CN107651656B - 一种Ni2P4O12纳米颗粒材料及其制备方法和应用 - Google Patents

一种Ni2P4O12纳米颗粒材料及其制备方法和应用 Download PDF

Info

Publication number
CN107651656B
CN107651656B CN201710831300.8A CN201710831300A CN107651656B CN 107651656 B CN107651656 B CN 107651656B CN 201710831300 A CN201710831300 A CN 201710831300A CN 107651656 B CN107651656 B CN 107651656B
Authority
CN
China
Prior art keywords
nano
preparation
quartz tube
water
conductive substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710831300.8A
Other languages
English (en)
Other versions
CN107651656A (zh
Inventor
熊杰
李岚
黄建文
邬春阳
胡凯
杜新川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201710831300.8A priority Critical patent/CN107651656B/zh
Publication of CN107651656A publication Critical patent/CN107651656A/zh
Application granted granted Critical
Publication of CN107651656B publication Critical patent/CN107651656B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

一种Ni2P4O12纳米颗粒材料及其制备方法,属于催化剂制备技术领域。本发明Ni2P4O12纳米颗粒材料具有多级纳米结构,5~10nm的纳米晶修饰于约100nm的网络状互联纳米颗粒上,这种结构为电解水中的氧析出反应提供了极大的活性位点,同时有利于水分子的吸附,理论研究证实暴露的纳米晶的晶面对水分子与氧中间体有很低吸附能。

Description

一种Ni2P4O12纳米颗粒材料及其制备方法和应用
技术领域
本发明属于催化剂制备技术领域,具体涉及一种Ni2P4O12纳米颗粒材料及其制备方法,以及在催化析氧反应中的应用。
背景技术
经济的快速发展所带来的能源与环境问题正日益严重地制约着社会的可持续发展,传统化石能源由于高碳排放等环境问题,使得可代替传统化石能源的清洁可再生能源的研究与开发显得尤为重要。其中,氢气以其无污染、高能量密度、来源丰富等优点成为了最有潜力的清洁能源之一,其制备技术也受到研究工作者的广泛关注。电解水作为最简单成熟的制氢方法,被认为是最适合大规模应用的手段;然而,电解水制氢时,电解水双电极上发生的析氢和析氧反应具有较高的过电势,增加了电解池的能量损耗,同时,贵金属催化电极所带来的高成本也是制约其广泛应用的重要因素。
阳极析氧反应作为电解水制氢中的重要反应,其较高的过电势带来的能源损耗成为了电解水中急需解决的瓶颈问题。传统的阳极催化材料都是基于铂系的贵金属材料,例如钌和铱的氧化物及其碳载复合材料,虽然这类材料拥有很好的催化活性,然而贵金属的稀缺性与昂贵的价格却极大地制约了其在商业规模上的可持续性使用。因此,研发成本低廉、高效、低污染的非贵金属基的阳极催化材料是目前亟待解决的问题。
Cui等(Energy Environ.Sci.2015,8,1719)报道了一种电化学脱锂调控磷酸铁锂类材料及其析氧活性,其中,电化学脱锂法需要对电池进行封装与拆解,操作过程复杂;Bao等(ACS Appl.Mater.Interface 2016,8,22534)报道了一种碳层包覆的Co2P2O7纳米晶,具有较好的催化活性与稳定性,然而在制备过程中聚合物分解得到碳层需要很高的退火问题(750℃),增加了成本。另外,上述制备的催化材料均为粉末状,需旋涂于基底上形成电极,增加了时间成本与工艺复杂度。
发明内容
本发明针对背景技术存在的缺陷,提出了一种Ni2P4O12纳米颗粒材料及其制备方法。本发明提供的负载Ni2P4O12纳米颗粒的电极在电解水的氧析出反应中表现出很好的催化活性和催化稳定性,且工艺简单,成本低,易于实现大规模生产。
本发明的技术方案如下:
一种Ni2P4O12纳米颗粒材料,其特征在于,所述Ni2P4O12纳米颗粒材料具有多级结构,由5~10nm的纳米晶修饰于网络状互联的纳米颗粒上形成。
一种Ni2P4O12纳米颗粒材料的制备方法,包括以下步骤:
步骤1:将Ni源和过硫酸盐按照摩尔比为(3~4):1的比例加入去离子水中,混合均匀,得到混合液A,然后向混合液A中加入氨水,得到混合液B;其中, Ni源的浓度为0.2~0.3mol/L,混合液A与氨水的体积比为(10~20):1;
步骤2:将导电基底放入步骤1配制的混合液B中,静置15~20min用于 Ni(OH)2纳米片前驱体的生长,然后取出清洗,自然晾干;
步骤3:将步骤2得到的负载有Ni(OH)2的导电基底放入石英管加热中心, 0.1~1g磷源放置于石英管上游区域;
步骤4:将石英管内部抽真空至0.1atm以下,再通入惰性气体使管内气压保持常压环境,然后通入载气流;
步骤5:以2~8℃/min的升温速率加热石英管,使其加热中心的温度达到 280℃~350℃,然后在280℃~350℃温度下保温0~60min,在此过程中Ni(OH)2纳米片反应生成Ni2P4O12纳米颗粒;
步骤6:反应结束后,待石英管自然冷却至室温,取出导电基底,即可在导电基底上得到Ni2P4O12纳米颗粒。
进一步地,步骤1所述过硫酸盐为过硫酸铵、过硫酸钠或过硫酸钾等。
进一步地,步骤1所述Ni源为六水氯化镍、硫酸镍、硝酸镍中的一种或几种。
进一步地,步骤2所述导电基底为碳布、泡沫镍等柔性基底,或者FTO等硬质基底。
进一步地,步骤3所述磷源为含结晶水的次亚磷酸钠。
进一步地,步骤4所述惰性气体为氩气或者氮气,所述载气流为氩气、氮气或者为氩气和氢气的混合气体,所述载气流的流量为20~50sccm。
本发明还提供了上述Ni2P4O12纳米颗粒作为电解水的阳极材料的应用。
本发明的有益效果为:
1、本发明提供了一种Ni2P4O12纳米颗粒材料,具有多级纳米结构,5~10nm 的纳米晶修饰于约100nm的网络状互联纳米颗粒上,这种结构为电解水中的氧析出反应提供了极大的活性位点,同时有利于水分子的吸附,理论研究证实暴露的纳米晶的晶面对水分子与氧中间体有很低吸附能。
2、本发明提供了一种Ni2P4O12纳米颗粒材料的制备方法,通过调节提供的磷源的量和反应时间来调控石英管中的反应环境,从而获得结晶度好、分散性好的Ni2P4O12纳米颗粒。
3、本发明提供的负载Ni2P4O12纳米颗粒的电极在氧析出反应中表现出很好的催化活性,从电化学极化曲线可以看出负载Ni2P4O12纳米颗粒的电极在析氧反应时仅需280mV就能达到10mA cm-2的电流密度,同时拥有很好的催化稳定性。
附图说明
图1为本发明实施例1得到的Ni2P4O12纳米颗粒的电子显微镜(SEM)图;
图2为本发明实施例1得到的Ni2P4O12纳米颗粒与纳米晶两级结构的高分辨透射电镜(HRTEM)图;
图3为本发明实施例1得到的Ni2P4O12纳米颗粒结构在TEM明暗场下的 HAADF表征图,插图为相应的选区电子衍射SAED表征图;
图4为本发明实施例1、实施例2、实施例3、实施例4中不同磷源与反应时间下得到的Ni2P4O12材料的X射线衍射(XRD)图谱;
图5为本发明实施例1得到的Ni2P4O12纳米颗粒材料在1M KOH溶液中的氧析出反应电化学性能表征图;(a)Ni2P4O12(NPO)以及参比材料RuO2、Ni(OH)2和裸碳布(CC)的极化曲线对比;(b)相对应的塔菲尔斜率;
图6为本发明实施例1得到的负载Ni2P4O12纳米颗粒材料的碳布电极在1M KOH溶液中连续100h的电解稳定性测试曲线;
图7为本发明实施例1得到的负载Ni2P4O12纳米颗粒材料的碳布电极在1M KOH溶液中连续电解100h后的SEM图。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例1
一种Ni2P4O12纳米颗粒材料的制备方法,包括以下步骤:
步骤1:将六水氯化镍和过硫酸铵按照摩尔比为4:1的比例加入去离子水中,超声混合均匀,得到混合液A,然后向混合液A中加入氨水,得到混合液B;其中,Ni源的浓度为0.25mol/L,混合液A与氨水的体积比为16:1;
步骤2:将碳布放入步骤1配制的混合液B中,静置20min用于Ni(OH)2纳米片前驱体的生长,然后取出清洗,自然晾干;
步骤3:将步骤2得到的负载有Ni(OH)2的碳布放入石英管加热中心,1g含结晶水的次亚磷酸钠放置于石英管上游区域,距离加热中心15cm;
步骤4:将石英管内部抽真空至0.1atm以下,再通入Ar气使管内气压保持常压环境,重复“抽真空、通氩气”的过程3次,然后通入Ar和H2的混合气体 (混合气体中氩、氢原子比为95:5,混合气体的流量为20sccm)作为载气流,使管内气压保持常压环境;
步骤5:以3℃/min的升温速率加热石英管,使其加热中心的温度达到300℃,然后在300℃温度下保温30min,在此过程中Ni(OH)2纳米片反应生成Ni2P4O12纳米颗粒;
步骤6:反应结束后,待石英管自然冷却至室温,取出碳布,即可得到负载 Ni2P4O12纳米颗粒的碳布电极。
实施例1得到的Ni2P4O12纳米颗粒的电子显微镜(SEM)如图1所示,高分辨透射电镜(HRTEM)如图2所示,TEM明暗场下的HAADF表征图如图3 所示;实施例1得到的负载Ni2P4O12纳米颗粒的碳布电极在1M KOH溶液中的氧析出反应电化学性能测试曲线如图5所示,在1MKOH溶液中的电解稳定性测试曲线如图6所示。
实施例2
按照实施例1的步骤制备Ni2P4O12纳米颗粒材料,仅将步骤5的保温时间调整为10min,其他步骤不变。实施例2制备得到的Ni2P4O12纳米颗粒材料的XRD 衍射图谱如图4所示。
实施例3
按照实施例1的步骤制备Ni2P4O12纳米颗粒材料,仅将步骤3含结晶水的次亚磷酸钠的量调整为0.1g,将步骤5在300℃温度下的保温时间调整为0min,其他步骤不变。实施例3制备得到的Ni2P4O12纳米颗粒电极的XRD衍射图谱如图4所示。
实施例4
按照实施例1的步骤制备Ni2P4O12纳米颗粒材料,仅将步骤3含结晶水的次亚磷酸钠的量调整为0.1g,将步骤5在300℃温度下的保温时间调整为10min,其他步骤不变。实施例4制备得到的Ni2P4O12纳米颗粒电极的XRD衍射图谱如图4所示。
图1为实施例1得到的Ni2P4O12纳米颗粒的电子显微镜(SEM)图;图1 显示实施例1得到的Ni2P4O12纳米颗粒表面为约100nm的网络状互联纳米颗粒形成。图2为实施例1得到的Ni2P4O12纳米颗粒与纳米晶两级结构的高分辨透射电镜(HRTEM)图;从图2可以看出,5~10nm左右的纳米晶均匀分布在约100 nm的网络状互联的纳米颗粒上,纳米晶丰富的边缘结构为该纳米颗粒在催化反应中提供了大量的活性位点。图3为实施例1得到的Ni2P4O12纳米颗粒结构在 TEM明暗场下的HAADF表征图,插图为相应的选区电子衍射SAED表征图;从图3中可以看出清晰的网络状互联结构和Ni2P4O12纳米晶的多晶性质。图4 为实施例1、实施例2、实施例3、实施例4中不同磷源与反应时间下得到的 Ni2P4O12材料的X射线衍射(XRD)图谱;由图4可知,通过调控磷源含量和磷酸化时间可以得到不同结晶程度的Ni2P4O12样品。图5为实施例1得到的负载 Ni2P4O12纳米颗粒的碳布电极在1M KOH溶液中的氧析出反应电化学性能表征图;(a)Ni2P4O12以及参比材料RuO2、Ni(OH)2和裸碳布的极化曲线对比;(b)相对应的塔菲尔斜率;由图5可知,实施例1得到的负载Ni2P4O12纳米颗粒的碳布电极在析氧反应时仅需280mV的过电势就能达到10mA cm-2以上的电流密度,表明本发明Ni2P4O12纳米颗粒具有良好的催化活性,其性能接近商用的RuO2。图6为实施例1得到的负载Ni2P4O12纳米颗粒碳布电极在1M KOH溶液中连续 100h的电解稳定性测试曲线;由图6可知,实施例1得到的负载Ni2P4O12纳米颗粒碳布电极具有良好的稳定性。图7为实施例1得到的负载Ni2P4O12纳米颗粒碳布电极在1M KOH溶液中连续电解约100h后的SEM图;由图7可知,实施例1得到的负载Ni2P4O12纳米颗粒碳布电极在连续电解100h后,其表面仍然保持网络状互联结构,表明了该材料良好的结构稳定性。

Claims (9)

1.一种Ni2P4O12纳米颗粒材料,其特征在于,所述Ni2P4O12纳米颗粒材料具有多级结构,由5~10nm的纳米晶修饰于网络状互联的纳米颗粒上形成。
2.一种Ni2P4O12纳米颗粒材料的制备方法,包括以下步骤:
步骤1:将Ni源和过硫酸盐按照摩尔比为(3~4):1的比例加入去离子水中,混合均匀,得到混合液A,然后向混合液A中加入氨水,得到混合液B;其中,Ni源的浓度为0.2~0.3mol/L,混合液A与氨水的体积比为(10~20):1;
步骤2:将导电基底放入步骤1配制的混合液B中,静置15~20min,然后取出清洗,自然晾干;
步骤3:将步骤2得到的导电基底放入石英管加热中心,0.1~1g磷源放置于石英管上游区域;
步骤4:将石英管内部抽真空至0.1atm以下,再通入惰性气体使管内气压保持常压环境,然后通入载气流;
步骤5:以2~8℃/min的升温速率加热石英管,使其加热中心的温度达到280℃~350℃,然后在280℃~350℃温度下保温0~60min;
步骤6:反应结束后,待石英管自然冷却至室温,取出导电基底,即可在导电基底上得到Ni2P4O12纳米颗粒。
3.根据权利要求2所述的Ni2P4O12纳米颗粒材料的制备方法,其特征在于,步骤1所述过硫酸盐为过硫酸铵、过硫酸钠或过硫酸钾。
4.根据权利要求2所述的Ni2P4O12纳米颗粒材料的制备方法,其特征在于,步骤1所述Ni源为六水氯化镍、硫酸镍、硝酸镍中的一种或几种。
5.根据权利要求2所述的Ni2P4O12纳米颗粒材料的制备方法,其特征在于,步骤2所述导电基底为碳布、泡沫镍或FTO。
6.根据权利要求2所述的Ni2P4O12纳米颗粒材料的制备方法,其特征在于,步骤3所述磷源为含结晶水的次亚磷酸钠。
7.根据权利要求2所述的Ni2P4O12纳米颗粒材料的制备方法,其特征在于,步骤4所述惰性气体为氩气,所述载气流为氩气、氮气或者为氩气和氢气的混合气体,所述载气流的流量为20~50sccm。
8.权利要求1所述Ni2P4O12纳米颗粒材料作为电解水的阳极材料的应用。
9.权利要求2至7任一项方法得到的Ni2P4O12纳米颗粒作为电解水的阳极材料的应用。
CN201710831300.8A 2017-09-15 2017-09-15 一种Ni2P4O12纳米颗粒材料及其制备方法和应用 Active CN107651656B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710831300.8A CN107651656B (zh) 2017-09-15 2017-09-15 一种Ni2P4O12纳米颗粒材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710831300.8A CN107651656B (zh) 2017-09-15 2017-09-15 一种Ni2P4O12纳米颗粒材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107651656A CN107651656A (zh) 2018-02-02
CN107651656B true CN107651656B (zh) 2020-01-14

Family

ID=61129822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710831300.8A Active CN107651656B (zh) 2017-09-15 2017-09-15 一种Ni2P4O12纳米颗粒材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107651656B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110044980A (zh) * 2019-04-30 2019-07-23 西南大学 焦磷酸钴纳米材料在构建一氧化氮电化学传感器中的应用
CN110124704B (zh) * 2019-06-19 2021-10-01 哈尔滨工业大学 一种负载在碳布基底上的钴镍双金属偏磷酸盐纳米阵列的制备方法
CN114914461B (zh) * 2022-06-10 2023-02-28 广西师范大学 一种镉基复合材料及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9997781B2 (en) * 2013-09-04 2018-06-12 Lg Chem, Ltd. Transition metal-metaphosphate anode active material, method of preparing the same, and lithium secondary battery or hybrid capacitor including the anode active material
CN105926021B (zh) * 2016-03-24 2018-02-27 西北师范大学 一种磷化镍纳米薄膜及其制备方法和应用
CN106185859B (zh) * 2016-06-27 2018-08-17 宁波工程学院 一种偏磷酸镍微纳米材料及其制备方法和应用

Also Published As

Publication number Publication date
CN107651656A (zh) 2018-02-02

Similar Documents

Publication Publication Date Title
Cao et al. Prussian blue analogues and their derived nanomaterials for electrocatalytic water splitting
Guo et al. RuO2/Co3O4 Nanocubes based on Ru ions impregnation into prussian blue precursor for oxygen evolution
Xie et al. In situ growth of cobalt@ cobalt-borate core–shell nanosheets as highly-efficient electrocatalysts for oxygen evolution reaction in alkaline/neutral medium
Wang et al. Anchoring highly-dispersed ZnCdS nanoparticles on NiCo prussian blue analogue-derived cubic-like NiCoP forms an S-scheme heterojunction for improved hydrogen evolution
Xia et al. Hierarchical 0D− 2D Co/Mo selenides as superior bifunctional electrocatalysts for overall water splitting
CN112481653B (zh) 一种富含缺陷的钼掺杂硒化钴/纳米碳电催化剂及其制备方法和应用
CN113437314B (zh) 氮掺杂碳负载低含量钌和Co2P纳米粒子的三功能电催化剂及其制备方法和应用
CN112058283B (zh) 一种硒化镍/硒化钼复合纳米电催化剂的制备方法及应用
CN109837559B (zh) 一种水热辅助的羟基氧化铁-镍铁水滑石一体化电极的制备方法
Zhao et al. A Bi‐Co Corridor Construction Effectively Improving the Selectivity of Electrocatalytic Nitrate Reduction toward Ammonia by Nearly 100%
CN107651656B (zh) 一种Ni2P4O12纳米颗粒材料及其制备方法和应用
Paygozar et al. Recent progress in non-noble metal-based electrocatalysts for urea-assisted electrochemical hydrogen production
CN113862693A (zh) 一种氮掺杂介孔碳负载高分散Ru纳米颗粒催化剂的制备方法及其应用
CN109055974B (zh) 一种多孔Ni-N-O纳米颗粒材料及其制备方法和应用
Yu et al. Self-supporting hierarchically micro/nano-porous Ni3P-Co2P-based film with high hydrophilicity for efficient hydrogen production
Wang et al. Strategies of designing electrocatalysts for seawater splitting
Zhao et al. Design of binder-free hierarchical Mo-Fe-Ni phosphides nanowires array anchored on carbon cloth with high electrocatalytic capability toward hydrogen evolution reaction
Qian et al. Free-standing bimetallic CoNiTe2 nanosheets as efficient catalysts with high stability at large current density for oxygen evolution reaction
Zhang et al. In-situ integration of nickel-iron Prussian blue analog heterostructure on Ni foam by chemical corrosion and partial conversion for oxygen evolution reaction
Luo et al. Nickel and manganese oxide heterostructure nanoparticles supported by carbon nanotube for highly efficient oxygen evolution reaction catalysis
Wang et al. FeCoS2/Co4S3/N-doped graphene composite as efficient electrocatalysts for overall water splitting
Sun et al. Recent advances in cobalt-based catalysts for efficient electrochemical hydrogen evolution: a review
CN110699701B (zh) 一种负载金属镍和三氧化二钒复合物的泡沫镍及其制备方法和应用
Xie et al. Ultrasmall Co-NiP embedded into lantern shaped composite achieved by coordination confinement phosphorization for overall water splitting
CN114875442A (zh) 一种钌修饰的钼镍纳米棒复合催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant