CN107720831A - 基于溶剂热法可控合成的三氧化二铁纳米材料及其应用 - Google Patents

基于溶剂热法可控合成的三氧化二铁纳米材料及其应用 Download PDF

Info

Publication number
CN107720831A
CN107720831A CN201710931593.7A CN201710931593A CN107720831A CN 107720831 A CN107720831 A CN 107720831A CN 201710931593 A CN201710931593 A CN 201710931593A CN 107720831 A CN107720831 A CN 107720831A
Authority
CN
China
Prior art keywords
solvent
gas sensor
nano material
thermal method
controlledly synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710931593.7A
Other languages
English (en)
Other versions
CN107720831B (zh
Inventor
贾潇
丁豪
岳芳
刘荣
王治伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201710931593.7A priority Critical patent/CN107720831B/zh
Publication of CN107720831A publication Critical patent/CN107720831A/zh
Application granted granted Critical
Publication of CN107720831B publication Critical patent/CN107720831B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/17Nanostrips, nanoribbons or nanobelts, i.e. solid nanofibres with two significantly differing dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明公开了一种基于溶剂热法可控合成的α‑Fe2O3纳米材料及其应用,其是通过改变溶剂链长及调节溶剂极性达到可控合成多级纳米结构的目的,属于纳米功能材料制备领域。其具体是以FeCl3为反应源物质,六亚甲基四胺或碳酸钠为配体,经过溶剂热法首先得到α‑Fe2O3前躯体,然后将其于空气气氛中煅烧得到多级结构的α‑Fe2O3纳米粉末。在所得α‑Fe2O3纳米粉末中加入松油醇研磨后,均匀涂抹在陶瓷管上并置于马弗炉中烧结,即可制得α‑Fe2O3多级结构气敏元件。该气敏元件具有响应快、稳定性高、选择性高的特性,可用于制备半导体气敏传感器。

Description

基于溶剂热法可控合成的三氧化二铁纳米材料及其应用
技术领域
本发明属于纳米功能材料制备技术领域,具体涉及一种基于溶剂热法可控合成的α-Fe2O3纳米材料及其作为气敏元件制备气敏传感器的应用。
背景技术
当前,空气质量问题仍然是许多国家面临的一个巨大挑战。一个舒适洁净的空气环境是人们提高生活质量的重要保证,因此有必要对空气质量进行检测。对气体进行检测的常见手段有电化学法、固态电解质法、红外吸收法、化学发光法、声表面波传感器、气相色谱和气敏传感器等。在这些方法中,气敏传感器法被视为最为理想的检测空气的方法。一方面,其具有操作简单、灵敏度高、响应速度快、恢复时间短的优点;另一方面,该类传感器易于控制表面微环境,通过改变氧化物气体传感器的纳米结构和组成,从而有效的影响传感器的传感性能。
气敏传感器作为一种检测气体的装置,其基本工作原理是气体分子与半导体纳米材料之间发生O2的吸附脱附及氧化还原反应等相互作用来影响材料的导电性能,从而将被测气体的浓度或组分转化成相应的电信号,根据获得的电信号的强弱分析被测气体的浓度等相关信息,进而起到对有害气体的检测、监控和预警作用。现阶段,气敏传感器主要向着低能耗、多功能、低浓度检测、高灵敏度等方向发展。
半导体气敏传感器作为气敏传感器大家族中的一员,主要是以过渡金属氧化物半导体材料作为气敏材料。过渡金属氧化物半导体材料的敏感特性决定着传感器性能的好坏。然而,金属氧化物气敏传感器的灵敏性受各种因素影响,如①载流子的密度和迁移率;②表面修饰作用;③量子尺寸效应;④比表面积大小和材料表面的化学性质。前两个因素可由传感材料类型(n型和p型半导体中的自由电子)和掺杂元素种类进行调控;后两个因素由材料的形貌、形状和尺寸控制。因此,半导体的元素组成和结构形貌对半导体材料的敏感特性有着重要影响。而相较于前驱体热分解法、溶胶凝胶法、模板法等合成方法,溶剂热法方法具有制备过程简单、易操作、结晶程度好,能够有效实现纳米材料结构和形貌的可控合成等优点。
在过渡金属氧化物中,α-Fe2O3是一种典型的n型半导体,因其具有良好的光学带隙(Eg=2.1 eV)、高耐蚀性、自然丰度及无毒性和低成本等优点被广泛应用于光电化学、传感器等领域。但是,传统的α-Fe2O3半导体敏感材料存在着灵敏度低、选择性差、响应恢复时间长等缺点。同时,特殊级次结构的α-Fe2O3半导体通常具有不同于其构筑单元及块体材料的独特物理化学性质。近年来,大量α-Fe2O3级次材料如多孔棒状结构、空心球结构、花状结构等纳米气敏材料在气敏传感器上的应用,使其在灵敏度、选择性和响应恢复时间等方面得到较大的改善。因此,基于溶剂热方法,设计新型的反应体系控制合成α-Fe2O3多级结构气敏元件具有现实意义。
发明内容
本发明的目的在于提供一种基于溶剂热法可控合成的α-Fe2O3纳米材料及其应用,其是通过改变溶剂链长及调节溶剂极性,实现可控合成α-Fe2O3的目的,进而制备出一系列高灵敏、响应快、稳定性好、成本低的实用性半导体型气敏元件。
为实现上述目的,本发明采用如下技术方案:
一种基于溶剂热法可控合成α-Fe2O3多级结构气敏元件的方法,其包括以下步骤:
(1)取无水三氯化铁和配体放入烧杯中,加入反应溶剂,于50℃下恒温磁力搅拌1h;
(2)将步骤(1)所得混合物放入高压反应釜中,并置于220℃烘箱中反应6h;
(3)将步骤(2)所得产物经离心、洗涤、干燥后,置于马弗炉中,在500℃空气气氛中煅烧3h,得到多级结构的α-Fe2O3纳米粉末。
步骤(1)中无水三氯化铁与配体的摩尔比为1:1~1:2;其中,所述配体为六亚甲基四胺(HMTA)或碳酸钠。
步骤(1)中所述反应溶剂为乙二醇、甲醇或乙醇。
所述α-Fe2O3纳米材料可作为气敏材料,进一步用于气敏传感器中气敏元件的制备;其气敏元件的制备方法为:称取5-10 mg所述α-Fe2O3纳米材料,加入1滴松油醇研磨均匀,然后将其均匀涂抹在陶瓷管上,自然晾干后置于马弗炉中,在300℃下烧结2h,即得α-Fe2O3多级结构气敏元件。
本发明的有益效果在于:
(1)本发明在溶剂热法的基础上,通过改变溶剂链长及调节溶剂极性,可控合成出一系列不同结构的α-Fe2O3纳米材料,其所得材料具有结构均匀、制备简单、热稳定性好等优势。
(2)在气敏性能测试方面,本发明所得材料均表现出对丙酮的优异选择性,且在低浓度下具有较大的灵敏性,同时还提高了α-Fe2O3材料对还原性气体的灵敏度和响应恢复时间。
(3)本发明提供的基于溶剂热法可控合成α-Fe2O3结构的方法,可为合成具有特定结构和优异气敏性能的新型纳米功能材料提供借鉴。
附图说明
图1为实施例一所制备的α-Fe2O3前躯体产物的XRD图。
图2为实施例一~实施例五所制备的α-Fe2O3纳米粉末的XRD图。
图3为实施例一~实施例五所制备的α-Fe2O3纳米粉末的SEM图。
图4为以实施例一~实施例五所得α-Fe2O3纳米粉末制备的气敏元件的气敏性能测试图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例一、
(1)称取0.152g无水 FeCl3与0.140g HMTA于干净的烧杯中,加入40mL乙二醇搅拌溶解,置于磁力搅拌器上50℃恒温搅拌1h;
(2)将上述溶液放入高压反应釜中,并置于220℃烘箱中反应6h;
(3)待产物自然冷却至室温,离心收集沉淀,用去离子水和无水乙醇多次洗涤,再置于空气中自然干燥,得到α-Fe2O3前躯体;将得到的α-Fe2O3前躯体盐置于马弗炉中,在500 ℃空气气氛中煅烧3h,得到多级结构的α-Fe2O3纳米粉末,标记为S1;
图1为实施例一所制备的α-Fe2O3前躯体产物的XRD图。从图1可见,该前躯体物质是一种铁醇盐化合物。
实施例二、
将实施一中HMTA的加入量改为0.280 g,其余操作同实施例一,得到多级结构的α-Fe2O3纳米粉末,标记为S2。
实施例三、
将实施一中所加入的反应溶剂改为甲醇,其余操作同实施例一,得到多级结构的α-Fe2O3纳米粉末,标记为S3。
实施例四、
将实施一中所加入的反应溶剂改为乙醇,其余操作同实施例一,得到多级结构的α-Fe2O3纳米粉末,标记为S4。
实施例五、
将实施一中加入的HTMA替换为0.106g的Na2CO3,其余操作同实施例一,得到多级结构的α-Fe2O3纳米粉末,标记为S5。
图2为实施例一~实施例五所制备的α-Fe2O3纳米粉末的XRD图。从图中可见,所有样品的衍射峰均可很好的归属于菱方晶系结构的α-Fe2O3(JCPDS33-0664),且没有任何杂峰,表明产物均为纯的α-Fe2O3
图3为实施例一~实施例五所制备的α-Fe2O3纳米粉末的SEM图。从图中可见,S1为带状多孔结构α-Fe2O3,纳米带厚度在50-100nm,宽度在400-700nm,长度较长,分布在1-3μm;S2为三维花状结构α-Fe2O3,平均尺寸为650nm,由厚度约为40nm,宽在300-400nm的纳米片通过中心点相互连接组合而成;S3为类空心球结构α-Fe2O3,尺寸较小,约为100nm,且粒径分布较均匀;S4所得α-Fe2O3为约300nm的菱形结构,表面较粗糙,可以清楚的看到该产物由小的纳米颗粒聚集而成;S5为薄的带状结构,厚度为30-60nm之间,宽度在200nm-350nm范围内,且多孔结构较为明显。
应用例、
称取5-10 mg实施例一~五中所得多级结构的α-Fe2O3纳米粉末,分别加入1滴松油醇研磨均匀,然后将其均匀涂抹在陶瓷管上,自然晾干后置于马弗炉中,在300 ℃下烧结2h,得到相应气敏元件Q1-Q5。
图4为所得气敏元件Q1-Q5的气敏性能测试,其中,图(a)为样品对不同浓度丙酮气体的灵敏度曲线图,图(b)为样品对100ppm乙醇气体的响应-恢复曲线。由图(a)可见,丙酮浓度在500ppm之前,气敏元件灵敏度增加幅度较大,继续增加丙酮浓度灵敏度增加幅度变小,说明传感器在低浓度下具有较大的灵敏性;由图(b)可见,所制备的α-Fe2O3气敏元件在经过几个循环之后仍然具有较好的响应,表明气敏材料的稳定性较好。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (5)

1.一种基于溶剂热法可控合成的α-Fe2O3纳米材料,其特征在于:其合成方法包括以下步骤:
(1)取无水三氯化铁与配体放入烧杯中,加入反应溶剂,于50℃下恒温磁力搅拌1h;
(2)将步骤(1)所得混合物放入高压反应釜中,并置于220℃烘箱中反应6h;
(3)将步骤(2)所得产物经离心、洗涤、干燥后,置于马弗炉中,在500℃空气气氛中煅烧3h,得到多级结构的α-Fe2O3纳米粉末。
2.根据权利要求1所述的基于溶剂热法可控合成的α-Fe2O3纳米材料,其特征在于:步骤(1)中无水三氯化铁与配体的摩尔比为1:1~1:2;其中,所述配体为六亚甲基四胺或碳酸钠。
3.根据权利要求1所述的基于溶剂热法可控合成的α-Fe2O3纳米材料,其特征在于:步骤(1)中所述反应溶剂为乙二醇、甲醇或乙醇。
4.一种如权利要求1所述α-Fe2O3纳米材料在制备气敏传感器中的应用,其特征在于:以所述α-Fe2O3纳米材料为气敏材料制备气敏元件。
5. 根据权利要求4所述应用,其特征在于:所述气敏元件的制备方法为:称取5-10 mg所述α-Fe2O3纳米材料,加入1滴松油醇研磨均匀,然后将其均匀涂抹在陶瓷管上,自然晾干后置于马弗炉中,在300℃下烧结2h,即得α-Fe2O3多级结构气敏元件。
CN201710931593.7A 2017-10-09 2017-10-09 基于溶剂热法可控合成的三氧化二铁纳米材料及其应用 Active CN107720831B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710931593.7A CN107720831B (zh) 2017-10-09 2017-10-09 基于溶剂热法可控合成的三氧化二铁纳米材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710931593.7A CN107720831B (zh) 2017-10-09 2017-10-09 基于溶剂热法可控合成的三氧化二铁纳米材料及其应用

Publications (2)

Publication Number Publication Date
CN107720831A true CN107720831A (zh) 2018-02-23
CN107720831B CN107720831B (zh) 2019-11-12

Family

ID=61209941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710931593.7A Active CN107720831B (zh) 2017-10-09 2017-10-09 基于溶剂热法可控合成的三氧化二铁纳米材料及其应用

Country Status (1)

Country Link
CN (1) CN107720831B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109626441A (zh) * 2018-12-26 2019-04-16 齐齐哈尔大学 一种多级结构α-Fe2O3空心球纳米材料及其制备方法和应用
CN109987640A (zh) * 2019-04-29 2019-07-09 北京科技大学 一种制备纳米α-Fe2O3的方法
CN111250120A (zh) * 2020-02-21 2020-06-09 上海应用技术大学 一种磷钨酸改性的纳米氧化铁scr脱硝催化剂及其制备方法与应用
CN116040689A (zh) * 2022-11-28 2023-05-02 成都先进金属材料产业技术研究院股份有限公司 一种微波辅助制备α-Fe2O3粉体的方法、α-Fe2O3粉体及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318710A (zh) * 2008-06-30 2008-12-10 中国科学院上海硅酸盐研究所 一种铁氧化物多级空心核壳材料及其制备方法
CN104211127A (zh) * 2014-09-15 2014-12-17 济南大学 一种α-Fe2O3中空微球的制备方法
CN105129865A (zh) * 2015-08-21 2015-12-09 浙江师范大学 磁性微纳米片及其制备方法与应用
CN105439210A (zh) * 2015-07-29 2016-03-30 黑龙江大学 α-Fe2O3微纳米球的制备方法
CN106093137A (zh) * 2016-06-20 2016-11-09 吉林大学 一种基于α‑Fe2O3多孔微米花敏感材料的丙酮气体传感器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318710A (zh) * 2008-06-30 2008-12-10 中国科学院上海硅酸盐研究所 一种铁氧化物多级空心核壳材料及其制备方法
CN104211127A (zh) * 2014-09-15 2014-12-17 济南大学 一种α-Fe2O3中空微球的制备方法
CN105439210A (zh) * 2015-07-29 2016-03-30 黑龙江大学 α-Fe2O3微纳米球的制备方法
CN105129865A (zh) * 2015-08-21 2015-12-09 浙江师范大学 磁性微纳米片及其制备方法与应用
CN106093137A (zh) * 2016-06-20 2016-11-09 吉林大学 一种基于α‑Fe2O3多孔微米花敏感材料的丙酮气体传感器及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JING-SAN XU等: "γ-Fe2O3 and Fe3O4 magnetic hierarchically nanostructured hollow microspheres: Preparation, formation mechanism, magnetic property, and application in water treatment", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
XIAO JIA等: "One-pot controlled synthesis of single-crystala α-Fe2O3 hollow nanostructure and its gas sensing properties", 《RSC ADVANCES》 *
XIAO JIA等: "One-pot controlled synthesis, magnetic properties and gas response ofα-Fe2O3nanostructures preparedviaa liquid–liquid interface solvothermal route", 《CRYSTENGCOMM》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109626441A (zh) * 2018-12-26 2019-04-16 齐齐哈尔大学 一种多级结构α-Fe2O3空心球纳米材料及其制备方法和应用
CN109987640A (zh) * 2019-04-29 2019-07-09 北京科技大学 一种制备纳米α-Fe2O3的方法
CN109987640B (zh) * 2019-04-29 2020-07-31 北京科技大学 一种制备纳米α-Fe2O3的方法
CN111250120A (zh) * 2020-02-21 2020-06-09 上海应用技术大学 一种磷钨酸改性的纳米氧化铁scr脱硝催化剂及其制备方法与应用
CN116040689A (zh) * 2022-11-28 2023-05-02 成都先进金属材料产业技术研究院股份有限公司 一种微波辅助制备α-Fe2O3粉体的方法、α-Fe2O3粉体及其应用

Also Published As

Publication number Publication date
CN107720831B (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
Huang et al. Enhanced gas-sensing performance of ZnO@ In2O3 core@ shell nanofibers prepared by coaxial electrospinning
Li et al. Highly sensitive and selective butanol sensors using the intermediate state nanocomposites converted from β-FeOOH to α-Fe2O3
Lv et al. Sb-doped three-dimensional ZnFe2O4 macroporous spheres for N-butanol chemiresistive gas sensors
Li et al. In2O3/SnO2 heterojunction microstructures: Facile room temperature solid-state synthesis and enhanced Cl2 sensing performance
Zhang et al. Metal–organic framework-derived Co3O4/CoFe2O4 double-shelled nanocubes for selective detection of sub-ppm-level formaldehyde
CN106596656B (zh) 一种基于mof模板法合成的二氧化钛负载三氧化二铁纳米异质结构的气敏元件
Yang et al. Ultrafast response and recovery trimethylamine sensor based on α-Fe2O3 snowflake-like hierarchical architectures
CN107720831B (zh) 基于溶剂热法可控合成的三氧化二铁纳米材料及其应用
Rahman et al. 3, 4-Diaminotoluene sensor development based on hydrothermally prepared MnCoxOy nanoparticles
Diao et al. High response to H2S gas with facile synthesized hierarchical ZnO microstructures
Zhang et al. Template-assisted synthesis of hierarchical MoO3 microboxes and their high gas-sensing performance
CN106770496B (zh) 一种锌掺杂的三氧化二铁复合结构气敏元件的制备方法
Li et al. In situ decoration of Zn2SnO4 nanoparticles on reduced graphene oxide for high performance ethanol sensor
Tan et al. Ultra-thin nanosheets-assembled hollowed-out hierarchical α-Fe2O3 nanorods: Synthesis via an interface reaction route and its superior gas sensing properties
Han et al. Cobalt oxide nanorods with special pore structure for enhanced ethanol sensing performance
Li et al. Co3O4 nanosheet-built hollow spheres containing ultrafine neck-connected grains templated by PS@ Co-LDH and their ppb-level gas-sensing performance
Xuemei et al. Fabrication of cubic pn heterojunction-like NiO/In 2 O 3 composite microparticles and their enhanced gas sensing characteristics
Kumar et al. Ammonia gas sensing using thin film of MnO 2 nanofibers
Hassan et al. Fabrication and characterization of gas sensor micro-arrays
Wang et al. Constructing chinky zinc oxide hierarchical hexahedrons for highly sensitive formaldehyde gas detection
Liu et al. Synthesis of novel RuO2/NaBi (MoO4) 2 nanosheets composite and its gas sensing performances towards ethanol
Hu et al. Cobalt monosulfide nanofibers: ethanol sensing and magnetic properties
Liu et al. Glycosyl/MOF-5-based carbon nanofibers for highly sensitive detection of anti-bacterial drug quercetin
Wang et al. Highly selective n-butanol gas sensor based on porous In2O3 nanoparticles prepared by solvothermal treatment
Chu et al. High selectivity trimethylamine sensors based on graphene-NiGa2O4 nanocomposites prepared by hydrothermal method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant