CN107597124A - 一种纳米碳复合铁酸镍的制备方法 - Google Patents

一种纳米碳复合铁酸镍的制备方法 Download PDF

Info

Publication number
CN107597124A
CN107597124A CN201710865801.8A CN201710865801A CN107597124A CN 107597124 A CN107597124 A CN 107597124A CN 201710865801 A CN201710865801 A CN 201710865801A CN 107597124 A CN107597124 A CN 107597124A
Authority
CN
China
Prior art keywords
based magnetic
nano carbon
ferrite based
nickel ferrite
magnetic loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710865801.8A
Other languages
English (en)
Inventor
戴竹青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201710865801.8A priority Critical patent/CN107597124A/zh
Publication of CN107597124A publication Critical patent/CN107597124A/zh
Pending legal-status Critical Current

Links

Abstract

本发明公开了一种纳米碳复合铁酸镍的制备方法,步骤如下:向水中加入氯化铁,配置成溶液,再加入四甲基溴化铵和丙酮,搅拌制成乳液,再加入氢氧化钠,剧烈搅拌下,再加入市售有效氯的质量分数为10%的次氯酸钠,持续剧烈搅拌2~3h,最后加入1~3g氯化镍,继续搅拌2~4h,固液分离,去除上清液,蒸馏水洗涤固体3~4次,105℃烘干,再置于马弗炉中在氮气保护下,450~650℃下煅烧4~5h,持续通入氮气直到冷却到室温,即得到一种纳米碳复合铁酸镍。本发明的优点是:利用铁盐生成高铁酸盐,再和阳离子表面活性剂以及锰离子发生反应,获得有机金属复合物,最后经过碳化,即可得到纳米碳复合的铁酸镍,产品工艺简单,催化效果有大大提高。

Description

一种纳米碳复合铁酸镍的制备方法
技术领域
本发明涉及环境污染控制新材料领域,尤其涉及一种纳米碳复合铁酸镍的制备方法。
背景技术
随着科技的发展,来自工农业生产中产生的毒害有机污染物严重威胁着环境和人类的健康,寻求一种新型高效的环境治理技术具有重要的意义。光催化技术因其节能、高效、污染物降解彻底、无二次污染优点,目前已成为一种具有重要应用前景的新兴环境治理技术。近年来,新型高效的可见光光催化剂的研制成为光催化技术中的一个重要研究内容,其中具有表面等离子共振效应的光催化材料,因其独特的表面物理化学性质和高效的可见光光催化性能,成为研究的热点之一。
镍铁氧体是最为重要的尖晶石结构软磁材料之一,具有矫顽力小、饱和磁化强度高等优点,其广泛应用于电子器件,信息存储,磁共振成像(MRI),药物传输等领域。而纳米尺寸的,由于其优异的磁性能和高的比表面积,以及性能稳定性高、毒副作用小、生物安全性好等特性,在纳米磁流体、催化剂、医用靶向材料等方面有着潜在应用前景。铁酸镍是铁酸盐金属氧化物中的一种,因其独特的性能,被广泛关注,但铁酸镍在催化降解有机物方面的应用较少,为了拓展其性能,与碳材料的复合也成为了研究热点,但并没有用于有机污染物的催化降解。
发明内容
本发明的目的是为克服现有技术的不足,提供一种纳米碳复合铁酸镍的制备方法。
本发明采用的技术方案是依次包括如下步骤:
向100~200mL水中加入5~10g氯化铁,配置成溶液,再加入20~30mg四甲基溴化铵和1~2L丙酮,搅拌制成乳液,再加入10~22g氢氧化钠,剧烈搅拌下,再加入市售有效氯的质量分数为10%的次氯酸钠15~35mL,持续剧烈搅拌2~3h,最后加入1~3g氯化镍,继续搅拌2~4h,固液分离,去除上清液,蒸馏水洗涤固体3~4次,105℃烘干,再置于马弗炉中在氮气保护下,450~650℃下煅烧4~5h,持续通入氮气直到冷却到室温,即得到一种纳米碳复合铁酸镍。
本发明的优点是:利用铁盐生成高铁酸盐,再和阳离子表面活性剂以及镍离子发生反应,获得有机金属复合物,最后经过碳化,即可得到纳米碳复合的铁酸镍,产品工艺简单,催化效果有大大提高。
具体实施方式
以下进一步提供本发明的3个实施例:
实施例1
向200mL水中加入10g氯化铁,配置成溶液,再加入30mg四甲基溴化铵和2L丙酮,搅拌制成乳液,再加入22g氢氧化钠,剧烈搅拌下,再加入市售有效氯的质量分数为10%的次氯酸钠35mL,持续剧烈搅拌3h,最后加入3g氯化镍,继续搅拌4h,固液分离,去除上清液,蒸馏水洗涤固体4次,105℃烘干,再置于马弗炉中在氮气保护下,650℃下煅烧5h,持续通入氮气直到冷却到室温,即得到一种纳米碳复合铁酸镍。
0.5g纳米碳复合铁酸镍加入到100mL浓度为18mg/L的苯酚废水中,在120W的LED灯照射下,反应120min,降解率为95.1%。
相比市售的铁酸镍,在同样的条件下,苯酚的去除率仅为35.2%。
实施例2
向100mL水中加入5g氯化铁,配置成溶液,再加入20mg四甲基溴化铵和1L丙酮,搅拌制成乳液,再加入10g氢氧化钠,剧烈搅拌下,再加入市售有效氯的质量分数为10%的次氯酸钠15mL,持续剧烈搅拌2h,最后加入1g氯化镍,继续搅拌2h,固液分离,去除上清液,蒸馏水洗涤固体3次,105℃烘干,再置于马弗炉中在氮气保护下,450℃下煅烧4h,持续通入氮气直到冷却到室温,即得到一种纳米碳复合铁酸镍。
0.5g纳米碳复合铁酸镍加入到150mL浓度为20mg/L的亚甲基蓝废水中,在120W的LED灯照射下,反应90min,脱色率为93.2%。
实施例3
向150mL水中加入8g氯化铁,配置成溶液,再加入25mg四甲基溴化铵和2L丙酮,搅拌制成乳液,再加入18g氢氧化钠,剧烈搅拌下,再加入市售有效氯的质量分数为10%的次氯酸钠20mL,持续剧烈搅拌3h,最后加入3g氯化镍,继续搅拌4h,固液分离,去除上清液,蒸馏水洗涤固体4次,105℃烘干,再置于马弗炉中在氮气保护下,550℃下煅烧5h,持续通入氮气直到冷却到室温,即得到一种纳米碳复合铁酸镍。
0.5g纳米碳复合铁酸镍加入到100mL浓度为20mg/L的罗丹明B废水中,在120W的LED灯照射下,反应90min,脱色率为94.8%。

Claims (1)

1.一种纳米碳复合铁酸镍的制备方法,其特征是依次包括如下步骤:
向100~200mL水中加入5~10g氯化铁,配置成溶液,再加入20~30mg四甲基溴化铵和1~2L丙酮,搅拌制成乳液,再加入10~22g氢氧化钠,剧烈搅拌下,再加入市售有效氯的质量分数为10%的次氯酸钠15~35mL,持续剧烈搅拌2~3h,最后加入1~3g氯化镍,继续搅拌2~4h,固液分离,去除上清液,蒸馏水洗涤固体3~4次,105℃烘干,再置于马弗炉中在氮气保护下,450~650℃下煅烧4~5h,持续通入氮气直到冷却到室温,即得到一种纳米碳复合铁酸镍。
CN201710865801.8A 2017-09-22 2017-09-22 一种纳米碳复合铁酸镍的制备方法 Pending CN107597124A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710865801.8A CN107597124A (zh) 2017-09-22 2017-09-22 一种纳米碳复合铁酸镍的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710865801.8A CN107597124A (zh) 2017-09-22 2017-09-22 一种纳米碳复合铁酸镍的制备方法

Publications (1)

Publication Number Publication Date
CN107597124A true CN107597124A (zh) 2018-01-19

Family

ID=61061704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710865801.8A Pending CN107597124A (zh) 2017-09-22 2017-09-22 一种纳米碳复合铁酸镍的制备方法

Country Status (1)

Country Link
CN (1) CN107597124A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI795932B (zh) * 2021-10-01 2023-03-11 南亞塑膠工業股份有限公司 離子液體觸媒及其製法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343267A (zh) * 2011-07-27 2012-02-08 武汉理工大学 一种碳杂化铁酸镍锂纳米催化剂的制备方法
CN103700842A (zh) * 2013-12-04 2014-04-02 北京工业大学 一种NiFe2O4/C锂离子电池负极材料及其制备方法
CN105869907A (zh) * 2016-05-06 2016-08-17 同济大学 一种碳氮共掺杂NiFe2O4/Ni纳米立方结构复合材料的制备方法
CN106944063A (zh) * 2017-01-22 2017-07-14 河南师范大学 模板法合成具有多孔结构铁酸镍可见光催化剂的方法
CN106971855A (zh) * 2017-04-10 2017-07-21 江苏大学 一种铁酸镍纳米颗粒电极材料及制备方法和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343267A (zh) * 2011-07-27 2012-02-08 武汉理工大学 一种碳杂化铁酸镍锂纳米催化剂的制备方法
CN103700842A (zh) * 2013-12-04 2014-04-02 北京工业大学 一种NiFe2O4/C锂离子电池负极材料及其制备方法
CN105869907A (zh) * 2016-05-06 2016-08-17 同济大学 一种碳氮共掺杂NiFe2O4/Ni纳米立方结构复合材料的制备方法
CN106944063A (zh) * 2017-01-22 2017-07-14 河南师范大学 模板法合成具有多孔结构铁酸镍可见光催化剂的方法
CN106971855A (zh) * 2017-04-10 2017-07-21 江苏大学 一种铁酸镍纳米颗粒电极材料及制备方法和用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
冯连荣等: "活性炭-铁酸镍磁性催化剂的光催化性能", 《催化学报》 *
陈大茴等: "铁酸镍纳米粒子的制备与表征", 《佳木斯大学学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI795932B (zh) * 2021-10-01 2023-03-11 南亞塑膠工業股份有限公司 離子液體觸媒及其製法

Similar Documents

Publication Publication Date Title
Xiao et al. Why the cooperation of radical and non-radical pathways in PMS system leads to a higher efficiency than a single pathway in tetracycline degradation
Chen et al. Enhanced degradation of triclosan by cobalt manganese spinel-type oxide activated peroxymonosulfate oxidation process via sulfate radicals and singlet oxygen: Mechanisms and intermediates identification
Lin et al. Prussian blue analogue derived magnetic carbon/cobalt/iron nanocomposite as an efficient and recyclable catalyst for activation of peroxymonosulfate
Liu et al. Oxygen vacancies-enriched Cu/Co bimetallic oxides catalysts for high-efficiency peroxymonosulfate activation to degrade TC: Insight into the increase of Cu+ triggered by Co doping
Guo et al. Oxygen vacancy induced peroxymonosulfate activation by Mg-doped Fe2O3 composites for advanced oxidation of organic pollutants
Xavier et al. Comparison of homogeneous and heterogeneous Fenton processes for the removal of reactive dye Magenta MB from aqueous solution
Wu et al. Decolourization of the azo dye Orange G in aqueous solution via a heterogeneous Fenton-like reaction catalysed by goethite
Olfatmehr et al. Peroxydisulfate activation by enhanced catalytic activity of CoFe2O4 anchored on activated carbon: A new sulfate radical-based oxidation study on the Cefixime degradation
Li et al. Activation of peroxydisulfate by ferrite materials for phenol degradation
Wang et al. Selective degradation of parachlorophenol using Fe/Fe3O4@ CPPy nanocomposites via the dual nonradical/radical peroxymonosulfate activation mechanisms
Han et al. Facile synthesis of metal-doped magnesium ferrite from saprolite laterite as an effective heterogeneous Fenton-like catalyst
Cui et al. Magnetic recyclable heterogeneous catalyst Fe3O4/g-C3N4 for tetracycline hydrochloride degradation via photo-Fenton process under visible light
Truong et al. Visible light-activated degradation of natural organic matter (NOM) using zinc-bismuth oxides-graphitic carbon nitride (ZBO-CN) photocatalyst: Mechanistic insights from EEM-PARAFAC
CN109364940A (zh) 生物炭负载铁锰双金属氧化物光芬顿复合材料及其制备方法
Wei et al. Cu (II) doped FeOCl as an efficient photo-Fenton catalyst for phenol degradation at mild pH
CN104707641A (zh) 一种金属-氮共掺杂二氧化钛空心球催化剂及其制备方法
Qiu et al. An efficient and low-cost magnetic heterogenous Fenton-like catalyst for degrading antibiotics in wastewater: Mechanism, pathway and stability
Li et al. Efficient activation of peroxymonosulfate by C 3 N 5 doped with cobalt for organic contaminant degradation
Yang et al. Heterogeneous catalytic ozonation for water treatment: preparation and application of catalyst
Jia et al. A review of Manganese (III)(Oxyhydr) Oxides use in advanced oxidation processes
Ma et al. Baeyer–Villiger oxidation of cyclohexanone by molecular oxygen with Fe–Sn–O mixed oxides as catalysts
Kushwaha et al. Degradation of Nile blue sulphate dye onto iron oxide nanoparticles: Kinetic study, identification of reaction intermediates, and proposed mechanistic pathways
Shen et al. Optimized fabrication of Cu-doped ZnO/calcined CoFe‒LDH composite for efficient degradation of bisphenol a through synergistic visible-light photocatalysis and persulfate activation: Performance and mechanisms
CN107597124A (zh) 一种纳米碳复合铁酸镍的制备方法
Zhang et al. Amorphous Co@ TiO2 heterojunctions: A high-performance and stable catalyst for the efficient degradation of sulfamethazine via peroxymonosulfate activation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180119

WD01 Invention patent application deemed withdrawn after publication