화합물을 포함하는 유도 용질
US9416071B2 (en) * 2014-05-06 2016-08-16 Uop Llc Hydrocarbon conversion processes using lactamium-based ionic liquids
WO2016027280A2 (en) 2014-08-20 2016-02-25 Council Of Scientific & Industrial Research Dewatering process through forward osmosis using deep eutectic solvents with or without dispersed magnetic nanopartscles as novel draw solutions
JP6211707B2 (ja) * 2014-08-21 2017-10-11 旭化成株式会社 溶媒分離システムおよび方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1880303A (zh) * 2005-06-17 2006-12-20 广东工业大学 一种取代吡咯烷酮合成的离子液体及合成方法
WO2014178655A1 (ko) * 2013-04-30 2014-11-06 한국화학연구원 유도물질 내재형 정삼투 분리막, 이의 제조방법 및 이를 포함하는 정삼투 장치
CN104729878A (zh) * 2013-12-24 2015-06-24 南开大学 一种基于固定化离子液体的新型水体被动采样技术
WO2015147749A1 (en) * 2014-03-25 2015-10-01 Nanyang Technological University A draw solute for a forward osmosis process

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Miscibility and phase behavior of water-dicarboxylic acid type ionic liquid mixed systems;Yukinobu Fukaya et al.;《Chemical Communications》;20070521;第29卷;第3089-3091页 *
Yukinobu Fukaya et al..Miscibility and phase behavior of water-dicarboxylic acid type ionic liquid mixed systems.《Chemical Communications》.2007,第29卷第3089-3091页. *

Also Published As

Publication number Publication date
US20180056241A1 (en) 2018-03-01
TWI586681B (zh) 2017-06-11
US10016725B2 (en) 2018-07-10
TW201808974A (zh) 2018-03-16
JP2018034149A (ja) 2018-03-08
CN107774136A (zh) 2018-03-09

Similar Documents

Publication Publication Date Title
CN107774136B (zh) 用于正渗透程序的离子液体与正渗透程序
Cai et al. Energy-efficient desalination by forward osmosis using responsive ionic liquid draw solutes
CN103304088B (zh) 一种基于正渗透的高含盐废水的回用处理方法
CN104445755B (zh) 一种用于氯化铵废水资源化处理的方法
Volkov et al. Porous condenser for thermally driven membrane processes: Gravity-independent operation
CN103073146A (zh) 一种基于正渗透和膜蒸馏的废水处理方法及装置
CN104803448A (zh) 高盐度高有机物浓度废水的正渗透处理方法
CN103102031B (zh) 一种低压海水淡化装置
WO2013126895A1 (en) Forward osmosis with an organic osmolyte for cooling towers
CN104591457B (zh) 正渗透耦合膜蒸馏处理废水的装置及方法
WO2016072461A1 (ja) 水処理方法、水処理システムおよび水処理装置
CN105597540B (zh) 一种正渗透汲取液及其应用、以及一种用于正渗透汲取液的有机膦化合物及其制备方法
WO2018150690A1 (ja) 水処理方法および水処理システム
KR101454314B1 (ko) 정삼투식 해수담수화 공정의 정삼투유도용액 회수방법
CN107106984A (zh) 用于运行渗透能发电厂的方法和渗透能发电厂
CN104591456B (zh) 一种高盐氨氮废水的处理方法
JP2014184403A (ja) 水処理装置
JP6465301B2 (ja) 水の脱塩処理装置
CN113121371B (zh) 离子液体与利用其的正渗透程序
JP2013146642A (ja) 流体膜分離発電システム
JP2021146275A (ja) 作業媒体及び水処理システム
CN103193295B (zh) 一种浸没式溶气真空膜蒸馏水处理方法
JP2018118186A (ja) 正浸透膜および水処理システム
Ban et al. Enrichment of semi-volatile organic acids from aqueous solutions by multiple-effect membrane distillation
JP2016087504A (ja) 淡水化システム及び淡水化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant