CN107764076A - 一种轧钢加热炉燃烧控制***及控制方法 - Google Patents

一种轧钢加热炉燃烧控制***及控制方法 Download PDF

Info

Publication number
CN107764076A
CN107764076A CN201711161536.1A CN201711161536A CN107764076A CN 107764076 A CN107764076 A CN 107764076A CN 201711161536 A CN201711161536 A CN 201711161536A CN 107764076 A CN107764076 A CN 107764076A
Authority
CN
China
Prior art keywords
heater
rolling steel
heating
section
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711161536.1A
Other languages
English (en)
Inventor
周劲军
史德明
范满仓
翟炜
曹曲泉
刘自民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maanshan Iron and Steel Co Ltd
Original Assignee
Maanshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maanshan Iron and Steel Co Ltd filed Critical Maanshan Iron and Steel Co Ltd
Priority to CN201711161536.1A priority Critical patent/CN107764076A/zh
Publication of CN107764076A publication Critical patent/CN107764076A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0006Monitoring the characteristics (composition, quantities, temperature, pressure) of at least one of the gases of the kiln atmosphere and using it as a controlling value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0006Monitoring the characteristics (composition, quantities, temperature, pressure) of at least one of the gases of the kiln atmosphere and using it as a controlling value
    • F27D2019/0018Monitoring the temperature of the atmosphere of the kiln
    • F27D2019/0021Monitoring the temperature of the exhaust gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

本发明公开了一种轧钢加热炉燃烧控制***及控制方法,属于加热炉燃烧控制领域。本发明的控制***包括:轧钢加热炉;激光检测机构,该激光检测机构用于检测轧钢加热炉内烟气的成分;以及温度检测仪,该温度检测仪用于直接测量钢坯表面温度。本发明的控制方法,包括以下步骤:步骤一:准备好控制***;步骤二:控制各段的烧嘴分别进行燃烧;步骤三:反馈O2和CO含量;步骤四:根据反馈,调整各烧嘴的空气和燃气流量,使得轧钢加热炉内O2、CO含量控制在目标范围内。本发明的目的在于克服现有轧钢工序中氧化烧损量偏高的不足,提供了一种轧钢加热炉燃烧控制***及控制方法,有效减少了轧钢加热炉内钢坯氧化烧损量。

Description

一种轧钢加热炉燃烧控制***及控制方法
技术领域
本发明涉及加热炉燃烧控制领域,更具体地说,涉及一种轧钢加热炉燃烧控制***及控制方法。
背景技术
加热炉是轧钢工序的主要耗能设备。在满足轧制工艺要求的同时,做到炉膛气氛、加热时间、加热温度的最优控制,降低氧化烧损和能耗是轧钢加热炉生产工艺追求的目标。
轧钢作为钢铁生产的末端工序(国内炼钢综合能耗约600kg标煤/吨钢),氧化烧损偏高,不仅带来大量的能源浪费,而且将影响轧钢成材率,直接影响企业的经济效益;另外,氧化铁皮堆积炉底需要定期清理,不仅降低生产率,而且增加现场工人劳动强度;在某些情况下,不合理加热产生的氧化铁皮难以去除,导致一次氧化铁皮引起轧钢产品表面出现压氧缺陷问题,影响产品质量。目前,钢铁行业已进入微利时代,为降本增效,节能降耗,国内外钢铁企业一直致力于降低轧钢加热炉燃料消耗、降低氧化烧损应用技术研究。
加热炉炉内气氛、加热温度、加热时间等是影响钢坯氧化烧损及能耗的主要因素。目前加热炉燃烧控制方式主要有两种,一种是通过热值仪检测煤气热值,计算出燃烧所需空气量,调控加热炉各段空燃比,控制炉内燃烧气氛;二是在线检测加热炉烟道中的烟气残氧(氧化锆检测),指导对加热炉燃烧控制。例如专利公开号:CN 105734264 A,公开日:2016年07月06日,发明创造名称为:一种轧钢加热炉燃烧状况在线测控***,该申请案公开了一种轧钢加热炉燃烧状况在线测控方法,针对传统加热炉只对烟道内残氧量检测的方式,造成加热炉不同区段燃烧气氛难以独立控制,燃烧效率低,钢坯氧化烧损过多等问题。该申请案通过将氧分析仪安装在加热炉顶部每个区段的燃烧气体出口处,在线测量炉内不同区段燃烧气氛的氧含量,然后基于此氧含量测量值,对相应区段的空气过剩系数进行在线调整,实现加热炉不同区段燃烧气氛中氧含量的精确控制。该申请案能够帮助操作人员自动将加热炉燃烧状况运行在要求范围内,实现不同区段燃烧状况精确测控,对于提升加热炉的燃烧效率、减少钢坯氧化烧损,提高产品的性能及成材率,具有重要的工程应用推广价值。
但是在实际生产中,以上两种控制方式均不能直接反映加热炉各段的炉气情况,存在诸多问题:(1)以热值仪检测的煤气热值为依据调控加热炉燃烧方式是对加热炉燃烧气氛的间接控制,其通过煤气热值检测推算出空燃比,指导加热炉各段烧嘴的空燃比调节,达到最佳燃烧的目的;但是煤气热值仪适用范围比较狭窄,在特定气体的一定波动范围内,煤气热值仪检测比较准确,当煤气成分改变、热值波动超出适用范围后,误差加大。另外,热值推算空燃比仅仅是一个经验数据,精确度不高。目前热值仪主要采用燃烧法工作原理(通过火焰温度反映热值情况),不能反映煤气成分组成,依据热值不可能精确推算出空燃比;(2)空气流量计或煤气流量计检测往往存在较大的误差等原因,不能反映实际流量情况,因此,操作画面上的配比情况并不能说明炉内氧气是否过剩;(3)受使用温度制约,氧化锆探头一般安装在炉尾,只能反映炉膛总体是否氧气过剩,不能得知不同加热区域配比是否合适,反映的数据参考性不强。
同时,目前加热炉内钢坯温度的确定主要依靠炉内烟气热电偶温度经过数学模型计算得出,其采用间接测量方式,不确定性较大,存在钢坯出炉温度偏高且波动较大、能耗提升、烧损加剧的问题。
基于上述原因分析可以看出,目前在没有精确空燃比及钢坯温度指导的前提下,依靠经验调节空燃比及间接测量钢坯温度的操作模式不可能实现加热炉最佳燃烧控制、降低氧化烧损率和燃耗的目标。综上所述,如何有效减少现有轧钢加热炉内钢坯氧化烧损,是现有技术中亟需解决的技术问题。
发明内容
1.发明要解决的技术问题
本发明的目的在于克服现有轧钢工序中氧化烧损量偏高的不足,提供了一种轧钢加热炉燃烧控制***及控制方法,有效减少了轧钢加热炉内钢坯氧化烧损量。
2.技术方案
为达到上述目的,本发明提供的技术方案为:
本发明的轧钢加热炉燃烧控制***,包括:
轧钢加热炉;
激光检测机构,该激光检测机构用于检测轧钢加热炉内烟气的成分;
以及温度检测仪,该温度检测仪用于直接测量钢坯表面温度。
作为本发明更进一步的改进,所述轧钢加热炉沿长度方向依次分为预热段、加热一段、加热二段、加热三段和均热段,所述预热段、加热一段、加热二段、加热三段和均热段上分别安装有烧嘴。
作为本发明更进一步的改进,所述激光检测机构包括若干组激光检测单元,每组激光检测单元包括一个O2激光检测单元和一个CO激光检测单元。
作为本发明更进一步的改进,所述温度检测仪为红外测温仪,该红外测温仪设置在轧钢加热炉的顶部;所述O2激光检测单元或CO激光检测单元包括激光发射端、激光接收端以及数据采集单元,所述激光发射端和激光接收端分别设置在轧钢加热炉的两侧墙上且激光发射端和激光接收端的位置高于轧钢加热炉内钢坯的高度,轧钢加热炉的侧墙上开设有供激光穿过的通孔。
作为本发明更进一步的改进,所述预热段、加热一段、加热二段、加热三段和均热段上分别安装有至少一组激光检测单元。
作为本发明更进一步的改进,所述预热段、加热一段、加热二段、加热三段和均热段上分别安装有至少一个红外测温仪。
本发明的轧钢加热炉燃烧控制方法,包括以下步骤:
步骤一:准备好所述的轧钢加热炉燃烧控制***;
步骤二:控制预热段、加热一段、加热二段、加热三段和均热段上的烧嘴分别进行燃烧;
步骤三:根据各组激光检测单元反馈的O2和CO含量判断燃烧偏离状态;
步骤四:将各组激光检测单元反馈的O2、CO含量和设定的O2、CO含量进行比较,调整各烧嘴的空气和燃气流量,使得轧钢加热炉内O2、CO含量控制在目标范围内。
作为本发明更进一步的改进,步骤二中,控制各烧嘴的燃烧,使得所述预热段内烟气温度控制在800±5℃,所述加热一段内烟气温度控制在1000±5℃,所述加热二段内烟气温度控制在1250±5℃,所述加热三段内烟气温度控制在1280±5℃,所述均热段内烟气温度控制在1250±5℃。
3.有益效果
采用本发明提供的技术方案,与现有技术相比,具有如下显著效果:
(1)本发明中,采用轧钢加热炉分段燃烧控制及炉内钢坯温度红外检测方式,可以实现轧钢加热炉内烟气中O2、CO及钢坯温度的快速有效地检测,使得轧钢加热炉内各段空气过剩系数得到优化,从而保持轧钢加热炉各段最佳燃烧状态,实现有效降低氧化烧损和能耗的目标。
(2)本发明的轧钢加热炉燃烧控制***,可以对不同钢种加热及燃烧控制制度进行针对性的优化控制,减少轧钢加热炉内钢坯氧化烧损,降低轧钢加热炉能耗、提高产品成材率,提高经济效益,同时节约加热时煤气消耗。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为实施例1的轧钢加热炉燃烧控制***的俯视结构示意图;
图2为实施例1的轧钢加热炉燃烧控制方法的流程图。
示意图中的标号说明:1、轧钢加热炉;101、预热段;102、加热一段;103、加热二段;104、加热三段;105、均热段;201、O2激光检测单元;202、CO激光检测单元;3、温度检测仪。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为进一步了解本发明的内容,结合附图和实施例对本发明作详细描述。
实施例1
结合图1,本实施例的轧钢加热炉燃烧控制***,包括轧钢加热炉1、激光检测机构,该激光检测机构用于检测轧钢加热炉1内烟气的成分;以及温度检测仪3,该温度检测仪3用于直接测量钢坯表面温度。
具体本实施例中,轧钢加热炉1沿长度方向依次分为预热段101、加热一段102、加热二段103、加热三段104和均热段105,预热段101、加热一段102、加热二段103、加热三段104和均热段105上分别安装有烧嘴。激光检测机构包括若干组激光检测单元,每组激光检测单元包括一个O2激光检测单元201和一个CO激光检测单元202。温度检测仪3为红外测温仪,该红外测温仪设置在轧钢加热炉1的顶部,其利用红外原理实时监测轧钢加热炉1内各段钢坯表面温度,反映加热效果;O2激光检测单元201或CO激光检测单元202包括激光发射端、激光接收端以及数据采集单元,激光发射端和激光接收端分别设置在轧钢加热炉1的两侧墙上(即一对激光发射端、激光接收端分别安装在轧钢加热炉1两侧墙的外表面,侧墙上开有容许激光透过的通孔)且激光发射端和激光接收端的安装位置高于轧钢加热炉1内钢坯上表面约200mm,用以钢坯上方烟气中O2以及CO含量的检测;轧钢加热炉1的侧墙上开设有供激光穿过的通孔。预热段101、加热一段102、加热二段103、加热三段104和均热段105上分别安装有至少一组激光检测单元,每组激光检测单元可实时测量轧钢加热炉1内各段的O2和CO的含量,根据这两个值,及时调整各段内烧嘴的空气和燃气流量,使O2和CO的含量控制在目标范围,最终达到降低氧化烧损,提高板坯表面质量,降低能耗的目的;预热段101、加热一段102、加热二段103、加热三段104和均热段105上分别安装有至少一个红外测温仪,在轧钢加热炉1上加装红外测温仪,能够直接、真实的反映钢坯温度,克服目前依靠热电偶测量炉内烟气温度进而推算钢坯温度而导致的温度测量不准确的问题。
结合图2,本实施例的轧钢加热炉燃烧控制方法,包括以下步骤:
步骤一:准备好上述的轧钢加热炉燃烧控制***;
步骤二:控制预热段101、加热一段102、加热二段103、加热三段104和均热段105上的烧嘴分别进行燃烧,控制各烧嘴的燃烧,使得预热段101内烟气温度控制在800±5℃,加热一段102内烟气温度控制在1000±5℃,加热二段103内烟气温度控制在1250±5℃,加热三段104内烟气温度控制在1280±5℃,均热段105内烟气温度控制在1250±5℃;
步骤三:根据各组激光检测单元反馈的O2和CO含量判断燃烧偏离状态;
步骤四:将各组激光检测单元反馈的O2、CO含量和设定的O2、CO含量进行比较,通过PID增量调节方式调整各烧嘴的空气和燃气流量,使得轧钢加热炉1内O2、CO含量控制在目标范围内。
影响钢坯氧化烧损因素很多,针对钢坯氧化烧损问题,国内许多学者提出了许多降低钢坯氧化烧损的措施,如钢坯表面涂覆涂层、钢坯热装热送等方法,尽管这些方法在一定程度上缓解了氧化烧损的生成量,但还是很有限,在实际生产中,还需要进一步降低轧钢加热炉钢坯的氧化烧损。
本实施例中,钢坯从轧钢加热炉1预热段101进入,从均热段105排出,烟气流向与钢坯移动方向相反,轧钢加热炉1沿长度方向依次分为预热段101、加热一段102、加热二段103、加热三段104和均热段105,且预热段101、加热一段102、加热二段103、加热三段104和均热段105上分别安装有烧嘴,使用时控制各烧嘴的燃烧,使得预热段101内烟气温度控制在800±5℃,加热一段102内烟气温度控制在1000±5℃,加热二段103内烟气温度控制在1250±5℃,加热三段104内烟气温度控制在1280±5℃,均热段105内烟气温度控制在1250±5℃,同时,根据各段内的烟气温度以及钢坯到达各段时的工况,将各段内的O2、CO含量分别控制在相应的目标范围内,其中,预热段101内O2体积百分比控制在2.2-2.5%,CO控制在2000ppm以内;加热一段102内O2体积百分比控制在1.8-2.1%,CO控制在2500ppm以内;加热二段103内O2体积百分比控制在1.5-18%,CO控制在3000ppm以内;加热三段104内O2体积百分比控制在1.5-1.8%,CO控制在3000ppm以内;均热段105内O2体积百分比控制在2.5-2.8%,CO控制在1800ppm以内,实际使用发现,本实施例中,根据各段内烟气温度相应独立控制各段内的O2、CO含量,使得单位面积烧损量均值由原来的0.7300g/dm2下降到0.6077g/dm2,下降率为16.75%。
本实施例中,采用轧钢加热炉1分段燃烧控制及炉内钢坯温度红外检测方式,可以实现轧钢加热炉1内烟气中O2、CO及钢坯温度的快速有效地检测,使得轧钢加热炉1内各段空气过剩系数得到优化,从而保持轧钢加热炉1各段最佳燃烧状态,实现有效降低氧化烧损和能耗的目标。
本实施例的轧钢加热炉燃烧控制***,可以对不同钢种加热及燃烧控制制度进行针对性的优化控制,减少轧钢加热炉内钢坯氧化烧损,降低轧钢加热炉能耗、提高产品成材率,提高经济效益,同时节约加热时煤气消耗。
在现有轧钢加热炉1基础上,经过上述优化,按1580加热炉年产量250万吨,节约煤气3%、氧化烧损率下降0.20%计算,在正常生产情况下能实现下述指标:
(1)节能:节约3%煤气,吨钢燃耗按1.1GJ/t计,即每年节约能源1.1GJ/t×3%×250万吨×26.8元/GJ=221万元;
(2)氧化烧损:按氧化烧损率下降0.2%计,钢材成品价按2000元/吨、氧化铁皮价格按500元/吨计算,则0.2%×250万t×(2000-500)元/t=750万元。综上,合计综合经济效益达971万元,静态回收期1年以内。
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (8)

1.一种轧钢加热炉燃烧控制***,包括轧钢加热炉(1),其特征在于还包括:
激光检测机构,该激光检测机构用于检测轧钢加热炉(1)内烟气的成分;
以及温度检测仪(3),该温度检测仪(3)用于直接测量钢坯表面温度。
2.根据权利要求1所述的轧钢加热炉燃烧控制***,其特征在于:所述轧钢加热炉(1)沿长度方向依次分为预热段(101)、加热一段(102)、加热二段(103)、加热三段(104)和均热段(105),所述预热段(101)、加热一段(102)、加热二段(103)、加热三段(104)和均热段(105)上分别安装有烧嘴。
3.根据权利要求2所述的轧钢加热炉燃烧控制***,其特征在于:所述激光检测机构包括若干组激光检测单元,每组激光检测单元包括一个O2激光检测单元(201)和一个CO激光检测单元(202)。
4.根据权利要求3所述的轧钢加热炉燃烧控制***,其特征在于:所述温度检测仪(3)为红外测温仪,该红外测温仪设置在轧钢加热炉(1)的顶部;所述O2激光检测单元(201)或CO激光检测单元(202)包括激光发射端、激光接收端以及数据采集单元,所述激光发射端和激光接收端分别设置在轧钢加热炉(1)的两侧墙上且激光发射端和激光接收端的位置高于轧钢加热炉(1)内钢坯的高度,轧钢加热炉(1)的侧墙上开设有供激光穿过的通孔。
5.根据权利要求4所述的轧钢加热炉燃烧控制***,其特征在于:所述预热段(101)、加热一段(102)、加热二段(103)、加热三段(104)和均热段(105)上分别安装有至少一组激光检测单元。
6.根据权利要求5所述的轧钢加热炉燃烧控制***,其特征在于:所述预热段(101)、加热一段(102)、加热二段(103)、加热三段(104)和均热段(105)上分别安装有至少一个红外测温仪。
7.一种轧钢加热炉燃烧控制方法,其特征在于,包括以下步骤:
步骤一:准备好如权利要求1-6任意一项所述的轧钢加热炉燃烧控制***;
步骤二:控制预热段(101)、加热一段(102)、加热二段(103)、加热三段(104)和均热段(105)上的烧嘴分别进行燃烧;
步骤三:根据各组激光检测单元反馈的O2和CO含量判断燃烧偏离状态;
步骤四:将各组激光检测单元反馈的O2、CO含量和设定的O2、CO含量进行比较,调整各烧嘴的空气和燃气流量,使得轧钢加热炉(1)内O2、CO含量控制在目标范围内。
8.根据权利要求7所述的轧钢加热炉燃烧控制方法,其特征在于:步骤二中,控制各烧嘴的燃烧,使得所述预热段(101)内烟气温度控制在800±5℃,所述加热一段(102)内烟气温度控制在1000±5℃,所述加热二段(103)内烟气温度控制在1250±5℃,所述加热三段(104)内烟气温度控制在1280±5℃,所述均热段(105)内烟气温度控制在1250±5℃。
CN201711161536.1A 2017-11-20 2017-11-20 一种轧钢加热炉燃烧控制***及控制方法 Pending CN107764076A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711161536.1A CN107764076A (zh) 2017-11-20 2017-11-20 一种轧钢加热炉燃烧控制***及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711161536.1A CN107764076A (zh) 2017-11-20 2017-11-20 一种轧钢加热炉燃烧控制***及控制方法

Publications (1)

Publication Number Publication Date
CN107764076A true CN107764076A (zh) 2018-03-06

Family

ID=61279948

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711161536.1A Pending CN107764076A (zh) 2017-11-20 2017-11-20 一种轧钢加热炉燃烧控制***及控制方法

Country Status (1)

Country Link
CN (1) CN107764076A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108397788A (zh) * 2018-03-02 2018-08-14 北京航空航天大学 一种适用于热轧炼钢气氛调节降低氧化烧损的自动控制***和方法
CN108626741A (zh) * 2018-04-27 2018-10-09 吴敏 自动鼓风控制式锅炉
CN108731025A (zh) * 2018-06-05 2018-11-02 马鞍山钢铁股份有限公司 一种轧钢加热炉燃烧控制***及控制方法
CN109000276A (zh) * 2018-04-27 2018-12-14 吴敏 自动鼓风控制式锅炉的使用方法
CN110184444A (zh) * 2019-07-05 2019-08-30 安徽工业大学 一种加热炉试验装置
CN112178685A (zh) * 2020-08-31 2021-01-05 武汉钢铁有限公司 一种加热炉燃烧优化控制***
CN112251594A (zh) * 2020-09-30 2021-01-22 武汉钢铁有限公司 一种加热炉炉内气氛的处理方法及***
CN112444125A (zh) * 2019-08-29 2021-03-05 张家港凯胜控制设备工程有限公司 一种热轧钢厂步进式加热炉温度精确控制***
CN112944932A (zh) * 2021-02-25 2021-06-11 首钢京唐钢铁联合有限责任公司 蓄热式加热炉及蓄热式加热炉的排烟控制方法、控制***
CN113203297A (zh) * 2021-05-08 2021-08-03 安徽大学 一种基于炉内工件表面温度的智能燃烧优化控制***
CN113295016A (zh) * 2021-06-04 2021-08-24 安徽淮光智能科技有限公司 一种基于温度测量曲线的加热炉燃烧控制方法
CN114717397A (zh) * 2022-04-21 2022-07-08 宝钢湛江钢铁有限公司 一种优化控制薄规格钢板氧化铁皮产生的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282143A (ja) * 1999-03-29 2000-10-10 Kawasaki Steel Corp 鋼片の連続多帯式加熱方法及び連続多帯式加熱炉
CN203099888U (zh) * 2013-02-22 2013-07-31 山东坤宝节能环保科技有限公司 加热炉基于钢坯温度监测的燃烧智能控制***
CN103712468A (zh) * 2013-12-17 2014-04-09 聚光科技(杭州)股份有限公司 降低工业炉窑氧化烧损的燃烧控制***及方法
CN104060080A (zh) * 2013-11-01 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 轧钢加热炉板坯加热控制方法及***
CN107327870A (zh) * 2017-08-18 2017-11-07 曹阳 加热炉智能精确燃烧控制***
CN207635889U (zh) * 2017-11-20 2018-07-20 马鞍山钢铁股份有限公司 一种轧钢加热炉燃烧控制***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282143A (ja) * 1999-03-29 2000-10-10 Kawasaki Steel Corp 鋼片の連続多帯式加熱方法及び連続多帯式加熱炉
CN203099888U (zh) * 2013-02-22 2013-07-31 山东坤宝节能环保科技有限公司 加热炉基于钢坯温度监测的燃烧智能控制***
CN104060080A (zh) * 2013-11-01 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 轧钢加热炉板坯加热控制方法及***
CN103712468A (zh) * 2013-12-17 2014-04-09 聚光科技(杭州)股份有限公司 降低工业炉窑氧化烧损的燃烧控制***及方法
CN107327870A (zh) * 2017-08-18 2017-11-07 曹阳 加热炉智能精确燃烧控制***
CN207635889U (zh) * 2017-11-20 2018-07-20 马鞍山钢铁股份有限公司 一种轧钢加热炉燃烧控制***

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108397788B (zh) * 2018-03-02 2019-09-17 北京航空航天大学 一种适用于热轧炼钢气氛调节降低氧化烧损的自动控制***和方法
CN108397788A (zh) * 2018-03-02 2018-08-14 北京航空航天大学 一种适用于热轧炼钢气氛调节降低氧化烧损的自动控制***和方法
CN108626741A (zh) * 2018-04-27 2018-10-09 吴敏 自动鼓风控制式锅炉
CN109000276A (zh) * 2018-04-27 2018-12-14 吴敏 自动鼓风控制式锅炉的使用方法
CN108731025A (zh) * 2018-06-05 2018-11-02 马鞍山钢铁股份有限公司 一种轧钢加热炉燃烧控制***及控制方法
CN110184444A (zh) * 2019-07-05 2019-08-30 安徽工业大学 一种加热炉试验装置
CN110184444B (zh) * 2019-07-05 2024-02-27 安徽工业大学 一种加热炉试验装置
CN112444125A (zh) * 2019-08-29 2021-03-05 张家港凯胜控制设备工程有限公司 一种热轧钢厂步进式加热炉温度精确控制***
CN112178685A (zh) * 2020-08-31 2021-01-05 武汉钢铁有限公司 一种加热炉燃烧优化控制***
CN112251594A (zh) * 2020-09-30 2021-01-22 武汉钢铁有限公司 一种加热炉炉内气氛的处理方法及***
CN112944932A (zh) * 2021-02-25 2021-06-11 首钢京唐钢铁联合有限责任公司 蓄热式加热炉及蓄热式加热炉的排烟控制方法、控制***
CN113203297A (zh) * 2021-05-08 2021-08-03 安徽大学 一种基于炉内工件表面温度的智能燃烧优化控制***
CN113295016A (zh) * 2021-06-04 2021-08-24 安徽淮光智能科技有限公司 一种基于温度测量曲线的加热炉燃烧控制方法
CN114717397A (zh) * 2022-04-21 2022-07-08 宝钢湛江钢铁有限公司 一种优化控制薄规格钢板氧化铁皮产生的方法

Similar Documents

Publication Publication Date Title
CN107764076A (zh) 一种轧钢加热炉燃烧控制***及控制方法
CN103672948B (zh) 工业炉窑的燃烧控制***及控制方法
CN106766883B (zh) 一种蓄热式加热炉最佳燃烧控制***及其方法
CN101561224B (zh) 一种控制大型步进梁式板坯加热炉燃烧气氛的方法
CN103019097B (zh) 一种轧钢加热炉优化控制***
CN202274761U (zh) 加热炉氧化烧损优化气氛燃烧自动控制装置
CN101509812B (zh) 一种冶金加热炉炉内钢坯温度分布检测的软测量方法
DE102013104837A1 (de) Verfahren und Vorrichtung zum Steuern von Verbrennungsprozesssystemen
CN103712468A (zh) 降低工业炉窑氧化烧损的燃烧控制***及方法
CN104250685A (zh) 一种基于板坯实测宽度的间距装炉控制方法
CN105734264A (zh) 一种轧钢加热炉燃烧状况在线测控***
CN107327870A (zh) 加热炉智能精确燃烧控制***
CN104894362A (zh) 一种冷热钢坯混装的加热炉炉温设定方法
CN108731025A (zh) 一种轧钢加热炉燃烧控制***及控制方法
CN102297451B (zh) 一种加热炉气氛场调控方法
US4357135A (en) Method and system for controlling multi-zone reheating furnaces
CN103499101B (zh) 一种三元点火炉炉膛温度调节方法及装置
CN110566962A (zh) 一种空燃比可调的蓄热式单烧嘴熔铝炉燃烧控制方法
KR20200043384A (ko) 노 시스템 및 노의 작동 방법
CN207635889U (zh) 一种轧钢加热炉燃烧控制***
CN103471393B (zh) 一种高炉煤气双预热点火炉温度控制方法及装置
CN103499212B (zh) 一种二元点火炉炉膛温度调节方法及装置
CN104561514A (zh) 双蓄热式轧钢加热炉氧化气氛调节方法及其自动控制方法
CN103146906A (zh) 一种步进梁式加热炉二级控制模型参数调控方法
CN104006651A (zh) 回转窑控制***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination