CN107573124A - 一种以极大昆布为原料的海藻肥制备方法 - Google Patents

一种以极大昆布为原料的海藻肥制备方法 Download PDF

Info

Publication number
CN107573124A
CN107573124A CN201710927190.5A CN201710927190A CN107573124A CN 107573124 A CN107573124 A CN 107573124A CN 201710927190 A CN201710927190 A CN 201710927190A CN 107573124 A CN107573124 A CN 107573124A
Authority
CN
China
Prior art keywords
kelp
big
revs
residue
alga
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710927190.5A
Other languages
English (en)
Inventor
郑洪立
刘玉环
刘明智
张锦胜
万益琴
王允圃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201710927190.5A priority Critical patent/CN107573124A/zh
Publication of CN107573124A publication Critical patent/CN107573124A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Fertilizers (AREA)

Abstract

一种以极大昆布为原料的海藻肥制备方法,极大昆布通过胶体磨和高压均质机组合预处理方法及酶的葛根渣固定化方法,得到的海藻匀浆经固定化酶二步法酶解工艺生物催化转化,实现海藻多糖和蛋白质分别降解成海藻寡糖和多肽的目标,最终建立基于连续流动搅拌罐式反应器的极大昆布酶解制备海藻肥的连续生产工艺,酶解液经离心得到上清液和极大昆布残渣,上清液经降膜蒸发成浓缩液,超滤液即为海藻液肥;极大昆布酶解残渣与油茶饼粕等共发酵成固态有机肥,达到极大昆布全细胞利用的目的。本发明提高了极大昆布资源利用效率,提高极大昆布加工技术和海藻肥生产水平,实现酶重复和连续使用,减少酶的消耗,降低了海藻肥生产成本,产品质量佳、纯天然,无污染可降解。

Description

一种以极大昆布为原料的海藻肥制备方法
技术领域
本发明属于化工技术领域,涉及海藻肥料的制备方法。
背景技术
海藻肥料是以海洋植物海藻作为主要原料,经科学加工制成的生物肥料,主要成分是从海藻中提取的有利于植物生长发育的天然生物活性物质和海藻从海洋中吸收并富集在体内的矿物质营养元素,包括海藻多糖、酚类多聚化合物、甘露醇、甜菜碱、植物生长调节物质(细胞***素、赤霉素、生长素、和脱落酸等)和氮、磷、钾、及铁、硼、钼、碘等微量元素。此外,为增加肥效和肥料的螯合作用,还溶入了适量的腐植酸和适量微量元素。
与传统肥料相比较,海藻肥具有以下显著特点。
一、海藻肥比传统肥料营养全面,作物施用后生长均衡,增产效果显著,且极少出现缺素症。海藻肥以天然海藻为主要原料,含有大量从海藻中提取的有利于植物生长发育的天然生物活性物质和海藻从海洋中吸收并富集在体内的矿物质营养元素,包括海藻多糖、酚类多聚化合物、甘露醇、甜菜碱、植物生长调节物质(细胞***素、赤霉素、生长素和脱落酸等)和氮、磷、钾及铁、硼、钼、碘等微量元素。此外,为增加肥效和肥料的螯合作用,部分产品还溶入了适量的腐殖酸和适量微量元素,可满足作物生长各阶段对营养的需求。 二、海藻肥中含有大量抗病因子及特殊成分,肥药双效。作物施用后抗逆抗病性显著增强,叶面喷施可提高农药效果。海藻肥中含有的海藻多糖及低聚糖、甘露醇、酚类多聚化合物、甜菜碱、海藻酸及天然抗生素等物质,具有显著的抑菌抗病毒、驱虫效果,真正起到肥药作用,大幅增强作物的抗寒、抗旱、抗病、抗倒伏、抗盐碱能力,对疫病、病毒病、炭疽、霜霉、灰霉、白粉病、枯萎病等产生较强的抗性。此外,海藻肥中的海藻酸可以降低水的表面张力,在植物表面形成一层薄膜,增大接触面积,使水溶性物质比较容易透过茎叶表面细胞膜进入植物细胞,使植物最有效地吸收海藻提取液中的营养成分。如果把海藻肥和杀虫剂、杀菌剂混合使用,具有增效作用,可降低喷洒费用。三、海藻肥中含有大量的高活性成分,植物易吸收。作物施用后长势旺盛,可明显提高产量及作物的品质。海藻中所特有的海藻多糖、海藻酸、高度不饱和脂肪酸等物质,具有很高的生物活性,可刺激植物体内非特异性活性因子的产生。同时,海藻肥中还含有天然植物生长调节剂,如:生长素、细胞***素类物质和赤霉素等,其比例与陆生植物中各激素比例相近,具有很好调节内源激素平衡的作用。作物施用后,产量及品质明显提高,能明显提高烟草、棉花、花卉等经济作物品质,尤其是对大棚蔬菜作物,增产增值效果十分显著。四、海藻肥含有丰富的有机质及缓释因子,肥效长,可改善土壤微生态、活土促根及抗重茬。海藻肥可直接使土壤或通过植物使土壤增加有机质,激活土壤中的各种有益微生物。这些微生物可在植物、微生物代谢循环中起着催化剂的作用, 使土壤的生物效力增加。植物和土壤微生物的代谢物可为植物提供更多的养分。同时,海藻多糖形成的螯合***可以使营养缓慢释放,延长肥效。另外,它含有的天然化合物如海藻酸钠是天然土壤调理剂,能促进土壤团粒结构的形成,改善土壤内部孔隙空间,协调土壤中固、液、气三者比例,恢复由于土壤负担过重和化学污染而失去的天然胶质平衡,增加土壤生物活力,促进速效养分的释放,有利于根系生长,提高作物的抗逆性及抗重茬能力。五、海藻肥天然安全无公害。传统的化学肥料肥效单一、污染严重,长期使用会导致土壤结构被破坏。海藻肥属天然海藻提取物,与陆生植物有良好的亲和性,对人、畜无毒无害,对环境无污染,具有其他任何化学肥料都无法比拟的优点,在国外被列入有机食品专用肥料。海藻肥聚合了海洋中多种活性物质,具备营养全面、抗病增产、活土、无公害等许多优点,是真正符合现代农业发展方向的好肥料。
我国海藻肥产业起步较晚,20世纪90年代末期开始研究,进入21世纪后得到了快速发展。从生产方式看,主要有化学方法、物理方法、生物方法3种。当前,国内多数生产企业主要采用便宜而简单化学提取法生产海藻肥,采用化学法最大的劣势在于强碱高温会破坏海藻内源物质的活性;物理提取法优于化学提取法,采用高压低温冷却的工艺达到海藻细胞壁破碎的目的,得到的大分子物质难以被作物直接吸收,肥效不高;最好的是生物方法,即采用酶水解萃取,可以使内源物质的活性最大限度地保存下来。由于生物酶价格的昂贵及酶解工艺的复杂性,国内只有少数几家采取生物法即酶萃取法。
发展海藻肥,我国具有原料优势,我国每年海藻总产量约150万吨,80%以上是人工养殖,目前用于制肥的海藻数量很少,不超过海藻总量的10%;而我国是农业大国,肥料需求量非常巨大,因此海藻肥产业的发展空间还很大。极大昆布是生产海藻肥的优质原料。一方面为延伸极大昆布产业链、提高极大昆布利用效率;另一方面降低海藻肥生产成本;开发极大昆布生物催化转化海藻肥技术意义重大。
发明内容
针对海藻肥生产原料成本居高不下、海藻肥生产过程中极大昆布未实现全细胞利用等问题。本发明的目的在于提供一种以极大昆布为原料的海藻肥制备方法,极大昆布经胶体磨和高压均质机组合预处理后,通过建立固定化酶二步法酶解工艺,在连续流动搅拌罐式反应器中实现海藻肥连续生产和酶重复利用,提高生产效率,降低酶的成本;酶解过程中产生的极大昆布残渣与油茶饼粕等发酵生产固态海藻有机肥,该方法实现极大昆布全细胞利用、大大减少酶的消耗、大幅降低海藻肥生产成本、所产海藻肥纯天然、可降解、质量佳、保护环境、减少资源浪费。
本发明的目的是通过以下技术方案实现的。
本发明所述的一种以极大昆布为原料的海藻肥制备方法,按以下步骤:
(1) 极大昆布预处理:将极大昆布用自来水洗净;再用自来水浸泡48小时,期间每4小时换水1次;浸泡后的极大昆布用刀切碎,碎极大昆布经胶体磨粉碎;粉碎后极大昆布泥与蒸馏水以体积比1:15~30混匀,悬浮液经高压均质机处理;均质机工作条件:压力60~80兆帕,循环次数3~5次,流量1000升/小时,室温条件。
(2) 第一步酶解反应:预处理后极大昆布匀浆与蒸馏水以质量比1:1~3混匀,置于连续流动搅拌罐式反应器中,纤维素酶经葛根渣固定化,固定化纤维素酶置于与搅拌轴一起转动的金属网框内,按照极大昆布与纤维素酶质量比100~200:1添加固定化纤维素酶,调节pH至4.5~6.0,搅拌转速140~240转/分钟,搅拌3~9分钟后,搅拌转速调整为30~100转/分钟,温度控制在50~60℃;固定化纤维素酶生物催化转化1~2小时后,开始连续进料和出料,反应结束前1~2小时停止进料和出料。
(3) 第二步酶解反应:步骤(2)中出料进入另一连续流动搅拌罐式反应器中,碱性蛋白酶经葛根渣固定化,固定化碱性蛋白酶置于与搅拌轴一起转动的金属网框内,按碱性蛋白酶浓度12000~120000毫克/升添加固定化碱性蛋白酶,调节pH至6.0~7.5,按150~300转/分钟搅拌4~8分钟后,搅拌转速调整为30~100转/分钟,温度控制在45~65℃;反应起始1~2小时后,开始连续进料和出料,反应结束前1~2小时停止进料和出料。
(4) 将步骤(3)得到的酶解液室温条件下,4000~8000转/分钟,离心15~25分钟,得到上清液和极大昆布残渣,上清液降膜蒸发技术进行浓缩,蒸发量100~200 升/小时,温度40~65℃,压力0.30~0.50兆帕,浓缩比2.0~3.2,浓缩液经超滤(膜孔径0.02微米,温度室温,压力0.4兆帕,错流速率3.6米/秒,800升/平方米/小时)后即为得到海藻液肥。
(5) 将步骤(4)中的极大昆布残渣与油茶饼粕、果皮、尾菜、酿造废渣、鸡粪以质量比1:2~6:4~5:4~6:2~3:3~5堆积发酵,体积10~20立方米,高度40~60厘米,温度50~60℃,通过翻到发酵物料来控制温度,发酵时间15~25天;发酵结束得到优质固态有机肥。
本发明步骤(2)中所采取连续进料和出料方式,速率保持一致,为0.1~0.5千克/小时。
本发明步骤(2)和(3)中所述的葛根渣,预处理方法如下:葛根粉生产过程产生的葛根渣用蒸馏水冲洗3~5次,置于烧杯中,葛根渣与2%~6%漂白粉溶液以质量比1:15~30混匀,在摇床中振荡,按160~280转/分钟振荡5~10分钟后,转速调整为60~120转/分钟,温度控制在20~40℃,振荡时间18~36小时,振荡结束后葛根渣用蒸馏水冲洗3~5次。
本发明步骤(2)中所述的固定化纤维素酶,固定化方法如下:纤维素酶溶解于1.0~1.5摩尔/升磷酸缓冲液,缓冲液pH值为5.0~6.0,酶浓度为50~150克/升;预处理后葛根渣与纤维素酶溶液以质量比1:1~3混匀,在摇床中振荡,按180~280转/分钟振荡4~8分钟后,转速调整为40~80转/分钟,温度控制在20~35℃,振荡时间18~36小时,振荡结束后固定了纤维素酶的葛根渣用蒸馏水冲洗3~5次。
本发明步骤(3)中采取连续进料和出料方式,速率保持一致,为0.1~0.5千克/小时。
本发明步骤(3)中所述的固定化碱性蛋白酶,酶的固定化方法如下:碱性蛋白酶溶解于1.0~1.5摩尔/升磷酸缓冲液,缓冲液pH值为6.5~7.5,酶浓度为50~100克/升;预处理后葛根渣与碱性蛋白酶溶液以质量比1:1~3混匀,在摇床中振荡,按180~280转/分钟振荡4~8分钟后,转速调整为40~80转/分钟,温度控制在20~40℃,振荡时间18~36小时,振荡结束后固定了碱性蛋白酶的葛根渣用蒸馏水冲洗3~5次。
本发明步骤(2)中所述第一步酶解反应,主要将极大昆布细胞壁等结构中的海藻多糖转化成作物等利用效率高的寡糖,海藻酸等产物可以诱导作物等特异蛋白的表达,防治作物等相关病害。
本发明步骤(3)中所述第二步酶解反应,主要是为了将极大昆布蛋白质催化转化成特异性多肽、氨基酸等产物。
本发明步骤(5)中所述的果皮为香蕉皮、西瓜皮或苹果皮,尾菜为大白菜、生菜或莴苣尾菜,酿造废渣为白酒酿造废渣。
本发明建立了一种以极大昆布为原料的海藻肥制备方法,基于固定化酶二步法催化转化极大昆布,最终建立极大昆布酶解制备海藻肥的连续生产工艺,酶解液杀酶后经离心得到上清液和极大昆布残渣,上清液经降膜蒸发成浓缩液即为海藻液肥;极大昆布酶解残渣与油茶饼粕等共发酵成固态有机肥,达到极大昆布全细胞利用的目的。提高极大昆布资源利用效率,保护了环境,实现酶重复和连续使用,大大减少酶的消耗,大大降低了海藻肥生产成本,实用性很强,易于规模化,所生产海藻肥质量佳且为纯天然产品,无污染可降解,是一种满足工业化需求、环境友好型的新方法。
具体实施方式
本发明将通过以下实施例作进一步说明。
以下实施例所用到的极大昆布和油茶饼粕为市售。
以下实施例所用到的果皮和尾菜分别收集自水果批发市场和农贸市场。
以下实施例所用到的鸡粪收集自养鸡场。
以下实施例所用的纤维素酶和碱性蛋白酶购自Sigma-Aldrich公司。
实施例1。
将极大昆布用自来水洗净,再用自来水浸泡48小时,期间每4小时换水1次;浸泡后的极大昆布用刀切碎(宽:0.5厘米左右,长:5厘米左右),碎极大昆布经胶体磨粉碎。粉碎后极大昆布泥与蒸馏水以体积比1:15混匀,悬浮液经高压均质机处理;均质机工作条件:压力60兆帕,循环次数3次,流量1000升/小时,室温条件。葛根粉生产过程产生的葛根渣预处理方法:用蒸馏水冲洗3次,置于烧杯中,葛根渣与2%漂白粉溶液以质量比1:15混匀,在摇床中振荡,按160转/分钟振荡5分钟后,转速调整为60转/分钟,温度控制在20℃,振荡时间18小时,振荡结束后葛根渣用蒸馏水冲洗3次,用于固定化酶。纤维素酶固定化方法:纤维素酶溶解于1.0摩尔/升磷酸缓冲液,缓冲液pH值为5.0,酶浓度为50克/升;预处理后葛根渣与纤维素酶溶液以质量比1:1混匀,在摇床中振荡,按180转/分钟振荡4分钟后,转速调整为40转/分钟,温度控制在20℃,振荡时间18小时,振荡结束后固定了纤维素酶的葛根渣用蒸馏水冲洗3次。碱性蛋白酶的固定化方法如下:碱性蛋白酶溶解于1.0摩尔/升磷酸缓冲液,缓冲液pH值为6.5,酶浓度为50克/升;预处理后的葛根渣与碱性蛋白酶溶液以质量比1:1混匀,在摇床中振荡,按180转/分钟振荡4分钟后,转速调整为40转/分钟,温度控制在20℃,振荡时间18小时,振荡结束后固定了碱性蛋白酶的葛根渣用蒸馏水冲洗3次。
预处理后极大昆布匀浆与蒸馏水以质量比1:1混匀,置于50升连续流动搅拌罐式反应器中,固定化纤维素酶置于与搅拌轴一起转动的金属网框内,按照极大昆布与酶质量比100:1添加固定化酶,调节pH至4.5,搅拌转速140转/分钟,搅拌3分钟后,搅拌转速调整为30转/分钟,温度控制在50℃;固定化酶生物催化转化1小时后,开始连续进料和出料,进出料速率均为0.1千克/小时,反应结束前1小时停止进料和出料。出料进入另一50升连续流动搅拌罐式反应器中,固定化碱性蛋白酶置于与搅拌轴一起转动的金属网框内,按酶浓度12000毫克/升添加固定化酶,调节pH至6.0,按150转/分钟搅拌4分钟后,搅拌转速调整为30转/分钟,温度控制在45℃;反应起始1小时后,开始连续进料和出料,进出料速率均为0.1千克/小时,反应结束前1小时停止进料和出料。出料的酶解液经离心(4000转/分钟,15分钟,室温条件)得到上清液和极大昆布残渣,上清液降膜蒸发技术进行浓缩,蒸发量100升/小时,温度40℃,压力0.3兆帕,浓缩比2.0,浓缩液经超滤(膜孔径0.02微米,温度室温,压力0.4兆帕,错流速率3.6米/秒,800升/平方米/小时)后即为得到海藻液肥。极大昆布残渣与油茶饼粕、香蕉皮、大白菜尾菜、白酒酿造废渣、鸡粪以质量比1:2:4:4:2:3堆积发酵,体积10立方米,高度40厘米,温度50℃,通过翻到发酵物料来控制温度,发酵时间15天。发酵结束得到优质固态有机肥。
实施例2。
将极大昆布用自来水洗净,再用自来水浸泡48小时,期间每4小时换水1次;浸泡后的极大昆布用刀切碎(宽:0.5厘米左右,长:5厘米左右),碎极大昆布经胶体磨粉碎。粉碎后极大昆布泥与蒸馏水以体积比1:30混匀,悬浮液经高压均质机处理;均质机工作条件:压力80兆帕,循环次数5次,流量1000升/小时,室温条件。葛根粉生产过程产生的葛根渣预处理方法:用蒸馏水冲洗5次,置于烧杯中,葛根渣与6%漂白粉溶液以质量比1:30混匀,在摇床中振荡,按280转/分钟振荡8分钟后,转速调整为80转/分钟,温度控制在35℃,振荡时间36小时,振荡结束后葛根渣用蒸馏水冲洗5次,用于固定化酶。纤维素酶固定化方法:纤维素酶溶解于1.5摩尔/升磷酸缓冲液,缓冲液pH值为6.0,酶浓度为150克/升;预处理后葛根渣与纤维素酶溶液以质量比1:3混匀,在摇床中振荡,按280转/分钟振荡8分钟后,转速调整为80转/分钟,温度控制在35℃,振荡时间36小时,振荡结束后固定了纤维素酶的葛根渣用蒸馏水冲洗5次。碱性蛋白酶的固定化方法如下:碱性蛋白酶溶解于1.5摩尔/升磷酸缓冲液,缓冲液pH值为7.5,酶浓度为100克/升;预处理后的葛根渣与碱性蛋白酶溶液以质量比1:3混匀,在摇床中振荡,按280转/分钟振荡8分钟后,转速调整为80转/分钟,温度控制在40℃,振荡时间36小时,振荡结束后固定了碱性蛋白酶的葛根渣用蒸馏水冲洗5次。
预处理后极大昆布匀浆与蒸馏水以质量比1:3混匀,置于50升连续流动搅拌罐式反应器中,固定化纤维素酶置于与搅拌轴一起转动的金属网框内,按照极大昆布与酶质量比200:1添加固定化酶,调节pH至6.0,搅拌转速240转/分钟,搅拌9分钟后,搅拌转速调整为100转/分钟,温度控制在60℃;固定化酶生物催化转化2小时后,开始连续进料和出料,进出料速率均为0.5千克/小时,反应结束前2小时停止进料和出料。出料进入另一50升连续流动搅拌罐式反应器中,固定化碱性蛋白酶置于与搅拌轴一起转动的金属网框内,按酶浓度120000毫克/升添加固定化酶,调节pH至7.5,按300转/分钟搅拌8分钟后,搅拌转速调整为100转/分钟,温度控制在65℃;反应起始2小时后,开始连续进料和出料,进出料速率均为0.5千克/小时,反应结束前2小时停止进料和出料。出料的酶解液经离心(8000转/分钟,25分钟,室温条件)得到上清液和极大昆布残渣,上清液降膜蒸发技术进行浓缩,蒸发量200升/小时,温度65℃,压力0.50兆帕,浓缩比3.2,浓缩液经超滤(膜孔径0.02微米,温度室温,压力0.4兆帕,错流速率3.6米/秒,800升/平方米/小时)后即为得到海藻液肥。极大昆布残渣与油茶饼粕、苹果皮、莴苣尾菜、白酒酿造废渣、鸡粪以质量比1:6:5:6:3:5堆积发酵,体积20立方米,高度60厘米,温度60℃,通过翻到发酵物料来控制温度,发酵时间25天。发酵结束得到优质固态有机肥。
实施例3。
将极大昆布用自来水洗净,再用自来水浸泡48小时,期间每4小时换水1次;浸泡后的极大昆布用刀切碎(宽:0.5厘米左右,长:5厘米左右),碎极大昆布经胶体磨粉碎。粉碎后极大昆布泥与蒸馏水以体积比1:20混匀,悬浮液经高压均质机处理;均质机工作条件:压力70兆帕,循环次数4次,流量1000升/小时,室温条件。葛根粉生产过程产生的葛根渣预处理方法:用蒸馏水冲洗4次,置于烧杯中,葛根渣与4%漂白粉溶液以质量比1:20混匀,在摇床中振荡,按220转/分钟振荡7分钟后,转速调整为90转/分钟,温度控制在30℃,振荡时间27小时,振荡结束后葛根渣用蒸馏水冲洗4次,用于固定化酶。纤维素酶固定化方法:纤维素酶溶解于1.25摩尔/升磷酸缓冲液,缓冲液pH值为5.5,酶浓度为100克/升;预处理后葛根渣与纤维素酶溶液以质量比1:2混匀,在摇床中振荡,按230转/分钟振荡6分钟后,转速调整为60转/分钟,温度控制在30℃,振荡时间27小时,振荡结束后固定了纤维素酶的葛根渣用蒸馏水冲洗4次。碱性蛋白酶的固定化方法如下:碱性蛋白酶溶解于1.25摩尔/升磷酸缓冲液,缓冲液pH值为7.0,酶浓度为75克/升;预处理后的葛根渣与碱性蛋白酶溶液以质量比1:2混匀,在摇床中振荡,按230转/分钟振荡6分钟后,转速调整为60转/分钟,温度控制在30℃,振荡时间27小时,振荡结束后固定了碱性蛋白酶的葛根渣用蒸馏水冲洗4次。
预处理后极大昆布匀浆与蒸馏水以质量比1:2混匀,置于50升连续流动搅拌罐式反应器中,固定化纤维素酶置于与搅拌轴一起转动的金属网框内,按照极大昆布与酶质量比150:1添加固定化酶,调节pH至5.5,搅拌转速190转/分钟,搅拌6分钟后,搅拌转速调整为65转/分钟,温度控制在55℃;固定化酶生物催化转化1.5小时后,开始连续进料和出料,进出料速率均为0.3千克/小时,反应结束前1.5小时停止进料和出料。出料进入另一50升连续流动搅拌罐式反应器中,固定化碱性蛋白酶置于与搅拌轴一起转动的金属网框内,按酶浓度60000毫克/升添加固定化酶,调节pH至6.5,按225转/分钟搅拌6分钟后,搅拌转速调整为65转/分钟,温度控制在55℃;反应起始1.5小时后,开始连续进料和出料,进出料速率均为0.3千克/小时,反应结束前1.5小时停止进料和出料。出料的酶解液经离心(6000转/分钟,20分钟,室温条件)得到上清液和极大昆布残渣,上清液降膜蒸发技术进行浓缩,蒸发量150升/小时,温度55℃,压力0.40兆帕,浓缩比2.6,浓缩液经超滤(膜孔径0.02微米,温度室温,压力0.4兆帕,错流速率3.6米/秒,800升/平方米/小时)后即为得到海藻液肥。极大昆布残渣与油茶饼粕、西瓜皮、生菜尾菜、白酒酿造废渣、鸡粪以质量比1:4:4:5:3:4堆积发酵,体积15立方米,高度50厘米,温度55℃,通过翻到发酵物料来控制温度,发酵时间20天。发酵结束得到优质固态有机肥。
对比例1。
将极大昆布用自来水洗净,再用自来水浸泡48小时,期间每4小时换水1次;浸泡后的极大昆布用刀切碎(宽:0.5厘米左右,长:5厘米左右)。碎极大昆布与蒸馏水以质量比1:15混匀,置于50升连续流动搅拌罐式反应器中,不添加固定化酶,调节pH至4.5,搅拌转速140转/分钟,搅拌3分钟后,搅拌转速调整为30转/分钟,温度控制在50℃;反应起始1小时后,开始连续进料和出料,进出料速率均为0.1千克/小时,反应结束前1小时停止进料和出料。出料进入另一50升连续流动搅拌罐式反应器中,不添加酶,调节pH至6.0,按150转/分钟搅拌4分钟后,搅拌转速调整为30转/分钟,温度控制在45℃;反应起始1小时后,开始连续进料和出料,进出料速率均为0.1千克/小时,反应结束前1小时停止进料和出料。出料液经离心(4000转/分钟,15分钟,室温条件)得到上清液和极大昆布残渣,上清液降膜蒸发技术进行浓缩,蒸发量100升/小时,温度40℃,压力0.30兆帕,浓缩比2.0,浓缩液经超滤(膜孔径0.02微米,温度室温,压力0.4兆帕,错流速率3.6米/秒,800升/平方米/小时)后即为得到海藻液肥,极大昆布残渣直接废弃。
对比例2。
将极大昆布用自来水洗净,再用自来水浸泡48小时,期间每4小时换水1次;浸泡后的极大昆布用刀切碎(宽:0.5厘米左右,长:5厘米左右),碎极大昆布与蒸馏水以质量比1:30混匀,置于50升连续流动搅拌罐式反应器中,不添加酶,调节pH至6.0,搅拌转速240转/分钟,搅拌9分钟后,搅拌转速调整为100转/分钟,温度控制在60℃;反应起始2小时后,开始连续进料和出料,进出料速率均为0.5千克/小时,反应结束前2小时停止进料和出料。出料进入另一连续流动搅拌罐式反应器中,不添加酶,调节pH至7.5,按300转/分钟搅拌8分钟后,搅拌转速调整为100转/分钟,温度控制在65℃;反应起始2小时后,开始连续进料和出料,进出料速率均为0.5千克/小时,反应结束前2小时停止进料和出料。出料液经离心(8000转/分钟,25分钟,室温条件)得到上清液和极大昆布残渣,上清液降膜蒸发技术进行浓缩,蒸发量200 升/小时,温度65℃,压力0.50兆帕,浓缩比3.2,浓缩液经超滤(膜孔径0.02微米,温度室温,压力0.4兆帕,错流速率3.6米/秒,800升/平方米/小时)后即为得到海藻液肥。极大昆布残渣直接废弃。
对比例3。
市售普通叶面肥。
以上实施例1-3和对比例1-3的应用效果如下。
大田葡萄肥效试验。
试验地点:江西省吉安市吉安县横江镇。属中亚热带丘陵山市季风湿润气候,气候温和,日照丰富,四季分明,冬夏长,春秋短,雨量充沛,无霜期较长,年平均气温为17.5-18.6℃。
供试土壤:红壤土,养分含量为:有机质9.80克/千克,全氮186.25毫克/千克,速效磷5.89毫克/千克,速效钾45.66毫克/千克,土壤pH5.8。
供试品种:巨峰葡萄。
试验设计:本试验共设6个处理,具体处理见表1,每处理重复3次,随机区组排列,试验小区面积为667平方米。
试验于2016年进行,小区设置区间起垄,葡萄树栽种规格200株/亩,幼苗期750克叶面肥,兑水150公斤,搅拌均匀,叶面喷施一次;浆果生长期,1500克叶面肥,兑水150公斤,搅拌均匀叶面喷施一次。基肥及各处理田间管理方法相同,不喷施农药。
考察葡萄大褐斑病、黄叶病、黑腐病、裂果病等病害情况及称重法测定葡萄产量、分光光度法测定葡萄可溶性糖含量。
表1 海藻肥处理葡萄效果。
处理 叶面肥 施肥方式 裂果病等发病率(%) 葡萄产量(千克/亩) 可溶性糖含量(克/100克)
1 实施例1 幼苗、浆果生长各1次 5d 2980a 16.89c
2 实施例2 幼苗、浆果生长各1次 6d 2990a 17.88b
3 实施例3 幼苗、浆果生长各1次 6d 2950a 18.83a
4 对比例1 幼苗、浆果生长各1次 36b 2090c 13.95e
5 对比例2 幼苗、浆果生长各1次 41a 2080c 13.91e
6 对比例3 幼苗、浆果生长各1次 30c 2570b 14.98d
大田水稻肥效试验。
试验地点:江西省吉安市吉安县横江镇。属中亚热带丘陵山市季风湿润气候,气候温和,日照丰富,四季分明,冬夏长,春秋短,雨量充沛,无霜期较长,年平均气温为17.5-18.6℃。
供试土壤:红壤土,养分含量为:有机质9.60克/千克,全氮186.25毫克/千克,速效磷5.89毫克/千克,速效钾45.66毫克/千克,土壤pH5.8。
供试品种:Y两优1号。
试验设计:本试验共设6个处理,具体处理见表1,每处理重复3次,随机区组排列,试验小区面积为2000平方米。
试验于2016年进行,小区设置区间起垄,常规栽种规格,幼苗期1500克叶面肥,兑水150公斤,搅拌均匀,叶面喷施一次;抽穗生长期,3000克叶面肥,兑水150公斤,搅拌均匀叶面喷施一次。基肥及各处理田间管理方法相同,不喷施农药。
考察水稻稻瘟病、稻纹枯病、稻纹枯病、等病害情况及称重法测定水稻产量。
表2 海藻肥处理水稻效果。
处理 叶面肥 施肥方式 稻瘟病等发病率(%) 水稻产量(千克/亩)
1 实施例1 幼苗、抽穗生长各1次 6c 810a
2 实施例2 幼苗、抽穗生长各1次 7c 830b
3 实施例3 幼苗、抽穗生长各1次 6c 960a
4 对比例1 幼苗、抽穗生长各1次 22b 550d
5 对比例2 幼苗、抽穗生长各1次 22b 680c
6 对比例3 幼苗、抽穗生长各1次 28a 740c
大田西红柿肥效试验。
试验地点:江西省吉安市吉安县横江镇。属中亚热带丘陵山市季风湿润气候,气候温和,日照丰富,四季分明,冬夏长,春秋短,雨量充沛,无霜期较长,年平均气温为17.5-18.6℃。
供试土壤:红壤土,养分含量为:有机质9.80克/千克,全氮186.25毫克/千克,速效磷5.89毫克/千克,速效钾45.66毫克/千克,土壤pH5.8。
供试品种:霞粉西红柿。
试验设计:本试验共设6个处理,具体处理见表1,每处理重复3次,随机区组排列,试验小区面积为667平方米。
试验于2016年进行,小区设置区间起垄,西红柿栽种规格500株/亩,幼苗期500克叶面肥,兑水100公斤,搅拌均匀,叶面喷施一次;挂果生长期,1000克叶面肥,兑水100公斤,搅拌均匀叶面喷施一次。基肥及各处理田间管理方法相同,不喷施农药。
考察西红柿枯萎病、菌核病、黄萎病等病害情况及称重法测定西红柿产量。
表3 海藻肥处理西红柿效果。
处理 叶面肥 施肥方式 枯萎病等发病率(%) 西红柿产量(千克/亩)
1 实施例1 幼苗、浆果生长各1次 7c 4550a
2 实施例2 幼苗、浆果生长各1次 7c 4430a
3 实施例3 幼苗、浆果生长各1次 8c 4540a
4 对比例1 幼苗、浆果生长各1次 26b 3580c
5 对比例2 幼苗、浆果生长各1次 27b 3570c
6 对比例3 幼苗、浆果生长各1次 37a 3770b
从表1、2和3试验结果可以看出,不同施肥处理对葡萄裂果病等病害发病率、葡萄产量和可溶性糖含量的影响达到显著差异水平,可溶性糖含量高低与葡萄品质相关。可溶性糖含量越高,葡萄品质越佳。不同施肥处理对水稻稻瘟病等病害发病率和西红柿枯萎病等病害发病率、水稻和西红柿产量的影响达到显著差异水平。大田葡萄、水稻和西红柿肥效试验实施例2制备得到的海藻肥施用后葡萄、水稻和西红柿产量都是最高,葡萄、水稻和西红柿发病率都是最低。从试验结果中可以得出,本发明海藻肥能促进葡萄、水稻和西红柿生长,有效防治葡萄、水稻和西红柿病害。

Claims (7)

1.一种以极大昆布为原料的海藻肥制备方法,其特征是按以下步骤:
(1) 极大昆布预处理:将极大昆布用自来水洗净;再用自来水浸泡48小时,期间每4小时换水1次;浸泡后的极大昆布用刀切碎,碎极大昆布经胶体磨粉碎;粉碎后极大昆布泥与蒸馏水以体积比1:15~30混匀,悬浮液经高压均质机处理;均质机工作条件:压力60~80兆帕,循环次数3~5次,流量1000升/小时,室温条件;
(2) 第一步酶解反应:预处理后极大昆布匀浆与蒸馏水以质量比1:1~3混匀,置于连续流动搅拌罐式反应器中,纤维素酶经葛根渣固定化,固定化纤维素酶置于与搅拌轴一起转动的金属网框内,按照极大昆布与纤维素酶质量比100~200:1添加固定化纤维素酶,调节pH至4.5~6.0,搅拌转速140~240转/分钟,搅拌3~9分钟后,搅拌转速调整为30~100转/分钟,温度控制在50~60℃;固定化纤维素酶生物催化转化1~2小时后,开始连续进料和出料,反应结束前1~2小时停止进料和出料;
第二步酶解反应:步骤(2)中出料进入另一连续流动搅拌罐式反应器中,碱性蛋白酶经葛根渣固定化,固定化碱性蛋白酶置于与搅拌轴一起转动的金属网框内,按碱性蛋白酶浓度12000~120000毫克/升添加固定化碱性蛋白酶,调节pH至6.0~7.5,按150~300转/分钟搅拌4~8分钟后,搅拌转速调整为30~100转/分钟,温度控制在45~65℃;反应起始1~2小时后,开始连续进料和出料,反应结束前1~2小时停止进料和出料;
(4) 步骤(3)得到的酶解液室温条件下,4000~8000转/分钟,离心15~25分钟,得到上清液和极大昆布残渣,上清液降膜蒸发技术进行浓缩,蒸发量100~200 升/小时,温度40~65℃,压力0.30~0.50兆帕,浓缩比2.0~3.2,浓缩液经超滤后即得到海藻液肥;
(5) 步骤(4)中的极大昆布残渣与油茶饼粕、果皮、尾菜、酿造废渣、鸡粪以质量比1:2~6:4~5:4~6:2~3:3~5堆积发酵,体积10~20立方米,高度40~60厘米,温度50~60℃,通过翻到发酵物料来控制温度,发酵时间15~25天;发酵结束得到优质固态有机肥。
2.根据权利要求1所述的一种以极大昆布为原料的海藻肥制备方法,其特征是步骤(2)中采取连续进料和出料方式,速率保持一致,为0.1~0.5千克/小时。
3.根据权利要求1所述的一种以极大昆布为原料的海藻肥制备方法,其特征是步骤(2)中所述葛根渣预处理方法为:葛根粉生产过程产生的葛根渣用蒸馏水冲洗3~5次,置于烧杯中,葛根渣与2%~6%漂白粉溶液以质量比1:15~30混匀,在摇床中振荡,按160~280转/分钟振荡5~10分钟后,转速调整为60~120转/分钟,温度控制在20~40℃,振荡时间18~36小时,振荡结束后葛根渣用蒸馏水冲洗3~5次。
4.根据权利要求1所述的一种以极大昆布为原料的海藻肥制备方法,其特征是步骤(2)中所述纤维素酶固定化方法为:纤维素酶溶解于1.0~1.5摩尔/升磷酸缓冲液,缓冲液pH值为5.0~6.0,酶浓度为50~150克/升;预处理后葛根渣与纤维素酶溶液以质量比1:1~3混匀,在摇床中振荡,按180~280转/分钟振荡4~8分钟后,转速调整为40~80转/分钟,温度控制在20~35℃,振荡时间18~36小时,振荡结束后固定了纤维素酶的葛根渣用蒸馏水冲洗3~5次。
5.根据权利要求1所述的一种以极大昆布为原料的海藻肥制备方法,其特征是步骤(3)中采取连续进料和出料方式,速率保持一致,为0.1~0.5千克/小时。
6.根据权利要求1所述的一种以极大昆布为原料的海藻肥制备方法,其特征是步骤(3)中所述的碱性蛋白酶固定化方法如下:碱性蛋白酶溶解于1.0~1.5摩尔/升磷酸缓冲液,缓冲液pH值为6.5~7.5,酶浓度为50~100克/升;预处理后葛根渣与碱性蛋白酶溶液以质量比1:1~3混匀,在摇床中振荡,按180~280转/分钟振荡4~8分钟后,转速调整为40~80转/分钟,温度控制在20~40℃,振荡时间18~36小时,振荡结束后固定了碱性蛋白酶的葛根渣用蒸馏水冲洗3~5次。
7.根据权利要求1所述的一种以极大昆布为原料的海藻肥制备方法,其特征是步骤(5)中所述的果皮为香蕉皮、西瓜皮或苹果皮,尾菜为大白菜、生菜或莴苣尾菜,酿造废渣为白酒酿造废渣。
CN201710927190.5A 2017-10-09 2017-10-09 一种以极大昆布为原料的海藻肥制备方法 Pending CN107573124A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710927190.5A CN107573124A (zh) 2017-10-09 2017-10-09 一种以极大昆布为原料的海藻肥制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710927190.5A CN107573124A (zh) 2017-10-09 2017-10-09 一种以极大昆布为原料的海藻肥制备方法

Publications (1)

Publication Number Publication Date
CN107573124A true CN107573124A (zh) 2018-01-12

Family

ID=61040089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710927190.5A Pending CN107573124A (zh) 2017-10-09 2017-10-09 一种以极大昆布为原料的海藻肥制备方法

Country Status (1)

Country Link
CN (1) CN107573124A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232554A (zh) * 2013-04-22 2013-08-07 青岛贝尔特生物科技有限公司 一种生产褐藻酸钠联产乙醇和海藻有机肥的方法
CN104341536A (zh) * 2013-08-08 2015-02-11 青岛博研达工业技术研究所(普通合伙) 一种高效提取海藻中营养物质的方法
CN106915987A (zh) * 2017-03-28 2017-07-04 南昌大学 一种葡萄专用海藻肥的制备方法
CN107056346A (zh) * 2017-03-31 2017-08-18 南昌大学 一种纯天然浓缩型绿萝营养液制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232554A (zh) * 2013-04-22 2013-08-07 青岛贝尔特生物科技有限公司 一种生产褐藻酸钠联产乙醇和海藻有机肥的方法
CN104341536A (zh) * 2013-08-08 2015-02-11 青岛博研达工业技术研究所(普通合伙) 一种高效提取海藻中营养物质的方法
CN106915987A (zh) * 2017-03-28 2017-07-04 南昌大学 一种葡萄专用海藻肥的制备方法
CN107056346A (zh) * 2017-03-31 2017-08-18 南昌大学 一种纯天然浓缩型绿萝营养液制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
刘英汉等: "《葛的栽培与葛根的加工利用》", 3 September 2002, 金盾出版社 *
巫小丹等: "固定化酵母乙醇发酵及固化小球微生态的研究", 《中国生物工程杂志》 *
李斌等: "《食品酶学与酶工程》", 30 September 2017, 中国农业大学出版社 *
邓万良等: "江西吉安巨峰葡萄自然着果关键技术", 《中国果业信息》 *
陈宁: "《酶工程》", 30 June 2011, 中国轻工业出版社 *
黄纯: "《生物化学》", 30 June 2008, 中国医药科技出版社 *

Similar Documents

Publication Publication Date Title
CN102515952B (zh) 一种壳聚糖包膜海藻生物有机肥及其制备方法
CN104478624B (zh) 一种有机碳悬浮液体复合肥料及其制备方法
CN107793214A (zh) 一种以羊栖菜为原料的海藻肥制备方法
CN106748195B (zh) 一种含天然植物生长物质的肥料及其制备工艺
CN112167268B (zh) 物理生物联合法生产农用海藻提取液的方法及海藻提取液
CN105036921A (zh) 一种植物营养液及其制备方法
CN101544523A (zh) 具有生物酵素的肥料及其制备方法和使用方法
CN104774114A (zh) 一种富硒有机肥的生产方法
CN106916021A (zh) 一种双源腐植酸生物肥料及其制备方法与应用
CN107056346A (zh) 一种纯天然浓缩型绿萝营养液制备方法
CN104130068A (zh) 一种复合型多功能生物叶面肥
CN106631396A (zh) 一种长秸秆类作物用的玉米秆酵素肥
CN103444385A (zh) 一种农业种植方法
CN107746296A (zh) 一种海藻肥的制备方法
CN103931463B (zh) 利用废弃菌渣的果树一体化施肥方法
CN105523847A (zh) 固碳酶增效水溶肥料及其制备方法
CN107573170A (zh) 一种采用平行酶解工艺制备的海藻生物有机肥及制备方法
CN104150977B (zh) 一种海藻寡糖生物肥的制备方法及应用
CN109627099A (zh) 一种球状颗粒盐碱调理剂及其制备
CN107640982A (zh) 一种以泡叶藻为原料的海藻肥制备方法
CN110845273A (zh) 贝壳粉有机肥生物调理剂的制备方法及其应用
CN105901026A (zh) 一种葡萄种子催芽剂
CN107540453A (zh) 一种以浒苔为原料的海藻肥制备方法
CN107540454A (zh) 一种以海带为原料的海藻肥制备方法
CN107540455A (zh) 一种以马尾藻为原料的海藻肥制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180112

RJ01 Rejection of invention patent application after publication