CN107630697A - 基于随钻电磁波电阻率测井的地层电阻率联合反演方法 - Google Patents

基于随钻电磁波电阻率测井的地层电阻率联合反演方法 Download PDF

Info

Publication number
CN107630697A
CN107630697A CN201710884216.2A CN201710884216A CN107630697A CN 107630697 A CN107630697 A CN 107630697A CN 201710884216 A CN201710884216 A CN 201710884216A CN 107630697 A CN107630697 A CN 107630697A
Authority
CN
China
Prior art keywords
resistivity
amplitude ratio
electromagnetic wave
model parameter
inversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710884216.2A
Other languages
English (en)
Other versions
CN107630697B (zh
Inventor
许巍
朱小露
刘迪仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze University
Original Assignee
Yangtze University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze University filed Critical Yangtze University
Priority to CN201710884216.2A priority Critical patent/CN107630697B/zh
Publication of CN107630697A publication Critical patent/CN107630697A/zh
Application granted granted Critical
Publication of CN107630697B publication Critical patent/CN107630697B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种基于随钻电磁波电阻率测井的地层电阻率联合反演方法,该方法首先获取随钻电磁波电阻率测井幅度比和相位差数据;再根据幅度比和相位差数据进行加权求和,构建联合约束的反演目标函数;最后基于联合约束的反演目标函数,利用粒子群算法反演得到地层电阻率。本发明所提供的地层电阻率反演方法得到的地层电阻率曲线兼顾了传统幅度比电阻率曲线较好的径向探测深度及相位差电阻率曲线较好的纵向分辨率的优势,更加充分的利用了随钻电磁波电阻率测井信息,而反演工作量较传统反演方法缩减了一半。

Description

基于随钻电磁波电阻率测井的地层电阻率联合反演方法
技术领域
本发明涉及油气藏开发技术领域,具体地指一种基于随钻电磁波电阻率测井的地层电阻率联合反演方法,其是利用随钻电磁波电阻率测井仪器所测量的相位差信号和幅度比信号联合反演地层电阻率的一种方法。
背景技术
作为主要的随钻测井技术之一,随钻电磁波电阻率测井在随钻地质导向及储层含油饱和度评价方面发挥了至关重要的作用。相对于其它直接测量地层电阻率的测井仪器,随钻电磁波电阻率测井实际测量记录的为幅度比和相位差两个信号,因此在进行地层电阻率评价时需要将幅度比和相位差信号反演成地层电阻率。
目前,利用随钻电磁波电阻率测井资料反演地层电阻率时,通常采用最小二乘及模拟退火等算法。其中,最小二乘算法属于局部寻优算法,反演效果很大程度上依赖于模型参数的初始精度,目标函数容易陷入局部极值,而模拟退火算法虽然能够进行全局寻优,但依然没有完全摆脱初始模型参数的影响。由于不同地区井眼地层电阻率变化较大,在进行地层电阻率反演时,很多情况下无法准确获取较合适的初始模型参数。
除了反演算法,反演目标函数的约束方式也对反演结果有较大影响。利用随钻电磁波电阻率测井资料反演地层电阻率时,通常在反演目标函数中对幅度比或相位差信号单独进行约束,从而反演得到幅度比电阻率或相位差电阻率。理论研究及实际应用结果表明,幅度比电阻率探测深度较深,但纵向分辨率较差且仅在低阻地层具有较好精度,而相位差电阻率纵向分辨率较好,但径向深度又相对较浅。
因此单独利用幅度比电阻率和相位差电阻率均无法较好反应地层真实电阻率信息,而组合利用幅度比电阻率和相位差电阻率时又存在纵向分辨率和径向探测深度不匹配的问题,这些问题都严重束缚了随钻电磁波电阻率测井的应用效果。
发明内容
本发明现有技术存在的缺陷,提供了一种基于随钻电磁波电阻率测井的地层电阻率联合反演方法,该反演方法利用随钻电磁波电阻率测井幅度比和相位差信号联合约束反演目标函数,该方法具有全局寻优特性,不需要初始值或先验信息。
为实现上述目的,本发明提供的一种基于随钻电磁波电阻率测井的地层电阻率联合反演方法,包括以下步骤:
1)获取随钻电磁波电阻率测井幅度比和相位差数据;
2)根据幅度比和相位差数据进行加权求和,构建联合约束的反演目标函数E;其中,由于随钻电磁波测井幅度比和相位差信号幅值往往相差一个数量级以上,因此如果在目标函数中直接联合约束反演,幅值较大的数据会占主导作用,从而达不到联合约束反演的目的。
3)基于联合约束的反演目标函数,利用粒子群算法反演得到地层电阻率。
进一步地看,所述步骤1)中,幅度比和相位差数据为实际测量数据和正演模拟数据,其中,幅度比和相位差数据包括正演模型幅度比信号、实测幅度比信号、正演模型相位差信号和实测相位差信号。
再进一步地,所述步骤2)中,联合约束的反演目标函数为:
E=||EATTS-EATTM||2+||ΔφS-ΔφM||2·cor2
其中,EATTS为正演模型幅度比信号,EATTM为实测幅度比信号,ΔφS为正演模型相位差信号,ΔφM为实测相位差信号,
cor为幅度比和相位差信号加权系数,表达式为:
再进一步地,所述步骤3)中,利用粒子群算法反演得到地层电阻率的步骤:
步骤S1、获取反演目标函数E,设定粒子数量Num、粒子分布范围F、最大迭代次数itermax及目标函数阈值ε;
步骤S2、获取给定范围内均匀分布的粒子初始位置及随机分布的粒子初始运动速度;
步骤S3、计算初始粒子群个体极值P0best及全局极值N0best,初始模型参数X0=N0best
步骤S4、根据粒子运动速度及位置更新表达式,获得更新的粒子运动速度及更新位置坐标;
步骤S5、以步骤4)获得的粒子运动速度及更新位置,确定当前位置,粒子群个体极值Pbest及全局极值Nbest,当前模型参数X=Nbest
步骤S6、将初始模型参数X0和当前模型参数X带入反演目标函数E中,分别得到目标函数E的模型参数初始值E(X0)和当前值E(X);
步骤S7、求取目标函数的模型参数初始值和当前值的差值ΔE=E(X0)-E(X),即为判断目标函数的模型参数初始值和当前值的差值是否符合预设规则,当目标函数的当前值是否小于或等于目标函数阈值ε,若是,则执行步骤S8,否则,返回执行步骤S4重新获取更新的粒子运动速度及位置;
步骤S8、将当前模型参数X赋值给初始模型参数X0,然后执行步骤S9;
步骤S9、判断迭代次数iter是否与所述最大迭代次数itermax相等,若是相等,则执行步骤S10,否则,返回步骤S2;
步骤S10、输出初始模型参数X0,作为反演得到的地层电阻率值。
利用粒子群算法对获取的幅度比和相位差数据进行多次联合约束反演,将反演得到的地层电阻率平均值作为最终的反演结果。
粒子群算法(Particle Swarm Optimization,PSO)是由Kennedy和Eberhar(1995年)受鸟群觅食过程中个体和群体间的信息传递的启发提出的。当鸟群在特定区域内搜索唯一的食物时,所有的鸟都不知道食物在那里,而找到食物的最优策略就是搜寻目前离食物最近的鸟的周围区域。
基于上述鸟群觅食过程,粒子群算法将每个优化问题的解都看作是所搜寻空间中的一只鸟,称为“粒子”。每个粒子还有一个速度决定它们每一次迭代所飞翔的方向和距离,而在每一次迭代中,粒子通过跟踪个体极值和全局极值来来更新自己,最终获得使目标函数全局最小的最优解。
再进一步地,所述步骤S4)中,粒子运动速度及位置更新表达式分别为:
其中,分别为迭代更新前后第i个粒子运动速度;分别为迭代更新前后第i个粒子位置;c1=2和c2=2是加速常量,分别用于调节向全局最优粒子和个体最优粒子方向运动的最大步长;ω是权重系数,它根据下式从ωmax到ωmin线性减小:
其中,itermax是最大迭代次数,iter为当前迭代次数,ωmax=1,ωmin=0。
本发明的有益效果在于:
1)在本发明实施例的技术方案中,所提供的地层电阻率反演方法根据
随钻电磁波电阻率测井仪器测量数据,建立了幅度比和相位差加权联合约束的反演目标函数,并通过粒子群算法反演得到地层电阻率。
2)与传统的利用幅度比和相位差单独约束的反演方法相比,本发明所提供的地层电阻率反演方法得到的地层电阻率曲线兼顾了传统幅度比电阻率曲线较好的径向探测深度及相位差电阻率曲线较好的纵向分辨率的优势,更加充分的利用了随钻电磁波电阻率测井信息,而反演工作量较传统反演方法缩减了一半。
3)粒子群算法与通常所采用的最小二乘法或模拟退火算法不同,它不仅搜索局部最优值,还搜索全局最优值,因而可以跳出局部极值。另外,不需要地层电阻率先验信息,也不依赖于模型参数的初始精度,只需要设置较为合理的所搜范围,即可反演得到较高精度的地层电阻率。
附图说明
图1为本发明实施实例所提供的地层电阻率反演流程示意图;
图2为本发明实施实例所提供的粒子群算法的流程示意图;
图3为本发明实施实例所提供的随钻电磁波测井线圈系结构示意图;
图4a为模型1中500kHz发射频率0.8m源距线圈系径向探测特性示意图;
图4b为模型1中500kHz发射频率1m源距线圈系径向探测特性示意图;
图4c为模型1中2MHz发射频率0.8m源距线圈系径向探测特性示意图;
图4d为模型1中2MHz发射频率1m源距线圈系径向探测特性示意图;
图5a为模型2中500kHz发射频率0.8m源距线圈系纵向分辨率示意图;
图5b为模型2中500kHz发射频率1m源距线圈系纵向分辨率示意图;
图5c为模型2中2MHz发射频率0.8m源距线圈系纵向分辨率示意图;
图5d为模型2中2MHz发射频率1m源距线圈系纵向分辨率示意图。
具体实施方式
为了更好地解释本发明,以下结合具体实施例进一步阐明本发明的主要内容,但本发明的内容不仅仅局限于以下实施例。
实施例1
模型1为侵入地层模型,从仪器轴向沿径向方向将地层划分为侵入带和原状地层,为了计算不同侵入状况下随钻电磁波测井仪器响应,模型侵入带电阻率Rin和原状地层电阻率Rt分别为2.5Ω.m和10Ω.m,侵入深度计算范围为0.1至6m。为了反演得到侵入地层模型电阻率值,如图1~2所示:具体地层电阻率反演步骤如下:
S1)将上述侵入地层模型中随钻电磁波电阻率测井仪器响应值作为实际测量数据,而将均匀地层模型中仪器响应值作为正演模型数据。
S2)根据幅度比和相位差数据进行加权求和,构建联合约束的反演目标函数E;
E=||EATTS-EATTM||2+||ΔφS-ΔφM||2·cor2
其中,EATTS为正演模型幅度比信号,EATTM为实测幅度比信号,EΔφ为相位差反演目标函数,ΔφS为正演模型相位差信号,ΔφM为实测相位差信号,
cor为幅度比和相位差信号加权系数,表达式为:
S3)基于联合约束的反演目标函数,利用粒子群算法反演得到地层电阻率;其具体步骤如下:
步骤S301、获取反演目标函数E,设定粒子数量Num、粒子分布范围F、最大迭代次数itermax及目标函数阈值ε;
步骤S302、获取给定范围内均匀分布的粒子初始位置及随机分布的粒子初始运动速度;
步骤S303、计算初始粒子群个体极值P0best及全局极值N0best,初始模型参数X0=N0best
步骤S304、根据粒子运动速度及位置更新表达式,获得更新的粒子运动速度及更新位置坐标;粒子运动速度及位置更新表达式分别为:
其中,分别为迭代更新前后第i个粒子运动速度;分别为迭代更新前后第i个粒子位置;c1=2和c2=2是加速常量,分别用于调节向全局最优粒子和个体最优粒子方向运动的最大步长;ω是权重系数,它根据下式从ωmax到ωmin线性减小:
其中,itermax是最大迭代次数,iter为当前迭代次数,ωmax=1,ωmin=0;
步骤S305、以步骤4)获得的粒子运动速度及更新位置,确定当前位置,粒子群个体极值Pbest及全局极值Nbest,当前模型参数X=Nbest
步骤S306、将初始模型参数X0和当前模型参数X带入目标函数中,分别得到反演目标函数E的模型参数初始值E(X0)和当前值E(X);
步骤S307、求取目标函数的模型参数初始值和当前值的差值ΔE=E(X0)-E(X),即为判断目标函数的模型参数初始值和当前值的差值是否符合预设规则,当目标函数的当前值是否小于或等于目标函数阈值ε,若是,则执行步骤S308,否则,返回执行步骤S304重新获取更新的粒子运动速度及位置;
步骤S308、将当前模型参数X赋予初始模型参数X0,然后执行步骤S309;
步骤S309、判断迭代次数iter是否与所述最大迭代次数itermax相等,若是相等,则执行步骤S310,否则,返回步骤S2;
步骤S310、输出初始模型参数X0,作为反演得到的地层电阻率值Ra
根据径向积分几何因子Gr定义,Gr等于0.5时所对应的径向侵入深度值即为随钻电磁波电阻率测井仪器径向探测深度,其计算表达式如下:
式中,Ra为随钻电磁波测井反演所得的地层电阻率值,将传统反演方法得到的幅度比电阻率和相位差电阻率及本发明中联合反演方法得到联合电阻率分别带入上式,便可计算得到不同的径向积分几何因子曲线。如图4所示,针对不同的线圈系结构及发射频率,利用径向积分几何因子Gr等于0.5所对应的径向探测深度值,发现线圈源距越大且发射频率越低时,仪器探测深度越大;在固定的线圈系源距及发射频率下,幅度比电阻率对应的径向探测深度最大,联合反演电阻率对应的径向探测深度次之,而相位差电阻率对应的径向探测深度最浅。结果表明,本发明中联合反演方法得到的视电阻率曲线所探测的径向深度居于传统反演方法所获得的幅度比电阻率和相位差电阻率径向探测深度之间,具有较好的径向探测特性。
实施例2:纵向分辨率分析
本实施例的方法与实施例1的方法基本相同,不同之处在于:
模型2为纵向分层的地层模型,背景地层电阻率和夹层电阻率分别为10Ω.m和1Ω.m,模型中背景地层与夹层交替出现,地层厚度范围为0.2至2m,根据传统反演方法得到的幅度比和相位差电阻率曲线及本发明中联合反演方法得到的视电阻率曲线如图5所示。如图所示,按照传统曲线半幅点划分地层厚度的方法,发现线圈源距越小且发射频率越高时,视电导率曲线纵向分辨率越好;在固定的线圈系源距及发射频率下,传统的相位差反演得到的视电导率曲线纵向分辨率最好,联合反演得到的视电导率曲线纵向分辨率与相位差反演得到的视电导率曲线纵向分辨率十分接近,而传统的幅度比反演得到的视电导率曲线纵向分辨率则明显较前两种方法差些。
结果表明,本实施例中所提出的联合反演方法所获得的地层视电导率曲线兼顾了传统幅度比电阻率径向探测深度和相位差电阻率纵向分辨率的优势,能够比传统的单一视电阻率曲线更好的评价地层。
其它未详细说明的部分均为现有技术。尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例,而不是全部实施例,人们还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。

Claims (5)

1.一种基于随钻电磁波电阻率测井的地层电阻率联合反演方法,其特征在于:包括以下步骤:
1)获取随钻电磁波电阻率测井幅度比和相位差数据;
2)根据幅度比和相位差数据进行加权求和,构建联合约束的反演目标函数E;
3)基于联合约束的反演目标函数,利用粒子群算法反演得到地层电阻率。
2.根据权利要求1所述基于随钻电磁波电阻率测井的地层电阻率联合反演方法,其特征在于:所述步骤1)中,幅度比和相位差数据为实际测量数据和正演模拟数据,其中,幅度比和相位差数据包括正演模型幅度比信号、实测幅度比信号、正演模型相位差信号,实测相位差信号。
3.根据权利要求1所述基于随钻电磁波电阻率测井的地层电阻率联合反演方法,其特征在于:所述步骤2)中,联合约束的反演目标函数E为:
E=||EATTS-EATTM||2+||△φS-△φM||2·cor2
其中,EATTS为正演模型幅度比信号,EATTM为实测幅度比信号,E△φ为相位差反演目标函数,△φS为正演模型相位差信号,△φM为实测相位差信号,
cor为幅度比和相位差信号加权系数,表达式为:
4.根据权利要求1所述基于随钻电磁波电阻率测井的地层电阻率联合反演方法,其特征在于:所述步骤3)中,利用粒子群算法反演得到地层电阻率的步骤:
步骤S1、获取反演目标函数E,设定粒子数量Num、粒子分布范围F、最大迭代次数itermax及目标函数阈值ε;
步骤S2、获取给定范围内均匀分布的粒子初始位置及随机分布的粒子初始运动速度;
步骤S3、计算初始粒子群个体极值P0best及全局极值N0best,初始模型参数X0=N0best
步骤S4、根据粒子运动速度及位置更新表达式,获得更新的粒子运动速度及更新位置坐标;
步骤S5、以步骤4)获得的粒子运动速度及更新位置,确定当前位置,粒子群个体极值Pbest及全局极值Nbest,当前模型参数X=Nbest
步骤S6、将初始模型参数X0和当前模型参数X带入目标函数中,分别得到反演目标函数E的模型参数初始值E(X0)和当前值E(X);
步骤S7、求取目标函数的模型参数初始值和当前值的差值△E=E(X0)-E(X),即为判断目标函数的模型参数初始值和当前值的差值是否符合预设规则,当目标函数的当前值是否小于或等于目标函数阈值ε,若是,则执行步骤S8,否则,返回执行步骤S4重新获取更新的粒子运动速度及位置;
步骤S8、将当前模型参数X赋予初始模型参数X0,然后执行步骤S9;
步骤S9、判断迭代次数iter是否与所述最大迭代次数itermax相等,若是相等,则执行步骤S10,否则,返回步骤S2;
步骤S10、输出初始模型参数X0,作为反演得到的参数值。
5.根据权利要求4所述基于随钻电磁波电阻率测井的地层电阻率联合反演方法,其特征在于:所述步骤S4)中,
粒子运动速度及位置更新表达式分别为:
其中,分别为迭代更新前后第i个粒子运动速度;分别为迭代更新前后第i个粒子位置;c1=2和c2=2是加速常量,分别用于调节向全局最优粒子和个体最优粒子方向运动的最大步长;ω是权重系数,它根据下式从ωmax到ωmin线性减小:
其中,itermax是最大迭代次数,iter为当前迭代次数,ωmax=1ωmin=0。
CN201710884216.2A 2017-09-26 2017-09-26 基于随钻电磁波电阻率测井的地层电阻率联合反演方法 Active CN107630697B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710884216.2A CN107630697B (zh) 2017-09-26 2017-09-26 基于随钻电磁波电阻率测井的地层电阻率联合反演方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710884216.2A CN107630697B (zh) 2017-09-26 2017-09-26 基于随钻电磁波电阻率测井的地层电阻率联合反演方法

Publications (2)

Publication Number Publication Date
CN107630697A true CN107630697A (zh) 2018-01-26
CN107630697B CN107630697B (zh) 2020-07-10

Family

ID=61103804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710884216.2A Active CN107630697B (zh) 2017-09-26 2017-09-26 基于随钻电磁波电阻率测井的地层电阻率联合反演方法

Country Status (1)

Country Link
CN (1) CN107630697B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108646307A (zh) * 2018-06-15 2018-10-12 山东大学 一种基于动态调整数据权重值的四维电阻率反演方法
CN109001826A (zh) * 2018-06-15 2018-12-14 山东大学 基于数据动态控制时间光滑约束的四维电阻率反演方法
CN109711109A (zh) * 2019-02-22 2019-05-03 中国石油天然气集团有限公司 一种电阻率测井仪器电极系结构参数智能优化的方法及装置
CN112034257A (zh) * 2020-09-11 2020-12-04 斯伦贝谢油田技术(山东)有限公司 一种井下电阻率的计算方法
CN113204056A (zh) * 2021-05-06 2021-08-03 中煤科工集团西安研究院有限公司 一种用于确定煤岩界面剖面分布位置的反演方法
CN113803060A (zh) * 2020-06-01 2021-12-17 中石化石油工程技术服务有限公司 用于随钻电磁波电阻率转换曲线刻度的修正方法及装置
CN113919214A (zh) * 2021-09-30 2022-01-11 中国矿业大学 一种圆锥形场源瞬变电磁优化反演方法
CN114047554A (zh) * 2021-11-05 2022-02-15 中国南方电网有限责任公司超高压输电公司检修试验中心 大地电阻率模型建模方法、装置、计算机设备和存储介质
CN115267927A (zh) * 2022-09-28 2022-11-01 中石化经纬有限公司 一种基于蚁群-梯度串联算法的多边界幕式地质导向方法
CN115292771A (zh) * 2022-09-30 2022-11-04 电子科技大学 一种随钻电阻率测井响应伪2.5d模拟方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7015694B2 (en) * 2002-08-19 2006-03-21 Baker Hughes Incorporated NMR apparatus and method for stochastic pulsing of earth formations
CN102678106B (zh) * 2012-05-02 2015-04-01 中国电子科技集团公司第二十二研究所 随钻电磁波电阻率测井仪器的数据处理方法
CN106407574A (zh) * 2016-09-23 2017-02-15 上海神开石油设备有限公司 一种多分量随钻方位电磁波仪器的快速正反演处理方法
CN106446408A (zh) * 2016-09-23 2017-02-22 上海神开石油设备有限公司 一种随钻补偿电磁波仪器的快速正反演处理方法
CN107256316B (zh) * 2017-06-21 2020-12-18 山东大学 一种基于高速正演结果训练下人工智能的电磁测井反演方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109001826A (zh) * 2018-06-15 2018-12-14 山东大学 基于数据动态控制时间光滑约束的四维电阻率反演方法
CN109001826B (zh) * 2018-06-15 2019-04-26 山东大学 基于数据动态控制时间光滑约束的四维电阻率反演方法
CN108646307A (zh) * 2018-06-15 2018-10-12 山东大学 一种基于动态调整数据权重值的四维电阻率反演方法
CN109711109A (zh) * 2019-02-22 2019-05-03 中国石油天然气集团有限公司 一种电阻率测井仪器电极系结构参数智能优化的方法及装置
CN109711109B (zh) * 2019-02-22 2023-12-22 中国石油天然气集团有限公司 一种电阻率测井仪器电极系结构参数智能优化的方法及装置
CN113803060A (zh) * 2020-06-01 2021-12-17 中石化石油工程技术服务有限公司 用于随钻电磁波电阻率转换曲线刻度的修正方法及装置
CN112034257B (zh) * 2020-09-11 2023-09-29 斯伦贝谢油田技术(山东)有限公司 一种井下电阻率的计算方法
CN112034257A (zh) * 2020-09-11 2020-12-04 斯伦贝谢油田技术(山东)有限公司 一种井下电阻率的计算方法
CN113204056A (zh) * 2021-05-06 2021-08-03 中煤科工集团西安研究院有限公司 一种用于确定煤岩界面剖面分布位置的反演方法
CN113919214A (zh) * 2021-09-30 2022-01-11 中国矿业大学 一种圆锥形场源瞬变电磁优化反演方法
CN113919214B (zh) * 2021-09-30 2024-06-11 中国矿业大学 一种圆锥形场源瞬变电磁优化反演方法
CN114047554A (zh) * 2021-11-05 2022-02-15 中国南方电网有限责任公司超高压输电公司检修试验中心 大地电阻率模型建模方法、装置、计算机设备和存储介质
CN114047554B (zh) * 2021-11-05 2024-04-02 中国南方电网有限责任公司超高压输电公司检修试验中心 大地电阻率模型建模方法、装置、计算机设备和存储介质
CN115267927A (zh) * 2022-09-28 2022-11-01 中石化经纬有限公司 一种基于蚁群-梯度串联算法的多边界幕式地质导向方法
CN115292771A (zh) * 2022-09-30 2022-11-04 电子科技大学 一种随钻电阻率测井响应伪2.5d模拟方法
CN115292771B (zh) * 2022-09-30 2023-01-17 电子科技大学 一种随钻电阻率测井响应伪2.5d模拟方法

Also Published As

Publication number Publication date
CN107630697B (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
CN107630697A (zh) 基于随钻电磁波电阻率测井的地层电阻率联合反演方法
Song et al. Application of particle swarm optimization to interpret Rayleigh wave dispersion curves
Song et al. Grey wolf optimizer for parameter estimation in surface waves
Pace et al. A review of geophysical modeling based on particle swarm optimization
US8731987B2 (en) Method and apparatus to automatically recover well geometry from low frequency electromagnetic signal measurements
CN109061731A (zh) 面波频散与体波谱比联合反演浅层速度的全局优化方法
CN102645670B (zh) 一种基于叠加响应分析的观测***优化设计方法
CN102937721A (zh) 利用初至波走时的有限频层析成像方法
CN109375271B (zh) 一种任意布极的多分量电阻率探测方法及***
Lu et al. Parallel multiple-chain DRAM MCMC for large-scale geosteering inversion and uncertainty quantification
CN109085663A (zh) 一种致密砂岩储层层理缝识别方法
CN104422969B (zh) 一种减小电磁测深反演结果非唯一性的方法
CN104280782A (zh) 时频电磁和大地电磁数据的一维联合反演方法
CN106896415A (zh) 一种地‑井电性源短偏移距瞬变电磁探测方法
Qin et al. Fast resistivity imaging of transient electromagnetic using ANN
Jiang et al. Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks
CN110388926A (zh) 一种基于手机地磁和场景图像的室内定位方法
CN113204054B (zh) 一种基于强化学习的自适应广域电磁法激电信息提取方法
CN107037492A (zh) 一种地质数据分析建模方法
Song et al. An implementation of differential search algorithm (DSA) for inversion of surface wave data
Song et al. Unsupervised seismic facies analysis with spatial constraints using regularized fuzzy c-means
CN110532507A (zh) 一种提高水平井致密油储层钻遇率的方法
CN116931103A (zh) 一种基于布谷鸟算法的电磁数据反演方法及***
CN108535783B (zh) 一种对电阻率断面进行层位校正的方法及装置
CN110441815A (zh) 基于差分进化及块坐标下降改进的模拟退火瑞雷波反演方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant