CN107640047A - 一种基于磁性液体的磁耦合机构及电动大巴无线充电*** - Google Patents

一种基于磁性液体的磁耦合机构及电动大巴无线充电*** Download PDF

Info

Publication number
CN107640047A
CN107640047A CN201710827987.8A CN201710827987A CN107640047A CN 107640047 A CN107640047 A CN 107640047A CN 201710827987 A CN201710827987 A CN 201710827987A CN 107640047 A CN107640047 A CN 107640047A
Authority
CN
China
Prior art keywords
iron core
primary side
magnetic
secondary side
electric bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710827987.8A
Other languages
English (en)
Other versions
CN107640047B (zh
Inventor
何为
刘小虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Yuxin Pingrui Electronic Co ltd
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201710827987.8A priority Critical patent/CN107640047B/zh
Publication of CN107640047A publication Critical patent/CN107640047A/zh
Application granted granted Critical
Publication of CN107640047B publication Critical patent/CN107640047B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及一种基于磁性液体的磁耦合机构及电动大巴无线充电***,涉及能量传输及无线充电领域。包含对称设置的一次侧U形铁芯和二次侧U形铁芯;二次侧U形铁芯设置在电动大巴内部并绕有二次侧线圈,二次侧线圈用于向电动大巴的电池组充电;一次侧U形铁芯设置在电动大巴外部,用于与二次侧U形铁芯耦合,一次侧U形铁芯上绕有一次侧线圈,用于与二次侧线圈进行功率交换;一次侧U形铁芯和二次侧U形铁芯之间还设置有两个磁流体装置,在一次侧U形铁芯和二次侧U形铁芯通过磁耦合进行能量传输时,一次侧U形铁芯和二次侧U形铁芯的两端通过磁流体实现柔性连接。本发明在不改变一次侧线圈匝数和电流的情况下,产生更大的磁通密度,大幅度提高磁耦合效率。

Description

一种基于磁性液体的磁耦合机构及电动大巴无线充电***
技术领域
本发明涉及能量传输及无线充电领域,涉及一种基于磁性液体的磁耦合机构及电动大巴无线充电***。
背景技术
在无线能量传输领域,能量的大容量,高效率的快速传输一直是科研工作者的追求目标。当今的无线传能方式主要有感应耦合式、磁共振式、电场感应式、微波以及激光。电场感应式的传输方式对人体辐射较大,应用领域受到限制;微波以及激光适用于远距离的能量传输,由于电磁波在空气中的远距离传输会大幅度衰减,所以传输容量受限;由于感应耦合式和磁共振式的无线传能方式更有希望在人们的日常生活中得到普及,所以目前二者是无线传能领域的研究热点。
对于感应式耦合和磁共振两种无线传能方式,就目前的研究成果来看,虽然取得了较大的研究进展,但仍然有很多瓶颈需要突破,其中着重需要解决的问题是增大能量的传输容量、效率以及减小充电时间。无线传能领域的科学工作者从各个方面寻求解决上述问题的方法,诸如改善一二次线圈的结构,加中继线圈,降低磁场频率,但都没有取得实质性的效果。问题的核心在于磁路结构,即一二次线圈之间存在空气间隙。根据磁路理论,当整个磁回路存在很小间距的空气间隙时,整个磁回路的磁阻会迅速增加,为了得到较大的磁通量,必须增大整个回路的磁动势,而增大磁动势的方法有两个,即增大一次线圈的线圈匝数,其次是增大励磁电流。前者会使整个无线传能装置的体积增大、成本增加,而后者则会增大***损耗,降低能量传输效率。
发明内容
有鉴于此,本发明的目的在于提供一种基于磁性液体的磁耦合机构及电动大巴无线充电***,从而实现不改变一次侧线圈匝数和电流的情况下,产生更大的磁通密度,大幅度提高磁耦合效率。
为达到上述目的,本发明提供如下技术方案:
一种基于磁性液体磁耦合的磁耦合机构,包含对称设置的一次侧U形铁芯和二次侧U形铁芯;所述一次侧U形铁芯和二次侧U形铁芯分别绕制有一次侧线圈和二次侧线圈;
所述一次侧U形铁芯的两端上均设置有一容器,所述容器用于盛放磁流体;
当所述一次侧线圈和二次侧线圈进行能量传输时,所述容器中的磁流体将所述一次侧U形铁芯和二次侧U形铁芯的两端分别连接起来,形成磁通路。
一种电动大巴无线充电***,包含磁耦合机构;所述磁耦合机构的二次侧U形铁芯设置在电动大巴内部,所述二次侧U形铁芯上绕有二次侧线圈,所述二次侧线圈用于向电动大巴的电池组充电;
所述磁耦合机构的一次侧U形铁芯设置在电动大巴外部,用于与所述二次侧U形铁芯耦合,所述一次侧U形铁芯上绕有一次侧线圈,用于与所述二次侧线圈进行功率交换;
在电动大巴进行充电时,所述磁耦合机构的磁流体将所述一次侧U形铁芯和二次侧U形铁芯的两端分别磁连通。
进一步,所述磁耦合机构的容器分别固接于所述一次侧U形铁芯的两端,所述一次侧U形铁芯的两端均贯穿所述容器的下表面,所述一次侧U形铁芯的两端的上表面均低于所述容器的上表面。
进一步,所述一次侧U形铁芯和二次侧U形铁芯均由非晶纳米晶合金材料制成,具有相同的形状和尺寸。
进一步,所述二次U形铁芯设置在电动大巴的底盘上,并且所述二次侧U形铁芯的两端有凸出。
进一步,所述一次侧U形铁芯与所述容器通过隔板置于地表面以下;打开所述隔板允许所述容器中的磁流体与所述二次侧U形铁芯的两端进行对接。
进一步,还包括压力传感器、激光距离传感器和机械控制***,所述压力传感器用于检测路面上是否有电动大巴进入充电区域,并将压力信息传输至所述机械控制***;
所述激光距离传感器安装在所述一次侧U形铁芯上,所述激光距离传感器用于检测所述一次侧U形铁芯和二次侧U形铁芯之间的相对位置,并将位置信息传输至所述机械控制***,所述机械控制***用于根据所述压力传感器信息来开合所述隔板以及根据所述激光距离传感器的信息来调整所述一次侧U形铁芯和所述二次侧U形铁芯的相对位置从而准确对接。
本发明的有益效果在于:本发明通过磁耦合装置的磁流体大大降低了电动大巴无线充电磁耦合机构中的磁阻,同时由于磁流体的连接属于柔性连接,因此避免了磁耦合装置耦合过程中的机械碰撞,对设备的伤害小,同时由于用磁流体替代了原有大巴无线充电中的空气间隙,提高了电动大巴充电过程中的能量传输效率。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为本发明的磁耦合机构结构示意图;
图2为铁芯磁路图,其中a为空气间隙小时的铁芯磁路图,b为空气间隙大时的铁芯磁路图;
图3为等效磁路图;
图4为本发明电动大巴无线充电***原理图;
图5为本发明实施例在一二次侧铁芯通过磁流体准确对接时的YZ平面的磁通密度分布图;
图6为本发明实施例在一二次侧铁芯通过空气间隙准确对接时的YZ平面的磁通密度分布图;
图7为本发明实施例在一二次侧铁芯通过磁流体未准确对接时的YZ平面的磁通密度分布图;
图8为本发明实施例在一二次侧铁芯通过空气间隙未准确对接时的YZ平面的磁通密度分布图。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
图1为本发明的磁耦合机构结构示意图,如图1所示,一二次绕组1,2分别绕制在一二次U形铁芯3,4上,磁流体5通过容器6固接于一次U形铁芯的两端,当一二次绕组1,2之间存在功率交换时,磁流体因其磁性和流动性,从而将一二次U型铁芯3,4的两端连接起来,从而大大提升了能量在装置中的传输效率和传输能力。
同时本发明的一二次侧的铁芯材料为非晶纳米晶合金,具有相同的形状、尺寸,是由一个口字形铁芯对称分割得到。
为了论证本发明的优越的性能,本实施例从磁路计算的角度加以详细的说明,如图2所示:
当两个U字型铁芯之间的间隙很小时,二者完全通过磁通Φ耦合,由于气隙磁场的边缘效应,通过气隙的磁通所占据的面积要大于通过磁芯的面积,如图2所示。当两个铁芯之间的距离进一步加大,磁通Φ将分成两个支路,即Φ1和Φ2,如图2所示,当两个铁芯间的空气间隙与一次铁芯两个端口之间的距离相当大时,磁通将主要经由空气耦合,即Φ≈Φ2,Φ1≈0此时再增加激磁电流对于二次侧的耦合已经没有意义。
因为小气隙即可对整个能量耦合机构造成极大的制约作用,所以本发明仅针对图2来分析空气间隙对能量传输的制约作用。设两个铁芯的平均磁路长度为l,相对磁导率为μFe,横截面积为AFe,间隙的距离为lδ,相对磁导率为μδ,横截面积为Aδ,线圈匝数为N,通过线圈的电流为i,根据磁路理论,得出如图3所示的等效磁路。
根据磁路的欧姆定律有
Ni=Φ×(RmFe1+RmFe2+Rmδ1+Rmδ2)
其中
μ0为真空磁导率。
则可以得出线圈电流为:
此时,用一种导磁性的液体填充铁芯之间的间隙,实现铁芯的致密连接,整个磁回路的磁阻将显著下降,为了达到原有空气间隙的效果,即磁回路的磁通Φ不变,绕组所施加的电流变为i′,而导磁性液体的相对磁导率为μδ′,而磁通通过间隙的横截面积为Aδ′,利用求解i的步骤求得i′,即
由i和i′的公式可得:
由于μFe>>μδ,μFe>>μδ′,故上式简化为:
当空气间隙很小时,Aδ′≈A,而磁性液体的磁导率要相对高,间隙处的磁效应相对空气间隙要弱,所以Aδ′<Aδ≈A,从而进一步化简为:
由于空气的相对磁导率μδ=1,如果所采用的磁性液体的相对磁导率仅为100,为了在磁回路中产生相同的磁通密度Φ,本发明专利提出的磁路结构所需的励磁电流仅为含有空气间隙磁路结构所需电流的1/100,在保持相同电流的条件下,只需将线圈匝数减小为原来的1/100,同样可实现相同的磁通密度,从而大大减小了对线圈的需求,成本因此大幅下降。
本发明还提出一种用于电动汽车大功率、高效率的无线充电***,图4为本发明电动大巴无线充电***原理图,如图4所示,该充电***的核心部分包括磁场耦合机构和机械控制***;磁耦合机构的一次铁芯与磁性液体一同安置在地下,而二次铁芯部分安置在电动大巴的底盘,并且铁芯的两端稍有突出,便于与一次铁芯通过磁性液体对接;
电动大巴需要充电时,首先将大巴车停靠在充电停车位之内,停车位地面上设置有检测大巴车的压力传感器,当大巴车停靠后,压力传感器将压力信息传输至机械控制***,机械控制***根据压力信息打开在地面上的隔板,然后通过激光距离传感器对一次侧U形铁芯及磁耦合机构进行位置调整,保证一次侧U形铁芯与二次侧U形铁芯处于准确对接的位置。然后进入充电过程,首先电网的电能通过初级电能变换及控制进入一次侧U形铁芯的线圈,此时线圈中产生电流并产生磁场,带动容器中的磁流体将一次侧U形铁芯和二次侧U形铁芯完成磁流体的对接。二次侧U形铁芯上绕制二次侧线圈,二次侧线圈通过次级能量变换及控制将来自电网的电能送入大巴车的电池组进行充电。
同时本发明还提供磁通密度的对比图来说明本发明优越的性能,如图5、6所示,分别为在一二次侧铁芯通过磁流体准确对接时的YZ平面的磁通密度分布图和在一二次侧铁芯通过空气间隙准确对接时的YZ平面的磁通密度分布图;如图7、8所示分别为在一二次侧铁芯通过磁流体未准确对接时的YZ平面的磁通密度分布图和在一二次侧铁芯通过空气间隙未准确对接时的YZ平面的磁通密度分布图。由此可知,不管是准确对接还是未能准确对接,本发明的磁耦合装置带来的效果都非常明显,磁性液体通过软连接一次侧U形铁芯和二次侧U形铁芯从而填补了原有的空气间隙,使得整个回路的磁阻大幅度下降,从而大幅度提高了耦合效率,由仿真计算结果可知,整个磁回路的磁通密度相比保留空气间隙的情况下增强了10倍左右,并且磁感线的分布也更加的均匀。
最后说明的是,以上优选实施例仅用以说明发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (7)

1.一种基于磁性液体的磁耦合机构,其特征在于:包含对称设置的一次侧U形铁芯和二次侧U形铁芯;所述一次侧U形铁芯和二次侧U形铁芯分别绕制有一次侧线圈和二次侧线圈;
所述一次侧U形铁芯的两端上均设置有一容器,所述容器用于盛放磁流体;
当所述一次侧线圈和二次侧线圈进行能量传输时,所述容器中的磁流体将所述一次侧U形铁芯和二次侧U形铁芯的两端分别连接起来,形成磁通路。
2.应用权利要求1所述的磁耦合机构的一种电动大巴无线充电***,其特征在于:包含磁耦合机构;所述磁耦合机构的二次侧U形铁芯设置在电动大巴内部,所述二次侧U形铁芯上绕有二次侧线圈,所述二次侧线圈用于向电动大巴的电池组充电;
所述磁耦合机构的一次侧U形铁芯设置在电动大巴外部,用于与所述二次侧U形铁芯耦合,所述一次侧U形铁芯上绕有一次侧线圈,用于与所述二次侧线圈进行功率交换;
在电动大巴进行充电时,所述磁耦合机构的磁流体将所述一次侧U形铁芯和二次侧U形铁芯的两端分别磁连通。
3.根据权利要求2所述的一种电动大巴无线充电***,其特征在于:所述磁耦合机构的容器分别固接于所述一次侧U形铁芯的两端,所述一次侧U形铁芯的两端均贯穿所述容器的下表面,所述一次侧U形铁芯的两端的上表面均低于所述容器的上表面。
4.根据权利要求2所述的一种电动大巴无线充电***,其特征在于:所述一次侧U形铁芯和二次侧U形铁芯均由非晶纳米晶合金材料制成,具有相同的形状和尺寸。
5.根据权利要求2所述的一种电动大巴无线充电***,其特征在于:所述二次U形铁芯设置在电动大巴的底盘上,并且所述二次侧U形铁芯的两端有凸出。
6.根据权利要求5所述的一种电动大巴无线充电***,其特征在于:所述一次侧U形铁芯与所述容器通过隔板置于地表面以下;打开所述隔板允许所述容器中的磁流体与所述二次侧U形铁芯的两端进行对接。
7.根据权利要求6所述的一种电动大巴无线充电***,其特征在于:还包括压力传感器、激光距离传感器和机械控制***,所述压力传感器用于检测路面上是否有电动大巴进入充电区域,并将压力信息传输至所述机械控制***;
所述激光距离传感器安装在所述一次侧U形铁芯上,所述激光距离传感器用于检测所述一次侧U形铁芯和二次侧U形铁芯之间的相对位置,并将位置信息传输至所述机械控制***,所述机械控制***用于根据所述压力传感器信息来开合所述隔板以及根据所述激光距离传感器的信息来调整所述一次侧U形铁芯和所述二次侧U形铁的相对位置从而准确对接。
CN201710827987.8A 2017-09-14 2017-09-14 一种基于磁性液体的磁耦合机构及电动大巴无线充电*** Active CN107640047B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710827987.8A CN107640047B (zh) 2017-09-14 2017-09-14 一种基于磁性液体的磁耦合机构及电动大巴无线充电***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710827987.8A CN107640047B (zh) 2017-09-14 2017-09-14 一种基于磁性液体的磁耦合机构及电动大巴无线充电***

Publications (2)

Publication Number Publication Date
CN107640047A true CN107640047A (zh) 2018-01-30
CN107640047B CN107640047B (zh) 2020-02-11

Family

ID=61111146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710827987.8A Active CN107640047B (zh) 2017-09-14 2017-09-14 一种基于磁性液体的磁耦合机构及电动大巴无线充电***

Country Status (1)

Country Link
CN (1) CN107640047B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988505A (zh) * 2018-07-25 2018-12-11 天津工业大学 一种电动汽车大功率动态无线充电***
CN109067004A (zh) * 2018-09-14 2018-12-21 重庆大学 一种基于磁流体的磁耦合无线传能方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800469A (zh) * 2011-05-20 2012-11-28 通用汽车环球科技运作有限责任公司 填充变压器的一对芯部之间的气隙的***和方法
JP2014204540A (ja) * 2013-04-03 2014-10-27 北陸電機製造株式会社 非接触給電装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800469A (zh) * 2011-05-20 2012-11-28 通用汽车环球科技运作有限责任公司 填充变压器的一对芯部之间的气隙的***和方法
JP2014204540A (ja) * 2013-04-03 2014-10-27 北陸電機製造株式会社 非接触給電装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108988505A (zh) * 2018-07-25 2018-12-11 天津工业大学 一种电动汽车大功率动态无线充电***
CN109067004A (zh) * 2018-09-14 2018-12-21 重庆大学 一种基于磁流体的磁耦合无线传能方法及装置
CN109067004B (zh) * 2018-09-14 2022-03-11 重庆大学 一种基于磁流体的磁耦合无线传能方法及装置

Also Published As

Publication number Publication date
CN107640047B (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
Amjad et al. Wireless charging systems for electric vehicles
US9240270B2 (en) Wireless power transfer magnetic couplers
JP5016069B2 (ja) 電力伝送システムおよび車両用給電装置
US10984946B2 (en) Reducing magnetic flux density proximate to a wireless charging pad
Ahmad et al. Efficiency enhancement of wireless charging for Electric vehicles through reduction of coil misalignment
CN108155728A (zh) 一种用于无人机动态稳定续航无线充电***
CN102593958A (zh) 磁场共振方式的非接触供电装置
CN104518550B (zh) 用于能电驱动的车辆的能量技术上的无线耦合的充电站
CN102545393A (zh) 非接触供电装置
Kaneko et al. Technology trends of wireless power transfer systems for electric vehicle and plug-in hybrid electric vehicle
WO2017195581A1 (ja) 非接触給電装置および非接触給電システム
CN106208416A (zh) 电磁链式无线电能传输***
KR101341510B1 (ko) 무선 전력 전송을 위한 자기 에너지 빔포밍 방법 및 장치
CN107640047A (zh) 一种基于磁性液体的磁耦合机构及电动大巴无线充电***
CN103944229A (zh) 一种无线充电装置、***及方法
US20130088087A1 (en) Non-contact power feeding device
Madzharov et al. Innovative solution of static and dynamic contactless charging station for electrical vehicles
KR101853491B1 (ko) 무선전력전송 코일 구조체 및 무선전력전송 시스템
CN103956780A (zh) 一种无线充电发射装置、网络、***及方法
Chakibanda et al. Optimization in magnetic coupler design for inductively coupled wireless charging of electric vehicle: a review
CN108839584A (zh) 一种电动汽车的动态无线充电***
CN105656212B (zh) 基于旋转磁场的非接触式充电设备及充电方法
Amin et al. Design and simulation of wireless stationary charging system for hybrid electric vehicle using inductive power pad in parking garage
Mohamed et al. An overview of inductive power transfer technology for static and dynamic EV battery charging
Maruyama et al. A study on the design method of the light weight coils for a high power contactless power transfer systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220104

Address after: 400050 No. 992, Gaoteng Avenue, Jiulongpo District, Chongqing

Patentee after: CHONGQING YUXIN PINGRUI ELECTRONIC Co.,Ltd.

Address before: 400044 No. 174 Shapingba street, Shapingba District, Chongqing

Patentee before: Chongqing University

TR01 Transfer of patent right