CN107699811B - 一种氧化硅弥散强化钢及其制备方法 - Google Patents

一种氧化硅弥散强化钢及其制备方法 Download PDF

Info

Publication number
CN107699811B
CN107699811B CN201710805220.5A CN201710805220A CN107699811B CN 107699811 B CN107699811 B CN 107699811B CN 201710805220 A CN201710805220 A CN 201710805220A CN 107699811 B CN107699811 B CN 107699811B
Authority
CN
China
Prior art keywords
silica dispersion
steel
strengthened steel
strengthened
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710805220.5A
Other languages
English (en)
Other versions
CN107699811A (zh
Inventor
吴宜灿
黄群英
毛小东
刘少军
徐刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN201710805220.5A priority Critical patent/CN107699811B/zh
Publication of CN107699811A publication Critical patent/CN107699811A/zh
Application granted granted Critical
Publication of CN107699811B publication Critical patent/CN107699811B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0228Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种氧化硅弥散强化钢及其制备方法,属于低活化抗辐照金属材料技术领域。所述氧化硅弥散强化钢由弥散强化相纳米SiO2颗粒以及基体8~20Cr马氏体/铁素体钢组成,主要是利用SiO2晶体的石英、鳞石英和方石英等晶体结构转变这一特性,再通过合理的热处理调整氧化物/基体界面结构,从而实现其力学和抗辐照性能的显著提高。而且采用本发明所述氧化硅弥散强化钢作为未来聚变反应堆第一壁结构材料和***裂变反应堆的核燃料包壳材料,可以提高反应堆***的安全性,并有利于提高其发电效率及经济性。

Description

一种氧化硅弥散强化钢及其制备方法
技术领域
本发明涉及一种氧化硅弥散强化钢及其制备方法,属于低活化抗辐照金属材料技术领域。
背景技术
核聚变能采用氘-氚聚变反应,原料为海水中的氘和用于氚增殖的锂,储量可供人类使用数亿年,且不会产生长寿命放射废物,是一种“清洁、持久”能源。然而,未来商用聚变反应堆堆内服役环境恶劣,对核反应堆结构材料提出更高的性能要求。氧化物弥散强化钢是未来核反应堆最有潜力的结构材料。
现有的氧化物弥散强化钢中,主要采用纳米Y2O3作为颗粒弥散强化相。在高温下,纳米Y2O3颗粒具有较好的高温稳定性能,在较高温度下仍然能够钉扎并阻碍位错和晶界的移动、强化合金,从而提高材料的高温力学性能和高温稳定性。如专利文献1(专利申请号:200810021329.0)中通过Y2O3和微量元素Ti的添加,实现了氧化物强化相在低活化马氏体钢中的均匀弥散分布,获得晶粒尺寸合理的马氏体系合金,该合金具有抗强中子辐照、高温性能优良和低活化等特点。专利文献2(专利申请号:201410251099.2)中通过Y2O3添加获得了力学性能优异的氧化物弥散强化低活化马氏体钢。但是,合金元素Y在聚变中子辐照下产生长放射性的嬗变物质,对后期的材料处理造成不利影响。同时,添加纳米Y2O3颗粒制备的氧化物弥散强化低活化钢延伸率较低,限制了氧化物弥散强化低活化钢的广泛应用。
发明内容
针对现有氧化钇弥散强化钢存在延伸率低的问题,本发明的目的在于提供一种新型的氧化硅弥散强化钢,由弥散强化相纳米SiO2颗粒以及基体8~20Cr马氏体/铁素体钢组成;另外,本发明主要是采用具有低活化特性SiO2替换Y2O3作为弥散强化相,并利用SiO2晶体具有石英、鳞石英和方石英等晶体结构转变的特性,再通过合理的热处理调整氧化物/基体界面结构,从而实现其力学和抗辐照性能的显著提高。
本发明的目是通过以下技术方案实现的:
一种氧化硅弥散强化钢,以所述氧化硅弥散强化钢的总质量为100%计,其各组成成分及其质量分数如下:C 0.05~0.12%,Cr 8.0~20.0%,W 1.3~1.7%,Mn 0.30~0.60%,V 0.15~0.25%,Ta 0.05~0.30%,N 0.003~0.07%,P≤0.02%,S≤0.01%,Ni≤0.4%,SiO2 0.1~10%,余量为Fe;
其中,8%≤Cr≤12%时,所述氧化硅弥散强化钢为马氏体组织或马氏体/铁素体双相组织,具有更高的强度和抗辐照性能;12%<Cr≤20%时,所述氧化硅弥散强化钢为铁素体,具有更优的抗腐蚀性能。
所述氧化硅弥散强化钢中,产品力学性能随SiO2含量具有不同特点:SiO2含量为0.1~1%时,氧化硅弥散强化钢硬度较低,延伸率高(超过12%);SiO2含量为1~3%时,硬度和延伸率具有较好的均衡;SiO2含量为3~10%时,耐磨性好,但延伸率较低(3~5%)。从反应堆核心部件的性能和加工均衡性考虑,SiO2含量优选0.5%~1%。
一种本发明所述的氧化硅弥散强化钢的制备方法,所述方法步骤包括:
(1)采用雾化制粉法制备含有C、Cr、W、Mn、V、Ta、N、P、S、Ni以及Fe的合金粉体;
(2)将纳米SiO2粉体和合金粉体加入到球磨罐中,并在保护气体气氛下进行球磨,得到机械合金化粉体;
(3)将机械合金化粉体移至设有除气口的包壳中后,然后将包壳加热至300℃~600℃并进行真空除气,待包壳内的真空度达到1×10-4Pa以下时,再将包壳进行密封;
(4)对密封的包壳进行热等静压或热挤压,获得钢锭;
(5)8%≤Cr≤12%时,根据实际需求,采用轧制工艺或者锻造工艺将钢锭加工成所需型材;将所得的型材先在950℃~1100℃下淬火20min~40min,再在730℃~780℃下回火60min~100min,得到马氏体组织或马氏体/铁素体双相组织的氧化硅弥散强化钢;
12%<Cr≤20%时,步骤(4)所得到的钢锭即为铁素体组织的氧化硅弥散强化钢。
12%<Cr≤20%时,还可以对所获得的铁素体组织的氧化硅弥散强化钢进行退火处理,改善其微观组织结构以及性能,首先根据实际需求,采用轧制工艺或者锻造工艺将钢锭加工成所需型材;再将所得的型材在850℃~900℃下退火40min~60min。
进一步的,步骤(2)中,球料比为5~20:1,球磨转速为300r/min~750r/min,球磨时间为10h~50h;所述保护气体为纯度99.99%以上的氩气、氦气或氮气;所述纳米SiO2的平均粒径优选30nm~50nm。
进一步的,步骤(4)中,热等静压的工艺参数为:温度850℃~1250℃,压力100MPa~200Mpa,保温保压时间1h~5h;热挤压的工艺参数为:温度850℃~1150℃,压缩比为16:11~16:5。
有益效果:
(1)本发明所述的氧化硅弥散强化钢中,采用具有低活化性的纳米SiO2颗粒作为弥散强化相,不会降低8~20Cr马氏体/铁素体钢基体的低活化特性,而且可以降低材料中聚变中子活化辐照污染。另外,本发明采用SiO2替换Y2O3作为弥散强化相,可以利用SiO2晶体的石英、鳞石英和方石英等晶体结构转变以及由晶体结构转变导致的体积变化这一特性,再通过合理的热处理调整氧化物/基体界面结构,从而实现其力学和抗辐照性能的显著提高;这是因为界面结构是影响该类氧化物弥散强化钢材料力学性能和抗辐照性能的关键因素,而Y2O3在制备过程中无相变,Y2O3与基体之间的界面结构一旦形成则难以改变,所以难以实现氧化钇弥散强化钢的性能提升。
(2)本发明所述的SiO2弥散强化钢中,纳米氧化物析出相平均尺寸为5nm~10nm,数密度约为2×1023m-3,与现有添加Y2O3的同类合金相比,氧化物的尺寸、数密度均达到相同水平,而力学性能测试表明:虽然本发明所述氧化硅弥散强化钢与现有氧化钇弥散强化钢的强度相当,但是本发明所述氧化硅弥散强化钢具有更高的延伸率。同时,本发明所述的氧化硅弥散强化钢,在保留基体合金优良性能的基础上,通过纳米SiO2颗粒对位错及晶界的钉扎,进一步提高了材料的高温性能和使用安全性;而且采用本发明所述氧化硅弥散强化钢作为未来聚变反应堆第一壁结构材料和***裂变反应堆的核燃料包壳材料,可以提高反应堆***的安全性,并有利于提高其发电效率及经济性。
具体实施方式
下面结合具体实施方式对本发明做进一步说明。
实施例1
(1)采用雾化制粉法制备合金粉体;其中,以所述合金粉体的总质量为100%计,所述合金粉体中各组成成分及各成分的含量如下:C 0.08%,Cr 9%,W 1.5%,Mn 0.35%,V0.18%,Ta 0.15%,N 0.007%,P≤0.02%,S≤0.01%,S≤0.4%,余量为Fe;
(2)将平均粒径为35nm的SiO2与合金粉体加入到球磨罐中,并在纯度为99.99%的氩气气氛下进行球磨,得到机械合金化粉体;其中,纳米SiO2的质量与合金粉体的质量比为1:199,球料比为10:1,球磨转速为450r/min,球磨时间为30h;
(3)将机械合金化粉体移至设有除气口的包壳中后,然后加热至500℃并进行真空除气45min,待包壳内的真空度达到1×10-4Pa以下时,再将包壳进行密封;
(4)对密封的包壳进行热等静压,获得钢锭;其中,热等静压的工艺参数为:温度1150℃,压力150Mpa,保温保压时间3h;
(5)根据实际需求,采用轧制工艺将钢锭加工成板材;
其中,热轧温度1200℃,压下量为80%;
(6)将所得的板材先在1000℃下淬火30min,再在750℃下回火80min,得到马氏体组织的氧化硅弥散强化钢.
对氧化硅弥散强化钢进行透射电镜(JEOL FE2100F,日本电子)分析发现,纳米氧化物为SiO2,尺寸为5nm~10nm,数密度为2×1023m-3。参照GBT/228-2002、GB/T 4338-2006拉伸测试标准分别进行室温和高温力学性能测试,室温下氧化硅弥散强化钢的屈服强度达到1168MPa,延伸率达到19%;550℃下屈服强度为380MPa,延伸率为25%。以上测试结果表明,本实施例所制备的氧化硅弥散强化钢具有良好的室温和高温力学性能,有望应用于聚变堆结构材料。
实施例2
(1)采用雾化制粉法制备粒径不大于150μm的合金粉体;其中,以所述合金粉体的总质量为100%计,所述合金粉体中各组成成分及各成分的含量如下:C 0.1%,Cr 13%,W1.5%,Mn 0.4%,V 0.2%,Ta 0.15%,N 0.007%,P≤0.02%,S≤0.01%,Ni≤0.4%,余量为Fe;
(2)将平均粒径为35nm的SiO2粉体和合金粉体加入到球磨罐中,并在纯度为99.99%的氩气气氛下进行球磨,得到机械合金化粉体;其中,纳米SiO2的质量与合金粉体的质量比为2:98,球料比为15:1,球磨转速为450r/min,球磨时间为36h;
(3)将机械合金化粉体移至设有除气口的包壳中后,然后加热至500℃并进行真空除气80min,待包壳内的真空度达到1×10-4Pa以下时,再将包壳进行密封;
(4)对密封的包壳进行热等静压,获得钢锭,即得到铁素体组织的氧化硅弥散强化钢;
其中,热等静压的工艺参数为:温度1200℃,压力180Mpa,保温保压时间3.5h。
对氧化硅弥散强化钢进行透射电镜(JEOL FE2100F,日本电子)分析发现,纳米氧化物为SiO2,尺寸为5nm~8nm,数密度为2.1×1023m-3。参照GBT/228-2002、GB/T 4338-2006拉伸测试标准分别进行室温和高温力学性能测试,室温下氧化硅弥散强化钢的屈服强度达到1270MPa,同时延伸率达到23%;550℃时的屈服强度为480MPa,延伸率为27%。以上测试结果表明,氧化硅弥散强化铁素体钢具有良好的室温和高温力学性能,有望应用于聚变堆结构材料。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种氧化硅弥散强化钢,其特征在于:以所述氧化硅弥散强化钢的总质量为100%计,其各组成成分及其质量分数如下:C 0.05~0.12%,Cr 8.0~20.0%,W 1.3~1.7%,Mn0.30~0.60%,V 0.15~0.25%,Ta 0.05~0.30%,N 0.003~0.07%,P≤0.02%,S≤0.01%,Ni≤0.4%,SiO2 0.1~10%,余量为Fe;
其中,8%≤Cr≤12%时,所述氧化硅弥散强化钢为马氏体组织或马氏体/铁素体双相组织;12%<Cr≤20%时,所述氧化硅弥散强化钢为铁素体。
2.根据权利要求1所述的一种氧化硅弥散强化钢,其特征在于:所述SiO2占所述氧化硅弥散强化钢总质量的0.5%~1%。
3.一种如权利要求1或2所述的氧化硅弥散强化钢的制备方法,其特征在于:所述方法步骤包括:
(1)采用雾化制粉法制备含有C、Cr、W、Mn、V、Ta、N、P、S、Ni以及Fe的合金粉体;
(2)将纳米SiO2粉体和合金粉体加入到球磨罐中,并在保护气体气氛下进行球磨,得到机械合金化粉体;
(3)将机械合金化粉体移至设有除气口的包壳中后,然后将包壳加热至300℃~600℃并进行真空除气,待包壳内的真空度达到1×10-4Pa以下时,再将包壳进行密封;
(4)对密封的包壳进行热等静压或热挤压,获得钢锭;
(5)8%≤Cr≤12%时,根据实际需求,采用轧制工艺或者锻造工艺将钢锭加工成所需型材;将所得的型材先在950℃~1100℃下淬火20min~40min,再在730℃~780℃下回火60min~100min,得到马氏体组织或马氏体/铁素体双相组织的氧化硅弥散强化钢;
12%<Cr≤20%时,步骤(4)所得到的钢锭即为铁素体组织的氧化硅弥散强化钢;
步骤(2)中,所述保护气体为纯度99.99%以上的氩气、氦气或氮气。
4.根据权利要求3所述的一种氧化硅弥散强化钢的制备方法,其特征在于:12%<Cr≤20%时,根据实际需求,采用轧制工艺或者锻造工艺将步骤(4)得到的钢锭加工成所需型材;再将所得的型材在850℃~900℃下退火40min~60min,得到铁素体组织的氧化硅弥散强化钢。
5.根据权利要求3所述的一种氧化硅弥散强化钢的制备方法,其特征在于:步骤(2)中,球料比为5~20:1,球磨转速为300r/min~750r/min,球磨时间为10h~50h。
6.根据权利要求3所述的一种氧化硅弥散强化钢的制备方法,其特征在于:所述纳米SiO2的平均粒径为30nm~50nm。
7.根据权利要求3所述的一种氧化硅弥散强化钢的制备方法,其特征在于:步骤(4)中,热等静压的工艺参数为:温度850℃~1250℃,压力100MPa~200MPa ,保温保压时间1h~5h;热挤压的工艺参数为:温度850℃~1150℃,压缩比为16:11~16:5。
CN201710805220.5A 2017-09-08 2017-09-08 一种氧化硅弥散强化钢及其制备方法 Active CN107699811B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710805220.5A CN107699811B (zh) 2017-09-08 2017-09-08 一种氧化硅弥散强化钢及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710805220.5A CN107699811B (zh) 2017-09-08 2017-09-08 一种氧化硅弥散强化钢及其制备方法

Publications (2)

Publication Number Publication Date
CN107699811A CN107699811A (zh) 2018-02-16
CN107699811B true CN107699811B (zh) 2019-07-19

Family

ID=61172255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710805220.5A Active CN107699811B (zh) 2017-09-08 2017-09-08 一种氧化硅弥散强化钢及其制备方法

Country Status (1)

Country Link
CN (1) CN107699811B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111979469B (zh) * 2020-07-31 2021-07-27 青岛理工大学 一种基于粉末锻造的氧化物弥散强化钢的制备方法
CN113073267B (zh) * 2021-03-29 2022-04-08 中国科学院合肥物质科学研究院 一种高强韧耐高温rafm钢及其基于机器学习的设计方法
CN115704072A (zh) * 2021-08-10 2023-02-17 新奥科技发展有限公司 一种弥散强化低活化钢及其制备方法与应用
CN114622138B (zh) * 2022-03-03 2023-03-31 上海大学 一种11b掺杂氧化物弥散强化合金、制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020014853A (ko) * 2000-08-19 2002-02-27 윤영석 원자력 발전소, 고속증식로, 핵융합로의 고온 및고압부위에 사용되는 저방사화 고크롬 페라이트계내열합금
US20090148334A1 (en) * 2007-12-05 2009-06-11 United States of America as represented by the Administrator of the National Aeronautics and Nanophase dispersion strengthened low cte alloy
CN101829702A (zh) * 2010-04-21 2010-09-15 中国科学院金属研究所 一种1Cr13厚壁管材管坯的制备方法
CN102851610A (zh) * 2012-07-27 2013-01-02 中国科学院合肥物质科学研究院 一种改进型结构材料马氏体耐热钢及其制备方法
CN106119730A (zh) * 2016-08-23 2016-11-16 中国科学院合肥物质科学研究院 一种具有高温机械性能的低活化马氏体钢及热处理工艺方法
CN106435392A (zh) * 2016-09-23 2017-02-22 中国科学院合肥物质科学研究院 一种改进低活化马氏体钢力学性能的热机械处理方法
CN107130185A (zh) * 2017-06-13 2017-09-05 中国科学院合肥物质科学研究院 一种新型弥散强化低活化耐辐照马氏体钢及其热处理工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762220B2 (ja) * 1989-08-30 1995-07-05 新日本製鐵株式会社 鉛快削マルテンサイト系ステンレス鋼鋳片およびその熱間圧延法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020014853A (ko) * 2000-08-19 2002-02-27 윤영석 원자력 발전소, 고속증식로, 핵융합로의 고온 및고압부위에 사용되는 저방사화 고크롬 페라이트계내열합금
US20090148334A1 (en) * 2007-12-05 2009-06-11 United States of America as represented by the Administrator of the National Aeronautics and Nanophase dispersion strengthened low cte alloy
CN101829702A (zh) * 2010-04-21 2010-09-15 中国科学院金属研究所 一种1Cr13厚壁管材管坯的制备方法
CN102851610A (zh) * 2012-07-27 2013-01-02 中国科学院合肥物质科学研究院 一种改进型结构材料马氏体耐热钢及其制备方法
CN106119730A (zh) * 2016-08-23 2016-11-16 中国科学院合肥物质科学研究院 一种具有高温机械性能的低活化马氏体钢及热处理工艺方法
CN106435392A (zh) * 2016-09-23 2017-02-22 中国科学院合肥物质科学研究院 一种改进低活化马氏体钢力学性能的热机械处理方法
CN107130185A (zh) * 2017-06-13 2017-09-05 中国科学院合肥物质科学研究院 一种新型弥散强化低活化耐辐照马氏体钢及其热处理工艺

Also Published As

Publication number Publication date
CN107699811A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
CN107699811B (zh) 一种氧化硅弥散强化钢及其制备方法
CN105274445B (zh) 一种氧化物弥散强化低活化钢及其制备方法
CN105039857A (zh) 一种氧化物弥散强化铁素体/马氏体钢及制备方法
CN102277525B (zh) 氧化物弥散强化型不锈钢粉末制备方法及不锈钢
CN106435323A (zh) 一种氧化物弥散强化ods高熵合金及其制备方法
CN109811116B (zh) 一种耐事故包壳用FeCrAl基合金纳米晶材料的制备方法
CN111172447B (zh) 两步法制备高强高韧含铝氧化物弥散强化铁素体钢的方法
CN109570508B (zh) 双晶粒尺寸分布的氧化物弥散强化铁素体钢的制备方法
CN112453413B (zh) 一种3d打印用氧化物弥散强化钢球形粉体的制备方法
CN110863153B (zh) 一种先进核燃料元件包壳用FeCrAl基ODS合金材料的制备方法
CN110863152B (zh) 一种核反应堆耐事故燃料元件包壳用FeCrAl基ODS合金的制备方法
CN109402541B (zh) 一种颗粒弥散强化钨块体材料制备方法
CN115341126B (zh) 一种耐高温中子慢化及吸收一体化复合屏蔽钇基合金材料
CN114622138B (zh) 一种11b掺杂氧化物弥散强化合金、制备方法及其应用
CN110760760B (zh) 一种核反应堆结构材料用FeCrAl基合金的制备方法
CN108893580B (zh) 一种氮化物强化ods钢及其制备方法
CN110863148B (zh) 一种核反应堆包壳用FeCrAl基ODS合金的制备方法
CN113564493A (zh) 一种高熵合金增强FeCrAl合金包壳材料及其制备工艺
CN114525451B (zh) 一种屏蔽型非等原子比高熵合金钢及其制备方法
CN111020346B (zh) 一种核反应堆用FeCrAl基ODS合金材料的制备方法
CN105401047B (zh) 一种ods铁素体不锈钢的制备方法
CN110016603B (zh) 一种超高强度高热稳定性纳米晶ods钢及其制备方法和应用
CN114318152B (zh) 一种复合强化铁基高温合金及其制备方法
CN105239010B (zh) 一种Cr‑Y‑O纳米团簇氧化物弥散强化低活化钢
CN107699775A (zh) 采用超低温机械合金化技术制备氧化物弥散强化钢的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant