CN107565553A - A kind of power distribution network robust dynamic state estimator method based on UKF - Google Patents

A kind of power distribution network robust dynamic state estimator method based on UKF Download PDF

Info

Publication number
CN107565553A
CN107565553A CN201710844451.7A CN201710844451A CN107565553A CN 107565553 A CN107565553 A CN 107565553A CN 201710844451 A CN201710844451 A CN 201710844451A CN 107565553 A CN107565553 A CN 107565553A
Authority
CN
China
Prior art keywords
mrow
msubsup
msub
mover
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710844451.7A
Other languages
Chinese (zh)
Inventor
孙江山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou University
Original Assignee
Guizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou University filed Critical Guizhou University
Priority to CN201710844451.7A priority Critical patent/CN107565553A/en
Publication of CN107565553A publication Critical patent/CN107565553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The invention discloses a kind of power distribution network robust dynamic state estimator method based on UKF, index weight function is incorporated into Unscented kalman filtering dynamic state estimator by this method, in the case where system loading mutation causes error in measurement to increase, the dynamic corrections to measuring weight, and then smooth adjustment Kalman filtering gain are realized according to measurement residuals;Simultaneously because the index weight function being introduced into is used in least square method, in order that it is easy to implement in Unscented kalman filtering, specific improved method is given;By using method disclosed by the invention, based under SCADA/PMU Mixed measurements systems, when rough error or system loading mutation be present for measurement, it can effectively strengthen the robustness of algorithm, lift the filtering performance of UKF algorithms, improve precision of state estimation.

Description

A kind of power distribution network robust dynamic state estimator method based on UKF
Technical field
The present invention relates to a kind of state estimation, and in particular to a kind of power distribution network robust dynamic state estimator side based on UKF Method.
Background technology
As American-European countries carries out the construction to intelligent grid, China is correspondingly according to the national conditions of oneself, respectively with extra-high The power transmission network for backbone, the high power distribution network of structure automaticity are pressed as constructive direction.To distribution network automated research and Development, intelligent power distribution network construction progress is affected, studying high accuracy, dynamic state estimator is outstanding for distribution management system in real time Its is important.
The electric automobile access power distribution network of a large amount of distributed power sources and part throttle characteristics change greatly, makes the dynamic of distribution more By force.Grid requirements Distribution Management System improves monitoring and control ability, for this reason, it may be necessary to which state estimation offer is reliable in real time complete System operation data.The features such as power distribution network three-phase imbalance, the largely presence of short branch road and measure configuration are less, make transmitting electricity The ripe state estimation algorithm of net application can not be applied in power distribution network, and such as PQ decoupling methods, therefore research is applied to state of electric distribution network The algorithm of estimation.
Two classes, a kind of static state estimation based on least square method are broadly divided into state of electric distribution network Estimation Study at present Algorithm, state estimation is carried out with the metric data of discontinuity surface at one, what is often used has based on node voltage, branch current, branch Road power makes system measurements information and measures the minimum convergence principle of estimate error, it is desirable to measure strict as state variable Obedience is just distributed very much, and condition is harsh.State model is solved with Newton iteration method.
It is another kind of, it is the dynamic state estimator algorithm based on Kalman filtering, considers multiple measuring time value sections Metric data carries out state estimation, and good wave filtering effect, calculating speed is fast, and can also predict the system mode of subsequent time. , can be with one-step prediction, the pseudo- measurement of replenishment system based on two-parameter exponential exponential smoothing in the case that power distribution network measurement is less.
Unscented kalman filtering (Unscented Kalman Filter, UKF) is using linear Kalman filter theory as frame Frame, sampling Unscented transform technology to nonlinear function linear process, degree of approximation reach quadravalence and more than, applicability is good.And The algorithm uses sigma point samplings, and without calculating Jacobian matrix, the linearisation for reducing expanded Kalman filtration algorithm misses Difference, but when having rough error or sudden load change there is also measurement, filtering performance declines, it is also possible to the shortcomings of dissipating.
The content of the invention
Insufficient existing for above-mentioned UKF algorithms in order to solve, the invention provides a kind of power distribution network robust dynamic based on UKF Method for estimating state, using power distribution network three-phase voltage amplitude and phase angle as state variable, calculated by the symmetric proportional method of sampling Sigma points and its weights, then carry out parameter identification using two-parameter exponential exponential smoothing and carry out one-step prediction, by measurement side The quantity of state of Cheng Liyong predictions is asked for measuring prediction, the new breath matrix formed to real-time measurement and measurement predictor, using being carried The index weight function dynamic corrections gone out, the weight of bad data is adjusted in time, asks for Kalman filtering gain, final updating state Variable and covariance.Test result indicates that when systems are functioning properly, calculated based on index weight function UKF algorithms and traditional UKF Method filter effect and time phase difference are little;Be mutated in system loading or when rough error be present, the great decline of UKF algorithm filter effects and There is the trend of diverging, and index weight function UKF rules do not suffer from this, estimated accuracy is higher, demonstrates the robust of innovatory algorithm Property and numerical stability.
In order to realize foregoing invention purpose, the present invention takes following technical scheme:
A kind of power distribution network robust dynamic state estimator method based on UKF is provided, the described method comprises the following steps:
Step (1) inputs power distribution network three-phase network parameter, including branch parameters, transformer parameter, load parameter, calculates system Unite bus admittance matrix Y.
Step (2) is in K=0 moment, the average and covariance of init state variable node voltage.
Step (3) carries out sigma point samplings and corresponding to calculating sampled point according to the state estimation and covariance at K moment Weights.
Step (4) carries out parameter identification using Holt's two-parameter exponentials exponential smoothing, and it is pre- at the K moment to obtain state variable Simultaneously measurement predictor is calculated using measurement equation in measured value.
Step (5) by K moment measurement predictor computing systems covariance and cross covariance.
Step (6) is smooth to him according to new breath matrix utilization index weight function, the measurement power of dynamic corrections K moment measuring values Weight, the error in measurement that upgrades in time covariance matrix.
Step (7) calculates the state and covariance of Kalman filtering gain and more new system.
Step (8) judges whether systematic sampling terminates, if terminating, performs step (7), if not terminating, returns and performs step (2)。
Step (9) exports the state variable estimate at K+1 moment.
The step (1) is analyzed power distribution network ornamental, generates the bus admittance matrix Y of system.
The average of step (2) the state of electric distribution network variableAnd covarianceAs the initial value of UKF algorithms, wherein p =abc.
For the step (3) when carrying out sigma point samplings, method mainly has single file sampling, spherical sampling, symmetric proportional to adopt Sample.Sample mode influences the computational efficiency and numerical stability of state estimation algorithm.Single file sample rate is most fast, numerical stability Worst, all weight coefficients of spherical sampling are all identical then can be high by state initial value affecting, ratio symmetric sampling method approximation quality. For the distribution system of n dimensions, using the symmetric proportional method of sampling, 2n+1 sigma point and corresponding weights are calculated;Selection pair Claim sampling method that there is preferable numerical stability, 2n+1 sigma sampling point set and corresponding weights are obtained by Unscented transform:
Parameter lambda=α2(n+ κ)-n is used for reducing the scale factor of total prediction error, and parameter alpha controls point of sampled point Cloth state, span [0.0001,1], κ are to ensure that matrix (n+ λ) P is positive semidefinite free parameter, and β >=0 can be higher order term The weight coefficient that is included of influence, ensure that approximation quality.Formula (3)
In, P is quantity of state covariance matrix,I-th row of representing matrix root.
Calculate the corresponding weights of these sampled points
WmRepresent the weights of quantity of state, WcRepresent the weights of covariance.
The step (4) is identified using two-parameter exponential smoothing parameter method, carries out status predication, calculating speed is fast, precision In the reasonable scope.
The step (5) asks for the predicted value and prediction covariance of state variable by weighting:
Wherein, Q is service system noise covariance matrix.
The step (6) obtains average and the association side of system by the measurement predictor of sigma point sets by weighted sum Difference, cross covariance:
The step (7):In power distribution network metric data, it is understood that there may be rough error, system loading mutation cause metric data Change is big, introduces exponential weight function pair and newly ceases matrix dynamic corrections, change it is corresponding measure weight, smooth rough error or measure change Influence to filtering, is implemented as follows:
In order to improve the smooth effect in UKF, modification weight function is negative exponent form:
R'k=Rkexp(-|yk-h(xk)|)
The step (8):According to the measurement weight calculation measurement variance matrix of amendment, and calculate Kalman filtering gain The state and covariance of more new system:
Wherein K is Kalman filtering gain matrix.
Compared with prior art, the beneficial effects of the present invention are:
1. this method is realized easily in original algorithm, when rough error be present for system loading mutation, measurement, filter effect Good, robustness is strong, improves precision of state estimation.
2. numerical stability is strong, good in convergence effect, can effectively solve three-phase imbalance state of electric distribution network estimation problem.
Brief description of the drawings
Fig. 1 is a kind of power distribution network robust dynamic state estimator method flow diagram based on UKF of the present invention;
State estimation when Fig. 2 is system normal operation, inventive algorithm and traditional UKF algorithm comparison results;
Fig. 3 is state estimation comparative result when system loading is mutated.
Embodiment
The invention will be further described with reference to the accompanying drawings and examples, but not as any limitation of the invention.
The implementation steps of the present invention are as follows:
Step (1):Network connection, branch parameters and the metric data given according to power distribution network, wherein network connection are such as Accompanying drawing 1, branch parameters are shown in Table one, the ornamental and calculate node admittance matrix of analysis system.
Step (2):At the sampling K=0 moment, the average and covariance of init state variable node voltage.
Step (3) carries out sigma point samplings and power corresponding to calculating sampled point according to K state estimation and covariance Value.
Step (4) carries out parameter identification using Holt's two-parameter exponentials exponential smoothing, and it is pre- at the K moment to obtain state variable Simultaneously measurement predictor is calculated using measurement equation in measured value.
Step (5) by K moment measurement predictor computing systems covariance and cross covariance.
Step (6) is smooth to him according to new breath matrix utilization index weight function, the measurement power of dynamic corrections K moment measuring values Weight, the error in measurement that upgrades in time covariance matrix.
Step (7) calculates the state and covariance of Kalman filtering gain and more new system.
Step (8) judges whether systematic sampling terminates, if terminating, performs step (7), if not terminating, returns and performs step (2)。
Step (9) exports the state variable estimate at K+1 moment.
The step (1) is analyzed power distribution network ornamental, generates the bus admittance matrix Y of system.
The average of step (2) the state of electric distribution network variableAnd covarianceAs the initial value of UKF algorithms, wherein p =abc.
For the step (3) when carrying out sigma point samplings, method mainly has single file sampling, spherical sampling, symmetric proportional to adopt Sample.Sample mode influences the computational efficiency and numerical stability of state estimation algorithm.Single file sample rate is most fast, numerical stability Worst, all weight coefficients of spherical sampling are all identical then can be high by state initial value affecting, ratio symmetric sampling method approximation quality. For the distribution system of n dimensions, using the symmetric proportional method of sampling, 2n+1 sigma point and corresponding weights are calculated;Selection pair Claim sampling method that there is preferable numerical stability, 2n+1 sigma sampling point set and corresponding weights are obtained by Unscented transform:
Parameter setting:α=0.001, κ=0, β=2.
WmRepresent the weights of quantity of state, WcRepresent the weights of covariance.
The step (4) is identified using two-parameter exponential smoothing parameter method, carries out status predication, calculating speed is fast, precision In the reasonable scope.
Parameter is arranged to:αH=0.85, βH=0.05
The step (5) asks for the predicted value and prediction covariance of state variable by weighting:
The step (6) obtains average and the association side of system by the measurement predictor of sigma point sets by weighted sum Difference, cross covariance:
The step (7):In power distribution network metric data, it is understood that there may be rough error, system loading mutation cause metric data Change is big, introduces exponential weight function pair and newly ceases matrix dynamic corrections, change it is corresponding measure weight, smooth rough error or measure change Influence to filtering, is implemented as follows:
In order to improve the smooth effect in UKF, modification weight function is negative exponent form:
R'k=Rk exp(-|yk-h(xk)|)
The step (8):According to the measurement weight calculation measurement variance matrix of amendment, and calculate Kalman filtering gain The state and covariance of more new system:
Wherein K is Kalman filtering gain matrix.
With the present invention method to IEEE33 nodes carry out Computer Simulation, define filtering absolute error average value and Maximum:
Wherein Nbus is system node number, and k is sampling instant, and subscript e and t represent the estimate of quantity of state and true respectively Value.
The present invention of table 1 and UKF the algorithms phase angle of comparison node voltage and absolute error of amplitude in system normal operation Average value and maximum.
The present invention of table 2 and UKF the algorithms phase angle of comparison node voltage and absolute error of amplitude when system loading is mutated Average value and maximum.
As it can be seen from table 1 in distribution network system normal operation, algorithm of the invention and UKF algorithm states estimation essence Spend it is close, slightly better than UKF algorithms;From table 2 it can be seen that when system loading is mutated, inventive algorithm has higher filtering Performance, and better numerical value stability.
Certainly, the above is the concrete application example of the present invention, and the present invention also has other embodiments, all using equivalent The technical scheme that replacement or equivalent transformation are formed, all falls within protection domain of the presently claimed invention.

Claims (9)

  1. A kind of 1. power distribution network robust dynamic state estimator method based on UKF, it is characterised in that comprise the following steps:
    (1) power distribution network three-phase network parameter is inputted, including branch parameters, transformer parameter, load parameter, computing system node are led Receive matrix;
    (2) in K=0 moment, the average and covariance of init state variable node voltage;
    (3) sigma point samplings are carried out according to the state estimation at K moment and covariance and calculates the corresponding weights of sigma points;
    (4) parameter identification is carried out using Holt's two-parameter exponentials exponential smoothing, obtains predicted value and profit of the state variable at the K moment Measurement predictor is calculated with measurement equation;
    (5) by the covariance and cross covariance of K moment measurement predictor computing systems;
    (6) utilization index weight function is smooth to residual error, the measurement weight of dynamic corrections K moment measuring values, and the measurement that upgrades in time misses Poor covariance matrix;
    (7) state and covariance of Kalman filtering gain and more new system are calculated;
    (8) judge whether systematic sampling terminates, if terminating, perform step (9), if not terminating, return and perform step (2);
    (9) state variable estimate at K+1 moment is exported.
  2. 2. the power distribution network robust dynamic state estimator method according to claim 1 based on UKF, it is characterised in that:Step (1) in, power distribution network ornamental is analyzed, generates the bus admittance matrix of system.
  3. 3. the power distribution network robust dynamic state estimator method according to claim 1 based on UKF, it is characterised in that:Initially Change the average of state of electric distribution network variableAnd covarianceInitial value as UKF algorithms;
    Computational methods are as follows:
    <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msubsup> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mn>0</mn> <mi>p</mi> </msubsup> <mo>=</mo> <mi>E</mi> <mo>&amp;lsqb;</mo> <msubsup> <mi>x</mi> <mn>0</mn> <mi>p</mi> </msubsup> <mo>&amp;rsqb;</mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>P</mi> <mn>0</mn> <mi>p</mi> </msubsup> <mo>=</mo> <mi>E</mi> <mo>&amp;lsqb;</mo> <mo>(</mo> <msubsup> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mn>0</mn> <mi>P</mi> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mn>0</mn> <mi>p</mi> </msubsup> <mo>)</mo> <msup> <mrow> <mo>(</mo> <mrow> <msubsup> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mn>0</mn> <mi>P</mi> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mn>0</mn> <mi>p</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>&amp;rsqb;</mo> </mtd> </mtr> </mtable> </mfenced>
    Wherein p=abc represents three-phase.
  4. 4. the power distribution network robust dynamic state estimator method according to claim 1 based on UKF, it is characterised in that:Entering During row sigma point samplings, method includes single file sampling, spherical sampling, symmetric proportional sampling;
    For the distribution system of n dimensions, using the symmetric proportional method of sampling, 2n+1 sigma point and corresponding weights are calculated:
    <mrow> <msubsup> <mi>&amp;chi;</mi> <mi>i</mi> <mi>p</mi> </msubsup> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msup> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mi>p</mi> </msup> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msup> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mi>p</mi> </msup> <mo>+</mo> <msub> <mrow> <mo>&amp;lsqb;</mo> <msqrt> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mi>&amp;lambda;</mi> <mo>)</mo> <msub> <mi>P</mi> <mi>x</mi> </msub> </mrow> </msqrt> <mo>&amp;rsqb;</mo> </mrow> <mi>i</mi> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>n</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mi>p</mi> </msup> <mo>-</mo> <msub> <mrow> <mo>&amp;lsqb;</mo> <msqrt> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mi>&amp;lambda;</mi> <mo>)</mo> <msub> <mi>P</mi> <mi>x</mi> </msub> </mrow> </msqrt> <mo>&amp;rsqb;</mo> </mrow> <mi>i</mi> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mn>2</mn> <mi>n</mi> </mtd> </mtr> </mtable> </mfenced> </mrow>
    Parameter lambda=α2(n+ κ)-n is used for reducing the scale factor of total prediction error, and parameter alpha controls the distribution shape of sampled point State, span [0.0001,1], κ are to ensure that matrix (n+ λ) P is positive semidefinite free parameter, and β >=0 can be the shadow of higher order term The weight coefficient being included is rung, ensure that approximation quality;
    I-th row of representing matrix root;
    Calculate the corresponding weights of these sampled points:
    <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msubsup> <mi>W</mi> <mn>0</mn> <mi>c</mi> </msubsup> <mo>=</mo> <mi>&amp;lambda;</mi> <mo>/</mo> <mi>n</mi> <mo>+</mo> <mi>&amp;lambda;</mi> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>W</mi> <mn>0</mn> <mi>m</mi> </msubsup> <mo>=</mo> <mi>&amp;lambda;</mi> <mo>/</mo> <mi>n</mi> <mo>+</mo> <mi>&amp;lambda;</mi> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>W</mi> <mi>i</mi> <mi>m</mi> </msubsup> <mo>=</mo> <msubsup> <mi>W</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> <mo>(</mo> <mi>n</mi> <mo>+</mo> <mi>&amp;lambda;</mi> <mo>)</mo> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mn>2</mn> <mi>n</mi> </mtd> </mtr> </mtable> </mfenced>
    WmRepresent the weights of quantity of state, WcRepresent the weights of covariance.
  5. 5. the power distribution network robust dynamic state estimator method according to claim 1 based on UKF, it is characterised in that:Utilize Two-parameter exponential smoothing parameter method identifies, carries out status predication, calculating speed is fast, and precision is in the reasonable scope;
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>x</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>p</mi> </msubsup> <mo>=</mo> <msub> <mi>s</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <mi>k</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>s</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>&amp;alpha;</mi> <mi>H</mi> </msub> <msubsup> <mi>x</mi> <mi>k</mi> <mi>p</mi> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;alpha;</mi> <mi>H</mi> </msub> <mo>)</mo> </mrow> <msubsup> <mi>x</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>p</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>b</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>&amp;beta;</mi> <mi>H</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>s</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mi>H</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>b</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow>
  6. 6. the power distribution network robust dynamic state estimator method according to claim 1 based on UKF, it is characterised in that:Pass through The predicted value and prediction covariance of state variable are asked in weighting:
    <mrow> <msubsup> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> </mrow> <mi>p</mi> </msubsup> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mi>i</mi> <mi>L</mi> </munderover> <msubsup> <mi>W</mi> <mi>i</mi> <mi>m</mi> </msubsup> <msubsup> <mi>&amp;chi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> </mrow> <mi>p</mi> </msubsup> </mrow>
    <mrow> <msubsup> <mi>P</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> </mrow> <mi>p</mi> </msubsup> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mi>i</mi> <mi>L</mi> </munderover> <msubsup> <mi>W</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mrow> <mo>(</mo> <msubsup> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> </mrow> <mi>p</mi> </msubsup> <mo>-</mo> <msubsup> <mi>&amp;chi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> </mrow> <mi>p</mi> </msubsup> <mo>)</mo> </mrow> <mo>*</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> </mrow> <mi>p</mi> </msubsup> <mo>-</mo> <msubsup> <mi>&amp;chi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> </mrow> <mi>p</mi> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msubsup> <mi>Q</mi> <mi>k</mi> <mi>p</mi> </msubsup> </mrow>
    Wherein, Q is system noise covariance matrix.
  7. 7. the power distribution network robust dynamic state estimator method according to claim 1 based on UKF, it is characterised in that:By The measurement predictor of sigma point sets, the average and covariance, cross covariance of system are obtained by weighted sum:
    <mrow> <msubsup> <mover> <mi>z</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>p</mi> </msubsup> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>W</mi> <mi>i</mi> <mi>m</mi> </msubsup> <msubsup> <mi>z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>p</mi> </msubsup> </mrow>
    <mrow> <msubsup> <mi>S</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>p</mi> </msubsup> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>W</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>p</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>z</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>p</mi> </msubsup> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>p</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>z</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>p</mi> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>p</mi> </msubsup> </mrow>
    <mrow> <msubsup> <mi>C</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>p</mi> </msubsup> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>W</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>&amp;chi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> </mrow> <mi>p</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> </mrow> <mi>p</mi> </msubsup> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>p</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>z</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>p</mi> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>.</mo> </mrow>
  8. 8. the power distribution network robust dynamic state estimator method according to claim 1 based on UKF, it is characterised in that:With In grid measurement data, it is understood that there may be rough error, system loading mutation cause metric data change greatly, it is new to introduce exponential weight function pair Matrix dynamic corrections are ceased, changes corresponding measurement weight, the influence of smooth rough error or measurement change to filtering, is implemented as follows:
    <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>z</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>h</mi> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;rho;</mi> <mn>1</mn> </msub> <mo>(</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>=</mo> <mfrac> <msub> <mi>w</mi> <mi>i</mi> </msub> <mrow> <mi>exp</mi> <mrow> <mo>(</mo> <mo>|</mo> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>)</mo> </mrow> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced>
    In order to improve the smooth effect in UKF, modification weight function is negative exponent form:
    R'k=Rk exp(-|yk-h(xk)|)
    Corresponding covariance is revised as:
    <mrow> <msubsup> <mi>S</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>p</mi> </msubsup> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mn>2</mn> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>W</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>p</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>z</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>p</mi> </msubsup> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>p</mi> </msubsup> <mo>-</mo> <msubsup> <mover> <mi>z</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>p</mi> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msubsup> <msup> <mi>R</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>p</mi> </msubsup> <mo>.</mo> </mrow>
  9. 9. the power distribution network robust dynamic state estimator method according to claim 1 based on UKF, it is characterised in that:According to The measurement weight calculation measurement variance matrix of amendment, and calculate state and the association side of Kalman filtering gain and more new system Difference:
    <mrow> <msub> <mi>K</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>C</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>S</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> </mrow>
    <mrow> <msub> <mi>x</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>K</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow>
    <mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>|</mo> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>K</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>S</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>K</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> </mrow>
    Wherein K is Kalman filtering gain matrix.
CN201710844451.7A 2017-09-19 2017-09-19 A kind of power distribution network robust dynamic state estimator method based on UKF Pending CN107565553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710844451.7A CN107565553A (en) 2017-09-19 2017-09-19 A kind of power distribution network robust dynamic state estimator method based on UKF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710844451.7A CN107565553A (en) 2017-09-19 2017-09-19 A kind of power distribution network robust dynamic state estimator method based on UKF

Publications (1)

Publication Number Publication Date
CN107565553A true CN107565553A (en) 2018-01-09

Family

ID=60980207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710844451.7A Pending CN107565553A (en) 2017-09-19 2017-09-19 A kind of power distribution network robust dynamic state estimator method based on UKF

Country Status (1)

Country Link
CN (1) CN107565553A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108711885A (en) * 2018-06-05 2018-10-26 重庆大学 One kind cooperateing with method of estimation for field of wind-force state
CN109376910A (en) * 2018-09-28 2019-02-22 河海大学 A kind of power distribution network dynamic state estimator method based on historical data driving
CN109754013A (en) * 2018-12-31 2019-05-14 浙江大学 A kind of electric system hybrid measurement fusion method based on Unscented kalman filtering
CN110247396A (en) * 2019-07-17 2019-09-17 国网山东省电力公司青岛供电公司 State Estimation for Distribution Network and system based on adaptive robust Unscented kalman filtering
CN110417009A (en) * 2019-07-29 2019-11-05 天津大学 Power distribution network based on Different sampling period data mixes robust state estimation method
CN111695082A (en) * 2020-06-30 2020-09-22 上海交通大学 Anti-differential state estimation method for intelligent power distribution network
CN111723366A (en) * 2019-03-19 2020-09-29 中国科学院沈阳自动化研究所 Error data injection attack robust detection method based on state estimation deviation
CN112383048A (en) * 2020-10-20 2021-02-19 重庆大学 Medium-voltage feeder line power grid three-phase state estimation method considering measurement characteristics of public and special distribution transformer
CN113313339A (en) * 2021-03-26 2021-08-27 贵州大学 Power distribution network dynamic state estimation algorithm
CN114442557A (en) * 2022-01-25 2022-05-06 西南交通大学 Method and system for quickly identifying temperature field of machine tool
CN115616333A (en) * 2022-12-20 2023-01-17 国网江西省电力有限公司电力科学研究院 Power distribution network line loss prediction method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615794A (en) * 2009-08-05 2009-12-30 河海大学 Electrical Power System Dynamic method for estimating state based on no mark transformation Kalman filter
CN103529424A (en) * 2013-10-23 2014-01-22 北京工商大学 RFID (radio frequency identification) and UKF (unscented Kalman filter) based method for rapidly tracking indoor target
CN104777426A (en) * 2015-04-17 2015-07-15 河海大学 Power generator dynamic state estimation method based on unscented transformation strong tracking filtering
CN106707235A (en) * 2017-03-08 2017-05-24 南京信息工程大学 Indoor range finding positioning method based on improved traceless Kalman filtering

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615794A (en) * 2009-08-05 2009-12-30 河海大学 Electrical Power System Dynamic method for estimating state based on no mark transformation Kalman filter
CN103529424A (en) * 2013-10-23 2014-01-22 北京工商大学 RFID (radio frequency identification) and UKF (unscented Kalman filter) based method for rapidly tracking indoor target
CN104777426A (en) * 2015-04-17 2015-07-15 河海大学 Power generator dynamic state estimation method based on unscented transformation strong tracking filtering
CN106707235A (en) * 2017-03-08 2017-05-24 南京信息工程大学 Indoor range finding positioning method based on improved traceless Kalman filtering

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
蔡凝露等: "基于指数权函数的抗差状态估计算法", 《中国电力》 *
赵洪山、田甜: "基于自适应无迹卡尔曼滤波的电力***动态状态估计", 《电网技术》 *
高丽君、刘济: "基于Cauchy鲁棒函数的UKF改进算法", 《华东理工大学学报(自然科学版)》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108711885A (en) * 2018-06-05 2018-10-26 重庆大学 One kind cooperateing with method of estimation for field of wind-force state
CN109376910A (en) * 2018-09-28 2019-02-22 河海大学 A kind of power distribution network dynamic state estimator method based on historical data driving
CN109376910B (en) * 2018-09-28 2021-08-31 河海大学 Historical data drive-based power distribution network dynamic state estimation method
CN109754013A (en) * 2018-12-31 2019-05-14 浙江大学 A kind of electric system hybrid measurement fusion method based on Unscented kalman filtering
CN111723366A (en) * 2019-03-19 2020-09-29 中国科学院沈阳自动化研究所 Error data injection attack robust detection method based on state estimation deviation
CN110247396A (en) * 2019-07-17 2019-09-17 国网山东省电力公司青岛供电公司 State Estimation for Distribution Network and system based on adaptive robust Unscented kalman filtering
CN110417009A (en) * 2019-07-29 2019-11-05 天津大学 Power distribution network based on Different sampling period data mixes robust state estimation method
CN111695082A (en) * 2020-06-30 2020-09-22 上海交通大学 Anti-differential state estimation method for intelligent power distribution network
CN112383048A (en) * 2020-10-20 2021-02-19 重庆大学 Medium-voltage feeder line power grid three-phase state estimation method considering measurement characteristics of public and special distribution transformer
CN113313339A (en) * 2021-03-26 2021-08-27 贵州大学 Power distribution network dynamic state estimation algorithm
CN114442557A (en) * 2022-01-25 2022-05-06 西南交通大学 Method and system for quickly identifying temperature field of machine tool
CN114442557B (en) * 2022-01-25 2023-05-12 西南交通大学 Quick identification method and system for machine tool temperature field
CN115616333A (en) * 2022-12-20 2023-01-17 国网江西省电力有限公司电力科学研究院 Power distribution network line loss prediction method and system

Similar Documents

Publication Publication Date Title
CN107565553A (en) A kind of power distribution network robust dynamic state estimator method based on UKF
CN108155648A (en) Method for estimating state based on the infinite Extended Kalman filter of adaptive H
CN107590317B (en) Generator dynamic estimation method considering model parameter uncertainty
CN106443285B (en) Multiple-harmonic-source harmonic responsibility quantitative analysis method based on total least square method
CN109818349B (en) Power grid robust state prediction method based on multidimensional state matrix sliding matching
CN107145707B (en) Distribution network transformer planning method considering photovoltaic output uncertainty and life cycle cost
CN103401238B (en) A kind of power load modelling approach based on Measurement-based approach
CN110247396A (en) State Estimation for Distribution Network and system based on adaptive robust Unscented kalman filtering
CN112630659A (en) Lithium battery SOC estimation method based on improved BP-EKF algorithm
CN103177188A (en) Electric system load dynamic characteristic classifying method based on characteristic mapping
CN111460374A (en) Power distribution network D-PMU optimal configuration method considering node differences
CN105184027A (en) Power load modeling method based on interactive multi-model algorithm
CN108054757A (en) A kind of embedded idle and voltage N-1 Close loop security check methods
CN111709350B (en) Low-frequency oscillation modal parameter identification method and system based on FCM clustering
CN110783918A (en) Linear model-based power distribution three-phase interval state estimation solving algorithm
CN111581768A (en) Power distribution network distributed state estimation method based on hybrid measurement
CN109218073A (en) It is a kind of meter and network attack and parameter uncertainty dynamic state estimator method
CN106372440B (en) A kind of adaptive robust state estimation method of the power distribution network of parallel computation and device
CN111965484A (en) Power distribution network harmonic contribution calculation method and system based on continuous harmonic state estimation
CN113177600B (en) Adaptive robust state estimation method for power system
CN110021931B (en) Electric power system auxiliary prediction state estimation method considering model uncertainty
CN106599541B (en) A kind of structure and parameter on-line identification method of dynamic power load model
CN112670981A (en) Power distribution network dynamic state estimation method for resisting random packet loss of data
CN109638811B (en) Power distribution network voltage power sensitivity robust estimation method based on model equivalence
CN116629625A (en) Power grid line loss prediction method based on neural network model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180109