CN107707220A - A kind of modified CKF methods applied in GNSS/INS - Google Patents

A kind of modified CKF methods applied in GNSS/INS Download PDF

Info

Publication number
CN107707220A
CN107707220A CN201710770961.4A CN201710770961A CN107707220A CN 107707220 A CN107707220 A CN 107707220A CN 201710770961 A CN201710770961 A CN 201710770961A CN 107707220 A CN107707220 A CN 107707220A
Authority
CN
China
Prior art keywords
mrow
msub
mover
msup
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710770961.4A
Other languages
Chinese (zh)
Inventor
吴峻
王永杰
沈志乐
董国敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201710770961.4A priority Critical patent/CN107707220A/en
Publication of CN107707220A publication Critical patent/CN107707220A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters
    • H03H21/0025Particular filtering methods
    • H03H21/0029Particular filtering methods based on statistics
    • H03H21/003KALMAN filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The invention discloses a kind of modified CKF methods applied in GNSS/INS, this method is in the High Order Nonlinear System of GNSS/INS tight integrations, due to the problem of local volumetric point sampling is inaccurate and system mode mutation causes filtering accuracy to reduce or even dissipate, it is proposed to improve nonlinear function mapping accuracy using new volume point sampling rule, and then improve filtering accuracy, and the fading factor of Strong tracking filter is introduced, robustness of the boosting algorithm in state mutation.It is final to construct conversion tracking volume Kalman filter.This method solve the problems, such as that volume point sampling is inaccurate and system mode mutation caused by filtering accuracy decline or even dissipate, have that precision is high, the optimization of strong robustness.

Description

A kind of modified CKF methods applied in GNSS/INS
Technical field
The present invention relates to air navigation aid field, more particularly to a kind of modified CKF methods applied in GNSS/INS.
Background technology
GNSS/INS integrated navigation systems are the popular research directions in Present navigation field, in large angle maneuver, or city The satellite-signals such as city, forest are easily blocked etc. under complex situations, use pseudorange and pseudorange rates as tight group of the GNSS/INS of observed quantity Close so that integrated navigation system can still keep integrated mode in the case where lacking star.
Complexity and polytropy due to environment, GNSS/INS tight integration models have non-linear and uncertain feature. Volume Kalman filtering (Cubature Kalman Filter, CKF) is to be proposed in recent years by Canadian scholar Arasaratnam Bayes's approximate nonlinear filtering algorithm, state variable nonlinear propagation rule is described by volume point sampling, be solution by no means The powerful tool of linear system state estimation.But traditional CKF volume point sampling rule is in high order system or strong nonlinearity feelings The problem of state estimation is inaccurate or even dissipates, in addition in the case where system mode is mutated, algorithm robustness occur under condition Reduce.CKF filtering accuracy, which reduces, even to be dissipated.In order to solve this problem, one kind is based on 5 rank sphere radial direction volume point samplings The CKF filtering algorithms of rule are suggested, and improve filtering accuracy.And due to based on Strong tracking filter (Strong Tracking Filter, STF) improvement CKF algorithms proposition, improve the robustness of wave filter correspondence system.
The content of the invention
In order to solve above-mentioned problem, the present invention provides a kind of modified CKF methods applied in GNSS/INS, It is in High Order Nonlinear System application, local volumetric point sampling is inaccurate and system mode mutation causes filtering accuracy to reduce The problem of even dissipating, this method are efficiently solved under filtering accuracy caused by volume point sampling inaccuracy is mutated with system mode The problem of drop even dissipates, there is precision height, the optimization of strong robustness, to provide one kind up to this purpose, the present invention and applying Modified CKF methods in GNSS/INS, comprise the following steps:
1) combined system nonlinear model is established:The foundation of state equation, observational equation comprising system, the environment of system The modeling of noise, and the solution of general volume Kalman filtering algorithm;
2) formulation of volume point sampling rule is converted:, can be because of volume for traditional CKF wave filters in the case of system higher-dimension Point mapping is improper, causes filtering accuracy to decline or even the situation of filtering divergence occur, proposes a kind of based on surface integral rule Orthogonal volume point sampling rule is converted, solves the problems, such as the decline of High Dimensional Systems filtering accuracy;
3) Strong tracking filter designs:It is difficult to quantify for noise model and system is undergone mutation, so as to causes wave filter to be sent out Dissipate, the problem of numerical value is unstable.It is proposed to introduce a kind of fading factor, output residual sequence is kept orthogonal, the Shandong of boosting algorithm Rod, improve the ability of tracking to state and parameter mutation.
4) structure of TSCKF wave filters:A kind of TSCKF wave filters are built based on orthogonal transformation principle and Strong tracking filter, And carry out time renewal for GNSS/INS systems, measure renewal.
Further improvement of the present invention, the specific steps of combined system nonlinear model are established in the step 1) to be included:
(1.1) discretization combined system state equation isChoosing quantity of state isThe respectively misalignment in three directions, velocity error, site error, acceleration The biasing of degree meter constant value, gyroscope constant value drift;
(1.2) GNSS/SINS tight integrations navigation system measurement equation includes the system pseudo range measurement of pseudo range observed quantity composition The system pseudorange rates measurement equation of equation and pseudorange rates observed quantity composition, the pseudo range measurement equation of combined system areρiFor relative to the pseudorange of i-th satellite,For pseudorange rates, V (t) is measurement Noise;
(1.3) solution of state-transition matrix f in (1.1) is converted to by integrated form based on CKF principleWherein ωi=1/m, i.e. sampled point weight, i=1,2 ..., m=2n;E is that n ties up unit square formation, [1]iRepresent i-th row of [1].
Further improvement of the present invention, the specific steps of the formulation of step 2) the conversion volume point sampling rule include:
(2.1) integrated form in (1.3) is changedWherein, x =Crz+ μ,P=CCT, | | Z | |=1,UnUnit sphere space is represented,Wherein, βi It is to project to the volume point that spherical coordinate is fastened, and | | β | |=1, k are volume numbers, and ω is weight corresponding to volume point;
(2.2) according to sphere orthogonal transformation rule, βiIt is as follows with ω selection rule:
Wherein, i=1,2 ..., 2n and r=1,2 ..., [n/2], and when n is odd number, ri,n=(- 1)i-1, take λ=r2/ 2, Obtain:
(2.3) equation in Gauss-Lagrangian Integration Solving (2.2) is utilized, can be obtained:
Wherein, m is chooses orthogonal points number, therefore obtains converting orthogonal volume point and weight is asked for:
λiFor Gauss-Lagrangian orthogonal points, AiFor corresponding weight, obtained by following formula:
Further improvement of the present invention, the specific steps of step 3) the Strong tracking filter design include:
(3.1) system residual error output sequence is:ηk=yk-yk|k-1, therefore strong tracking filfer should meet following condition:
The covariance matrix of system environments noise is defined as:
Wherein, ρ is forgetting factor, 0.95≤ρ≤0.98;
(3.2) calculating matrix:
Mk=Pzz,k|k-1-Vk+Nk
Wherein, Pk|k-1For varivance matrix;Pxz,k|k-1For Cross-covariance;Pzz,k|k-1For auto-covariance matrix.Cause This fading factor represents as follows:
Wherein, the mark of tr [] representing matrix.
Further improvement of the present invention, the specific steps of the structure of step 4) the TSCKF wave filters include:
(4.1) volume point is calculated according to improved volume point sampling rule in 3:
(4.2) time updates:The SVD of matrix decomposes to be represented with svd (), then can be asked:
Sk-1|k-1=svd (Pk-1|k-1)
Calculate cubature points:
Cubature points are propagated by state equation:
ξi,k-1|k-1=f (ξi,k-1|k-1), i=1 ..., 2n;
Calculate status predication value and error covariance matrix:
Calculate fading factor λk, pass through SVD decomposed Psk|k-1
Sk|k-1=svd (Pk|k-1);
Calculate Cubature points:
(4.3) renewal is measured:Cubature points are propagated by measurement equation:
Zi,k|k-1=h (ξi,k|k-1);
Calculate measurement predictorAuto-covariance battle array Pzz,k|k-1With cross covariance battle array Pxz,k|k-1
Calculated according to formula and introduce fading factor λk,
WillAnd Pk|k-1It is iterated, solves new volume point, and introduce fading factor λkAnd Pk|k-1Recalculate Pzz,k|k-1And Pxz,k|k-1.Calculate filtering gain, state estimation and error covariance matrix:
Pk=Pk|k-1-Kk
The present invention provides a kind of modified CKF methods applied in GNSS/INS, for high order system local volumetric point The influence that sampling is inaccurate and system mode mutation is to system filter precision, on the basis of CKF, propose the improved orthogonal appearance of conversion Plot point sampling rule, on this basis with reference to the basic theories framework of STF algorithms, propose that a kind of modified CKF (TSCKF) is calculated Method, filtering accuracy caused by this method efficiently solves the inaccurate mutation with system mode of volume point sampling decline even diverging Problem, there is precision height, the optimization of strong robustness.
Brief description of the drawings
Fig. 1 is the inventive method flow chart;
Fig. 2 is GNSS/INS tight integrations system diagram in the present invention;
Fig. 3 is that volume point samples rule schema in the present invention;
Embodiment
The present invention is described in further detail with embodiment below in conjunction with the accompanying drawings:
The present invention provides a kind of modified CKF methods applied in GNSS/INS, and it should for High Order Nonlinear System In, local volumetric point sampling is inaccurate and system mode mutation causes filtering accuracy to reduce the problem of even dissipating, this method Solve the problems, such as that filtering accuracy caused by the inaccurate mutation with system mode of volume point sampling declines or even dissipated, have Precision is high, the optimization of strong robustness.
As Figure 1-3, kind of the present invention applies the modified CKF methods in GNSS/INS, and this method includes Following steps:
Step 1:Combined system nonlinear model is established, the foundation of state equation, observational equation comprising system, system The modeling of ambient noise, and the solution of general volume Kalman filtering algorithm;
Step 2:The formulation of volume point sampling rule is converted, can be because for traditional CKF wave filters in the case of system higher-dimension The mapping of volume point is improper, causes filtering accuracy to decline or even occur the situation of filtering divergence, proposes that one kind is based on sphere area divider The orthogonal volume point sampling rule of conversion then, solves the problems, such as the decline of High Dimensional Systems filtering accuracy;
Step 3:Strong tracking filter designs, and is difficult to quantify for noise model and system is undergone mutation, so as to cause filtering The problem of device dissipates, numerical value is unstable.It is proposed to introduce a kind of fading factor, output residual sequence is kept orthogonal, boosting algorithm Robustness, improve to state and parameter mutation ability of tracking.
Step 4:The structure of TSCKF wave filters:A kind of TSCKF filtering is built based on orthogonal transformation principle and Strong tracking filter Device, and carry out time renewal, measurement renewal for GNSS/INS systems.
Wherein, step 1:Combined system nonlinear model is established, the foundation of state equation, observational equation comprising system, The modeling of the ambient noise of system, and the solution of general volume Kalman filtering algorithm;It is specific as follows:
1) discretization combined system state equation isChoosing quantity of state isThe respectively misalignment in three directions, velocity error, site error, acceleration The biasing of degree meter constant value, gyroscope constant value drift.
2) GNSS/SINS tight integrations navigation system measurement equation includes the system pseudo range measurement equation of pseudo range observed quantity composition With the system pseudorange rates measurement equation of pseudorange rates observed quantity composition.The pseudo range measurement equation of combined system isρiFor relative to the pseudorange of i-th satellite,For pseudorange rates, V (t) is measurement Noise.
3) solution of state-transition matrix f in (1.1) is converted to by integrated form based on CKF principleWherein ωi=1/m, i.e. sampled point weight, i=1,2 ..., m=2n;E is that n ties up unit square formation, [1]iRepresent i-th row of [1].
Step 2:Convert the formulation of volume point sampling rule:, can be because for traditional CKF wave filters in the case of system higher-dimension The mapping of volume point is improper, causes filtering accuracy to decline or even occur the situation of filtering divergence, proposes that one kind is based on sphere area divider The orthogonal volume point sampling rule of conversion then, solves the problems, such as the decline of High Dimensional Systems filtering accuracy;It is specific as follows:
1) by step 1 3) in integrated form changeWherein, X=Crz+ μ, P=CCT, | | Z | |=1, UnRepresent unit sphere space.Wherein, βiIt is to project to the volume point that spherical coordinate is fastened, and | | β | |=1, k are volume numbers, and ω is weight corresponding to volume point.
2) according to sphere orthogonal transformation rule, βiIt is as follows with ω selection rule:
Wherein, i=1,2 ..., 2n and r=1,2 ..., [n/2], and when n is odd number, ri,n=(- 1)i-1, take λ=r2/ 2, Obtain:
3) equation in Gauss-Lagrangian Integration Solving (2.2) is utilized, can be obtained:
Wherein, m is chooses orthogonal points number, therefore obtains converting orthogonal volume point and weight is asked for:
λiFor Gauss-Lagrangian orthogonal points, AiFor corresponding weight, obtained by following formula:
Step 3:Strong tracking filter designs, and is difficult to quantify for noise model and system is undergone mutation, so as to cause filtering The problem of device dissipates, numerical value is unstable.It is proposed to introduce a kind of fading factor, output residual sequence is kept orthogonal, boosting algorithm Robustness, improve to state and parameter mutation ability of tracking;It is specific as follows:
1) system residual error output sequence is:ηk=yk-yk|k-1, therefore strong tracking filfer should meet following condition:
The covariance matrix of system environments noise is defined as:
Wherein, ρ is forgetting factor, 0.95≤ρ≤0.98.
2) calculating matrix:
Mk=Pzz,k|k-1-Vk+Nk
Wherein, Pk|k-1For varivance matrix;Pxz,k|k-1For Cross-covariance;Pzz,k|k-1For auto-covariance matrix.Cause This fading factor represents as follows:
Wherein, the mark of tr [] representing matrix.
Step 4:The structure of TSCKF wave filters:A kind of TSCKF filtering is built based on orthogonal transformation principle and Strong tracking filter Device, and carry out time renewal, measurement renewal for GNSS/INS systems;It is specific as follows:
1) volume point is calculated according to improved volume point sampling rule in step 2.
2) time updates:The SVD of matrix decomposes to be represented with svd (), then can be asked:
Sk-1|k-1=svd (Pk-1|k-1);
Calculate cubature points:
Cubature points are propagated by state equation:
ξi,k-1|k-1=f (ξi,k-1|k-1), i=1 ..., 2n;
Calculate status predication value and error covariance matrix:
Calculate fading factor λk, pass through SVD decomposed Psk|k-1
Sk|k-1=svd (Pk|k-1);
Calculate Cubature points:
3) renewal is measured:Cubature points are propagated by measurement equation:
Zi,k|k-1=h (ξi,k|k-1);
Calculate measurement predictorAuto-covariance battle array Pzz,k|k-1With cross covariance battle array Pxz,k|k-1
Calculated according to formula and introduce fading factor λk,
WillAnd Pk|k-1It is iterated, solves new volume point, and introduce fading factor λkAnd Pk|k-1Recalculate Pzz,k|k-1And Pxz,k|k-1.Calculate filtering gain, state estimation and error covariance matrix:
Pk=Pk|k-1-Kk
The above described is only a preferred embodiment of the present invention, it is not the limit for making any other form to the present invention System, and any modification made according to technical spirit of the invention or equivalent variations, still fall within present invention model claimed Enclose.

Claims (5)

  1. A kind of 1. modified CKF methods applied in GNSS/INS, it is characterised in that:Comprise the following steps:
    1) combined system nonlinear model is established:The foundation of state equation, observational equation comprising system, the ambient noise of system Modeling, and the solution of general volume Kalman filtering algorithm;
    2) formulation of volume point sampling rule is converted:For traditional CKF wave filters in the case of system higher-dimension, it can be reflected because of volume point It is improper to penetrate, and causes filtering accuracy to decline or even occur the situation of filtering divergence, proposes a kind of conversion based on surface integral rule Orthogonal volume point sampling rule, solves the problems, such as the decline of High Dimensional Systems filtering accuracy;
    3) Strong tracking filter designs:It is difficult to quantify for noise model and system is undergone mutation, so as to causes filter divergence, number It is worth the problem of unstable.It is proposed to introduce a kind of fading factor, output residual sequence is kept orthogonal, the robustness of boosting algorithm, Improve the ability of tracking to state and parameter mutation.
    4) structure of TSCKF wave filters:A kind of TSCKF wave filters, and pin are built based on orthogonal transformation principle and Strong tracking filter Time renewal is carried out to GNSS/INS systems, measures renewal.
  2. A kind of 2. modified CKF methods applied in GNSS/INS according to claim 1, it is characterised in that:
    The specific steps of combined system nonlinear model are established in the step 1) to be included:
    (1.1) discretization combined system state equation isChoosing quantity of state isThe respectively misalignment in three directions, velocity error, site error, acceleration The biasing of degree meter constant value, gyroscope constant value drift;
    (1.2) GNSS/SINS tight integrations navigation system measurement equation includes the system pseudo range measurement equation of pseudo range observed quantity composition With the system pseudorange rates measurement equation of pseudorange rates observed quantity composition, the pseudo range measurement equation of combined system is.I=1,2,3,4, ρiFor relative to the pseudorange of i-th satellite,For pseudorange rates, V (t) is amount Survey noise;
    (1.3) solution of state-transition matrix f in (1.1) is converted to by integrated form based on CKF principleWherein ωi=1/m, i.e. sampled point weight, i=1,2 ..., m=2n;[1]=[E ,-E], E are that n ties up unit square formation, [1]iRepresent i-th row of [1].
  3. A kind of 3. modified CKF methods applied in GNSS/INS according to claim 1, it is characterised in that:
    The specific steps of the formulation of step 2) the conversion volume point sampling rule include:
    (2.1) integrated form in (1.3) is changedWherein, x=Crz + μ, P=CCT, | | Z | |=1, UnUnit sphere space is represented,Wherein, βiIt is to throw The volume point that shadow is fastened to spherical coordinate, and | | β | |=1, k are volume numbers, and ω is weight corresponding to volume point;
    (2.2) according to sphere orthogonal transformation rule, βiIt is as follows with ω selection rule:
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;beta;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mi>r</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msqrt> <mrow> <mn>2</mn> <mo>/</mo> <mi>n</mi> </mrow> </msqrt> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mn>2</mn> <mi>r</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>i</mi> <mi>&amp;pi;</mi> <mo>/</mo> <mi>n</mi> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;beta;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>2</mn> <mi>r</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mrow> <mn>2</mn> <mo>/</mo> <mi>n</mi> </mrow> </msqrt> <mi>sin</mi> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mn>2</mn> <mi>r</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>i</mi> <mi>&amp;pi;</mi> <mo>/</mo> <mi>n</mi> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
    <mrow> <mi>&amp;omega;</mi> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msqrt> <msup> <mi>&amp;pi;</mi> <mi>n</mi> </msup> </msqrt> </mrow> <mrow> <mn>2</mn> <mi>n</mi> <mi>&amp;Gamma;</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>;</mo> </mrow>
    Wherein, i=1,2 ..., 2n and r=1,2 ..., [n/2], and when n is odd number, rI, n=(- 1)i-1, take λ=r2/ 2, obtain:
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>I</mi> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> <mo>&amp;ap;</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> <mi>&amp;Gamma;</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mi>&amp;lambda;</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>&amp;infin;</mi> </msubsup> <msup> <mi>f</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msup> <mi>&amp;lambda;</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>/</mo> <mn>2</mn> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </msup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>&amp;lambda;</mi> </mrow> </msup> <mi>d</mi> <mi>&amp;lambda;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mi>f</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>2</mi> <mi>n</mi> </mrow> </munderover> <mi>f</mi> <mrow> <mo>(</mo> <mi>C</mi> <msqrt> <mrow> <mn>2</mn> <mi>&amp;lambda;</mi> </mrow> </msqrt> <msub> <mi>&amp;beta;</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
    (2.3) equation in Gauss-Lagrangian Integration Solving (2.2) is utilized, can be obtained:
    <mrow> <mi>I</mi> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> <mo>&amp;ap;</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>C&amp;xi;</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> <msub> <mi>W</mi> <mi>j</mi> </msub> <mo>;</mo> </mrow>
    Wherein, m is chooses orthogonal points number, therefore obtains converting orthogonal volume point and weight is asked for:
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;xi;</mi> <mi>i</mi> </msub> <mo>=</mo> <msqrt> <mrow> <mn>2</mn> <msub> <mi>&amp;lambda;</mi> <mi>j</mi> </msub> </mrow> </msqrt> <msub> <mi>&amp;alpha;</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>W</mi> <mi>j</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>A</mi> <mi>i</mi> </msub> <mrow> <mn>2</mn> <mi>n</mi> <mi>&amp;Gamma;</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
    λiFor Gauss-Lagrangian orthogonal points, AiFor corresponding weight, obtained by following formula:
    <mrow> <msub> <mi>L</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>m</mi> </msup> <msup> <mi>&amp;lambda;</mi> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>n</mi> <mo>/</mo> <mn>2</mn> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msup> <msup> <mi>e</mi> <mi>&amp;lambda;</mi> </msup> <mfrac> <msup> <mi>d</mi> <mi>m</mi> </msup> <mrow> <msup> <mi>d&amp;lambda;</mi> <mi>m</mi> </msup> </mrow> </mfrac> <msup> <mi>&amp;lambda;</mi> <mrow> <mi>n</mi> <mo>/</mo> <mn>2</mn> <mo>+</mo> <mi>m</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>&amp;lambda;</mi> </mrow> </msup> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mrow>
    <mrow> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>m</mi> <mo>!</mo> <mi>&amp;Gamma;</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>/</mo> <mn>2</mn> <mo>+</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>&amp;lambda;</mi> <mi>i</mi> </msub> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mover> <mi>L</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> </mrow> </mfrac> <mo>.</mo> </mrow>
  4. A kind of 4. modified CKF methods applied in GNSS/INS according to claim 1, it is characterised in that:
    The specific steps of step 3) the Strong tracking filter design include:
    (3.1) system residual error output sequence is:ηk=yk-yk|k-1, therefore strong tracking filfer should meet following condition:
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>E</mi> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>x</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>=</mo> <mi>M</mi> <mi>I</mi> <mi>N</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>E</mi> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;eta;</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msub> <mi>&amp;eta;</mi> <mrow> <mi>k</mi> <mo>+</mo> <mi>j</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
    The covariance matrix of system environments noise is defined as:
    <mrow> <msub> <mi>V</mi> <mi>k</mi> </msub> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;eta;</mi> <mn>1</mn> </msub> <msubsup> <mi>&amp;eta;</mi> <mn>1</mn> <mi>T</mi> </msubsup> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <msub> <mi>&amp;rho;V</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;eta;</mi> <mi>k</mi> </msub> <msubsup> <mi>&amp;eta;</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>)</mo> <mo>/</mo> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&amp;rho;</mi> <mo>)</mo> <mo>,</mo> <mi>k</mi> <mo>&gt;</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
    Wherein, ρ is forgetting factor, 0.95≤ρ≤0.98;
    (3.2) calculating matrix:
    Mk=Pzz,k|k-1-Vk+Nk
    Wherein, Pk|k-1For varivance matrix;Pxz,k|k-1For Cross-covariance;Pzz,k|k-1For auto-covariance matrix.Therefore gradually The factor representation that disappears is as follows:
    <mrow> <msub> <mi>&amp;lambda;</mi> <mi>k</mi> </msub> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>&amp;GreaterEqual;</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>&lt;</mo> <mn>1</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mi>t</mi> <mi>r</mi> <mo>&amp;lsqb;</mo> <msub> <mi>N</mi> <mi>k</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mi>t</mi> <mi>r</mi> <mo>&amp;lsqb;</mo> <msub> <mi>M</mi> <mi>k</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> </mfrac> <mo>;</mo> </mrow>
    Wherein, the mark of tr [] representing matrix.
  5. A kind of 5. modified CKF methods applied in GNSS/INS according to claim 1, it is characterised in that:
    The specific steps of the structure of step 4) the TSCKF wave filters include:
    (4.1) volume point is calculated according to improved volume point sampling rule in 3:
    (4.2) time updates:The SVD of matrix decomposes to be represented with svd (), then can be asked:
    Sk-1|k-1=svd (Pk-1|k-1);
    Calculate cubature points:
    <mrow> <msub> <mi>&amp;xi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>S</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>&amp;alpha;</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mn>2</mn> <mi>n</mi> <mo>;</mo> </mrow>
    Cubature points are propagated by state equation:
    ξi,k-1|k-1=f (ξi,k-1|k-1), i=1 ..., 2n;
    Calculate status predication value and error covariance matrix:
    <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>&amp;xi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>*</mo> </msubsup> <mo>;</mo> </mrow>
    <mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>&amp;xi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>*</mo> </msubsup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&amp;xi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>*</mo> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>Q</mi> <mi>k</mi> </msub> <mo>;</mo> </mrow>
    Calculate fading factor λk, pass through SVD decomposed Psk|k-1
    Sk|k-1=svd (Pk|k-1);
    Calculate Cubature points:
    <mrow> <msub> <mi>&amp;xi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>S</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>&amp;alpha;</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> </mrow>
    (4.3) renewal is measured:Cubature points are propagated by measurement equation:
    Zi,k|k-1=h (ξi,k|k-1);
    Calculate measurement predictorAuto-covariance battle array Pzz,k|k-1With cross covariance battle array Pxz,k|k-1
    <mrow> <msub> <mover> <mi>Z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msub> <mi>Z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> </mrow>
    <mrow> <msub> <mi>P</mi> <mrow> <mi>z</mi> <mi>z</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msub> <mi>Z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>Z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>-</mo> <msub> <mover> <mi>Z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mover> <mi>Z</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>R</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> </mrow>
    <mrow> <msub> <mi>P</mi> <mrow> <mi>x</mi> <mi>z</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msub> <mi>&amp;xi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>Z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mover> <mi>Z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>;</mo> </mrow>
    Calculated according to formula and introduce fading factor λk,
    <mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&amp;lambda;</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msub> <mi>&amp;xi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&amp;xi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>*</mo> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Q</mi> <mi>k</mi> </msub> <mo>;</mo> </mrow>
    WillAnd Pk|k-1It is iterated, solves new volume point, and introduce fading factor λkAnd Pk|k-1Recalculate Pzz,k|k-1 And PXz, k | k-1.Calculate filtering gain, state estimation and error covariance matrix:
    <mrow> <msub> <mi>K</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>x</mi> <mi>z</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mi>z</mi> <mi>z</mi> <mo>,</mo> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>;</mo> </mrow>
    <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mover> <mi>Z</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>|</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    Pk=Pk|k-1-Kk
CN201710770961.4A 2017-08-31 2017-08-31 A kind of modified CKF methods applied in GNSS/INS Pending CN107707220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710770961.4A CN107707220A (en) 2017-08-31 2017-08-31 A kind of modified CKF methods applied in GNSS/INS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710770961.4A CN107707220A (en) 2017-08-31 2017-08-31 A kind of modified CKF methods applied in GNSS/INS

Publications (1)

Publication Number Publication Date
CN107707220A true CN107707220A (en) 2018-02-16

Family

ID=61171361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710770961.4A Pending CN107707220A (en) 2017-08-31 2017-08-31 A kind of modified CKF methods applied in GNSS/INS

Country Status (1)

Country Link
CN (1) CN107707220A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108596846A (en) * 2018-04-18 2018-09-28 南京理工大学 Based on the Diffractive Optical Imaging Spectrometer image recovery method for improving liftering
CN108761512A (en) * 2018-07-28 2018-11-06 南京理工大学 A kind of adaptive CKF filtering methods of missile-borne BDS/SINS deep combinations
CN109612470A (en) * 2019-01-14 2019-04-12 广东工业大学 A kind of single station passive navigation method based on fuzzy volume Kalman filtering
CN110632634A (en) * 2019-09-24 2019-12-31 东南大学 Optimal data fusion method suitable for ballistic missile INS/CNS/GNSS combined navigation system
CN111650616A (en) * 2020-05-12 2020-09-11 烟台南山学院 High-precision Beidou navigation positioning system navigation positioning parameter calculation method
CN114061621A (en) * 2021-11-11 2022-02-18 东南大学 Initial alignment method based on strong tracking of large misalignment angle of rotary modulation of moving machine base
CN115077530A (en) * 2022-06-16 2022-09-20 哈尔滨工业大学(威海) Multi-AUV collaborative navigation method and system based on strong tracking extended-dimension ECKF algorithm

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104408744A (en) * 2014-11-17 2015-03-11 电子科技大学 Strong tracking Kalman filer method for target tracking
US20150301188A1 (en) * 2014-04-16 2015-10-22 Honeywell International Inc. Vector tracking loop operability through oscillator micro-jump event
CN106291645A (en) * 2016-07-19 2017-01-04 东南大学 Be suitable to the volume kalman filter method that higher-dimension GNSS/INS couples deeply
CN106885570A (en) * 2017-02-24 2017-06-23 南京理工大学 A kind of tight integration air navigation aid based on robust SCKF filtering

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150301188A1 (en) * 2014-04-16 2015-10-22 Honeywell International Inc. Vector tracking loop operability through oscillator micro-jump event
CN104408744A (en) * 2014-11-17 2015-03-11 电子科技大学 Strong tracking Kalman filer method for target tracking
CN106291645A (en) * 2016-07-19 2017-01-04 东南大学 Be suitable to the volume kalman filter method that higher-dimension GNSS/INS couples deeply
CN106885570A (en) * 2017-02-24 2017-06-23 南京理工大学 A kind of tight integration air navigation aid based on robust SCKF filtering

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG LI等: "A Novel Compensation Method for FOG Temperature Drift Based on TUKF", 《APPLIED MECHANICS AND MATERIALS》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108596846A (en) * 2018-04-18 2018-09-28 南京理工大学 Based on the Diffractive Optical Imaging Spectrometer image recovery method for improving liftering
CN108761512A (en) * 2018-07-28 2018-11-06 南京理工大学 A kind of adaptive CKF filtering methods of missile-borne BDS/SINS deep combinations
CN109612470A (en) * 2019-01-14 2019-04-12 广东工业大学 A kind of single station passive navigation method based on fuzzy volume Kalman filtering
CN110632634A (en) * 2019-09-24 2019-12-31 东南大学 Optimal data fusion method suitable for ballistic missile INS/CNS/GNSS combined navigation system
CN111650616A (en) * 2020-05-12 2020-09-11 烟台南山学院 High-precision Beidou navigation positioning system navigation positioning parameter calculation method
CN114061621A (en) * 2021-11-11 2022-02-18 东南大学 Initial alignment method based on strong tracking of large misalignment angle of rotary modulation of moving machine base
CN114061621B (en) * 2021-11-11 2023-11-17 东南大学 Large-misalignment-angle initial alignment method based on rotation modulation of strong tracking movable machine base
CN115077530A (en) * 2022-06-16 2022-09-20 哈尔滨工业大学(威海) Multi-AUV collaborative navigation method and system based on strong tracking extended-dimension ECKF algorithm
CN115077530B (en) * 2022-06-16 2024-04-23 哈尔滨工业大学(威海) Multi-AUV collaborative navigation method and system based on strong tracking dimension-expanding ECKF algorithm

Similar Documents

Publication Publication Date Title
CN107707220A (en) A kind of modified CKF methods applied in GNSS/INS
CN108225337B (en) Star sensor and gyroscope combined attitude determination method based on SR-UKF filtering
CN104215259B (en) A kind of ins error bearing calibration based on earth magnetism modulus gradient and particle filter
CN109000642A (en) A kind of improved strong tracking volume Kalman filtering Combinated navigation method
CN101949703B (en) Strapdown inertial/satellite combined navigation filtering method
CN105424036B (en) A kind of inexpensive underwater hiding-machine terrain aided inertia combined navigation localization method
CN104655131B (en) Inertial navigation Initial Alignment Method based on ISTSSRCKF
CN104075715B (en) A kind of underwater navigation localization method of Combining with terrain and environmental characteristic
CN106767780B (en) The extension ellipsoid set-membership filtering method approached based on Chebyshev polynomial interopolations
CN105737823B (en) A kind of GPS/SINS/CNS Combinated navigation methods based on five rank CKF
CN105222780B (en) A kind of ellipsoid set-membership filtering method approached based on Stirling interpolation polynomial
CN103940433B (en) A kind of satellite attitude determination method based on the self adaptation square root UKF algorithm improved
CN102508954A (en) Full-digital simulation method and device for global positioning system (GPS)/strapdown inertial navigation system (SINS) combined navigation
CN103278813A (en) State estimation method based on high-order unscented Kalman filtering
CN107063245A (en) A kind of SINS/DVL integrated navigation filtering methods based on 5 rank SSRCKF
CN104374405A (en) MEMS strapdown inertial navigation initial alignment method based on adaptive central difference Kalman filtering
CN108508463B (en) Fourier-Hermite orthogonal polynomial based extended ellipsoid collective filtering method
CN101852615A (en) Improved mixed Gaussian particle filtering method used in inertial integrated navigation system
CN103776449B (en) A kind of initial alignment on moving base method that improves robustness
CN103017787A (en) Initial alignment method suitable for rocking base
CN104359496A (en) High-precision attitude correction method based on vertical deviation compensation
CN115943255A (en) System and method for measuring turbulence of wind flow in complex terrain with LiDAR
CN103398725A (en) Star-sensor-based initial alignment method of strapdown inertial navigation system
CN110779519A (en) Underwater vehicle single beacon positioning method with global convergence
Weng et al. Advanced data assimilation for cloud-resolving hurricane initialization and prediction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180216