CN107556297B - 一种氧杂蒽类有机化合物及其应用 - Google Patents

一种氧杂蒽类有机化合物及其应用 Download PDF

Info

Publication number
CN107556297B
CN107556297B CN201710909736.4A CN201710909736A CN107556297B CN 107556297 B CN107556297 B CN 107556297B CN 201710909736 A CN201710909736 A CN 201710909736A CN 107556297 B CN107556297 B CN 107556297B
Authority
CN
China
Prior art keywords
compound
general formula
layer
organic compound
xanthene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710909736.4A
Other languages
English (en)
Other versions
CN107556297A (zh
Inventor
唐丹丹
李崇
张兆超
张小庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Sunera Technology Co Ltd
Original Assignee
Valiant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valiant Co Ltd filed Critical Valiant Co Ltd
Priority to CN201710909736.4A priority Critical patent/CN107556297B/zh
Publication of CN107556297A publication Critical patent/CN107556297A/zh
Application granted granted Critical
Publication of CN107556297B publication Critical patent/CN107556297B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种氧杂蒽类有机化合物及其在OLED器件上的应用,所述化合物的结构为氧杂蒽通过碳碳键与咔唑并环结构相连,碳碳键连接既提高了材料化学稳定性又避免了支链基团活泼位置裸露,而且整个分子是一个较大的刚性结构,具有高的三线态能级(T1);且空间位阻大,不易转动,立体空间结构更稳定,因此化合物具有较高的玻璃化温度和分子热稳定性;另外,本发明化合物的HOMO和LUMO分布位置相互分开,使其具有了合适的HOMO和LUMO能级;因此,本发明化合物应用于OLED器件后,可有效提升器件的发光效率及使用寿命。

Description

一种氧杂蒽类有机化合物及其应用
技术领域
本发明涉及半导体技术领域,尤其是涉及氧杂蒽类有机化合物及其在OLED器件上的应用。
背景技术
有机电致发光(OLED:Organic Light Emission Diodes)器件技术既可以用来制造新型显示产品,也可以用于制作新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。OLED发光器件犹如三明治的结构,包括电极材料膜层以及夹在不同电极膜层之间的有机功能材料,各种不同功能材料根据用途相互叠加在一起共同组成OLED发光器件。OLED发光器件作为电流器件,当对其两端电极施加电压,并通过电场作用有机层功能材料膜层中的正负电荷时,正负电荷进一步在发光层中复合,即产生OLED电致发光。
当前,OLED显示技术已经在智能手机,平板电脑等领域获得应用,进一步还将向电视等大尺寸应用领域扩展,但是,和实际的产品应用要求相比,OLED器件的发光效率和使用寿命等性能还需要进一步提升。目前对OLED发光器件提高性能的研究包括:降低器件的驱动电压、提高器件的发光效率、提高器件的使用寿命等。为了实现OLED器件的性能的不断提升,不但需要从OLED器件结构和制作工艺的创新,更需要OLED光电功能材料不断研究和创新,创制出更高性能的OLED功能材料。
应用于OLED器件的OLED光电功能材料从用途上可划分为两大类,分别为电荷注入传输材料和发光材料。进一步,还可将电荷注入传输材料分为电子注入传输材料、电子阻挡材料、空穴注入传输材料和空穴阻挡材料,还可以将发光材料分为主体发光材料和掺杂材料。
为了制作高性能的OLED发光器件,要求各种有机功能材料具备良好的光电性能,譬如,作为电荷传输材料,要求具有良好的载流子迁移率,高玻璃化转化温度等,作为发光层的主体材料具有良好双极性,适当的HOMO/LUMO能阶等。
构成OLED器件的OLED光电功能材料膜层至少包括两层以上结构,产业上应用的OLED器件结构则包括空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层等多种膜层,也就是说应用于OLED器件的光电功能材料至少包括空穴注入材料、空穴传输材料、发光材料、电子传输材料等,材料类型和搭配形式具有丰富性和多样性的特点。另外,对于不同结构的OLED器件搭配而言,所使用的光电功能材料具有较强的选择性,相同的材料在不同结构器件中的性能表现也可能完全迥异。
因此,针对当前OLED器件的产业应用要求以及OLED器件的不同功能膜层,器件的光电特性需求,必须选择更适合、性能更高的OLED功能材料或材料组合,才能实现器件的高效率、长寿命和低电压的综合特性。就当前的OLED显示照明产业的实际需求而言,目前OLED材料的发展还远远不够,落后于面板制造企业的要求,作为材料企业开发更高性能的有机功能材料显得尤为重要。
发明内容
针对现有技术存在的上述问题,本申请人提供了一种氧杂蒽类有机化合物及其在OLED器件上的的应用。本发明化合物含有氧杂蒽结构,具有较高的玻璃化温度和分子热稳定性,合适的HOMO和LUMO能级,较高Eg,通过器件结构优化,可有效提升OLED器件的光电性能以及OLED器件的寿命。本发明的技术方案如下:
一种氧杂蒽类有机化合物,所述有机化合物的结构如通式(1)所示:
Figure BDA0001424670180000021
通式(1)中,L表示为单键、取代或未取代的C6-60亚芳基、含有一个或多个杂原子的取代或未取代的5~60元杂亚芳基;所述杂原子为氮、氧或硫;
通式(1)中,Ar、Ar1分别独立的表示为取代或未取代的C6-60芳基、含有一个或多个杂原子的取代或未取代的5-60元杂芳基;所述杂原子为氮、氧或硫;
Ar1还表示为通式(2)所示结构:
Figure BDA0001424670180000022
通式(2)中,X1表示为氧原子、硫原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种;
通式(1)中,R1表示为氢原子、通式(3)或通式(4)所示的结构;
Figure BDA0001424670180000023
其中,a选自
Figure BDA0001424670180000024
X2表示为氧原子、硫原子、C1-10直链或支链烷基取代的亚烷基、芳基取代的亚烷基、烷基取代的亚胺基或芳基取代的亚胺基中的一种;
通式(3)或通式(4)分别独立的通过CL1-CL2键、CL2-CL3键或CL3-CL4键与通式(1)连接。优选的,L表示为单键、亚苯基、亚二联苯基、亚吡啶基、亚嘧啶基、亚哒嗪基、亚吡嗪基或亚三嗪基中的一种;Ar、Ar1分别独立的表示为苯基、二联苯基、三联苯基、萘基、蒽基、菲基、芘基、吡啶基、嘧啶基、哒嗪基、吡嗪基或三嗪基中的一种。优选的,所述通式(1)中
Figure BDA0001424670180000031
表示为:
Figure BDA0001424670180000032
Figure BDA0001424670180000041
Figure BDA0001424670180000051
Figure BDA0001424670180000052
中的任意一种。优选的,所述化合物的具体结构式为:
Figure BDA0001424670180000053
Figure BDA0001424670180000061
Figure BDA0001424670180000071
Figure BDA0001424670180000081
Figure BDA0001424670180000091
Figure BDA0001424670180000101
Figure BDA0001424670180000111
Figure BDA0001424670180000121
Figure BDA0001424670180000131
Figure BDA0001424670180000141
Figure BDA0001424670180000142
中的任意一种。
本申请人还提供了一种所述氧杂蒽类的有机化合物的制备方法,制备过程中发生的反应方程式为:
Figure BDA0001424670180000143
具体制备方法为:称取中间体I和中间体II,用体积比为1.5~3:1的甲苯/乙醇混合溶剂溶解;再加入Na2CO3水溶液、Pd(PPh3)4;在惰性气氛下,将上述反应物的混合溶液于反应温度90~110℃下反应10~24小时,冷却、过滤反应溶液,滤液旋蒸,过硅胶柱,得到目标产物;所述中间体I与中间体II的摩尔比为1:1.0~1.5;Pd(PPh3)4与中间体I的摩尔比为0.006~0.02:1;Na2CO3与中间体I的摩尔比为2.0~3.0:1。
本申请人还提供了所述的氧杂蒽类的有机化合物用于制备有机电致发光器件的应用。本申请人还提供了一种有机电致发光器件,包括至少一层功能层含有所述的氧杂蒽类的有机化合物。本申请人还提供了一种有机电致发光器件,包括空穴传输层或电子阻挡层,所述空穴传输层或电子阻挡层材料为所述的氧杂蒽类的有机化合物。本申请人还提供了一种有机电致发光器件,包括发光层,所述发光层含有所述的氧杂蒽类有机化合物。
本发明有益的技术效果在于:
本发明化合物均以氧杂蒽为骨架,与咔唑并环结构以碳碳键相连,碳碳键连接既提高了材料稳定性又避免了支链基团活泼位置裸露;此类化合物除了氧杂蒽具有较大的刚性外,咔唑并环结构也是一个大π键共轭的刚性结构,空间位阻大,不易转动,使得本发明化合物材料的立体结构更加稳定。而且本发明化合物三线态能级T1主要分布在支链上,而支链具有高的T1能级,因此本发明化合物同样具有高T1能级;本发明化合物作为OLED的电子阻挡层材料使用时,高T1能级能够有效地阻挡能量从发光层向空穴传输层传递,减少了能量损失,使发光层主体材料能量充分传递至掺杂材料,从而提升材料应用于器件后的发光效率。
本发明的有机化合物的结构使得电子和空穴在发光层的分布更加平衡,在恰当的HOMO能级下,提升了空穴注入和传输性能;在合适的LUMO能级下,又起到了电子阻挡的作用,提升激子在发光层中的复合效率;作为OLED发光器件的发光功能层材料使用时,氧杂蒽搭配本发明范围内的支链可有效提高激子利用率和高荧光辐射效率,降低高电流密度下的效率滚降,降低器件电压,提高器件的电流效率和寿命。本发明的有机化合物在OLED器件应用时,通过器件结构优化,可保持高的膜层稳定性,可有效提升OLED器件的光电性能以及OLED器件的寿命。本发明所述化合物在OLED发光器件中具有良好的应用效果和产业化前景。
附图说明
图1为本发明所列举的材料应用于OLED器件的结构示意图;其中,1、透明基板层,2、ITO阳极层,3、空穴注入层,4、空穴传输层5、电子阻挡层,6、发光层,7、空穴阻挡/电子传输层,8、电子注入层,9、阴极反射电极层。图2为器件在不同温度下测量的效率曲线图。
具体实施方式
实施例1:中间体I和中间体II的合成:a1.当L表示为单键时,中间体I-1的合成:
Figure BDA0001424670180000151
(1)称取原料U和Mg粉,用干燥四氢呋喃(THF)溶解;在惰性气氛下,加入微量催化剂I2,加热至40℃搅拌至溶液由黄色变为无色,再将上述混合溶液加热至60~90℃下,搅拌反应3~5小时,无镁粉剩余,反应完全,生成格式试剂中间体V;所述原料U与Mg的摩尔比为1:1.0~1.2;I2与原料U的摩尔比为0.006~0.02:1;
(2)称取占吨酮,用干燥THF溶解;在惰性气氛下,滴加上述格式试剂中间体V,将所得混合溶液于60~90℃下,搅拌反应10~24小时,生成大量白色沉淀,然后冷却至室温,加入饱和NHCl4将格式盐转化为醇;反应完毕后,***萃取,干燥旋蒸,过硅胶柱,得到略带黄色的固体叔醇中间体W;所述占吨酮与中间体V的摩尔比为1:1.0~1.2;
(3)称取中间体W,用甲苯溶解;在混合溶液中缓慢滴加48%HBr水溶液,在20~25℃下搅拌反应15~30小时,反应结束后分液,水相用甲苯萃取,有机相合并后用无水硫酸钠干燥,抽滤,滤饼再用乙酸乙酯冲洗,将滤液和冲洗液旋蒸至无溶剂,过硅胶柱,得到中间体I-1。所述48%HBr水溶液的体积为20ml对应每0.01mol中间体W。
以中间体M1合成为例:
Figure BDA0001424670180000161
(1)250mL的三口瓶,在通入氮气的气氛下,加入0.05mol原料U1,0.06molMg粉,用60ml干燥四氢呋喃溶解,加入0.0004mol单质I2,加热至40℃搅拌至溶液由黄色变为无色,将上述混合溶液加热至80℃下,搅拌反应4小时,无镁粉剩余,反应完全,生成格式试剂中间体V1,无需提纯,直接进行下一步。
(2)250mL的三口瓶,在通入氮气的气氛下,加入0.03mol占吨酮,用40ml干燥四氢呋喃溶解,缓慢滴加上述格式试剂中间体V1溶液,加热回流15小时,生成大量白色沉淀,然后冷却至室温,加入饱和NHCl4将格式盐转化为醇;反应完毕后,***萃取,干燥旋蒸,过硅胶柱,得到略带黄色的固体叔醇中间体W1,HPLC纯度99.5%,收率76.3%。
元素分析结构(分子式C19H14O2):理论值C,83.19;H,5.14;O,11.67;测试值:C,83.17;H,5.14;O,11.69。ESI-MS(m/z)(M+):理论值为274.10,实测值为274.35。
(3)250mL的三口瓶,加入0.02mol中间体W1,用50ml甲苯溶解,缓慢滴加48%HBr水溶液(40ml),在25℃下搅拌反应24小时,反应结束后分液,水相用甲苯萃取,有机相合并后用无水硫酸钠干燥,抽滤,滤饼再用乙酸乙酯冲洗,将滤液和冲洗液旋蒸至无溶剂,过硅胶柱,得到中间体M1,HPLC纯度99.2%,收率75.2%。
元素分析结构(分子式C19H13BrO):理论值C,67.67;H,3.89;Br,23.70;O,4.74;测试值:C,67.66;H,3.88;Br,23.71;O,4.75。ESI-MS(m/z)(M+):理论值为336.01,实测值为336.27。
以中间体M1的合成方法制备中间体I,合成分为三步:由原料U和Mg粉合成中间体V;中间体V和占吨酮合成中间体W,然后由中间体W和48%HBr水溶液合成中间体I-1,具体结构如表1所示。
表1
Figure BDA0001424670180000171
a2.当L不表示为单键时,中间体I-2的合成:
Figure BDA0001424670180000172
(1)在氮气保护下,称取中间体I-1溶于四氢呋喃中,冷却至-78℃,然后向反应体系中加入1.6mol/L正丁基锂的四氢呋喃溶液,在-78℃下反应3h后加入硼酸三异丙酯,反应2h,然后将反应体系升至0℃,加入2mol/L盐酸溶液,搅拌3h,反应完全,加入***萃取,萃取液加入无水硫酸镁干燥,旋蒸,用乙醇溶剂重结晶,得到中间体IS;所述中间体I-1与正丁基锂的摩尔比为1:1~1.5;所述中间体I-1与硼酸三异丙酯的摩尔比为1:1~1.5。
(2)称取中间体IS和Br-L-Br,用体积比为1.5~3:1的甲苯/乙醇混合溶剂溶解;再加入Na2CO3水溶液、Pd(PPh3)4;在惰性气氛下,将上述反应物的混合溶液于反应温度90~110℃下反应10~24小时,冷却、过滤反应溶液,滤液旋蒸,过硅胶柱,得到目标产物;所述中间体IS与Br-L-Br的摩尔比为1:1.0~1.5;Pd(PPh3)4与中间体IS的摩尔比为0.006~0.02:1;Na2CO3与中间体IS的摩尔比为2.0~3.0:1。以中间体M5合成为例:
Figure BDA0001424670180000181
(1)250mL的三口瓶,在通入氮气的气氛下,加入0.02mol中间体M1,用50ml四氢呋喃溶解,冷却至-78℃,然后向反应体系中加入1.6mol/L正丁基锂的四氢呋喃溶液(18ml),在-78℃下反应3h后加入0.03mol硼酸三异丙酯反应2h,然后将反应体系升至0℃,加入2mol/L盐酸溶液,搅拌3h,反应完全,加入***萃取,萃取液加入无水硫酸镁干燥,旋蒸,用乙醇溶剂重结晶,得到中间体IS-1,HPLC纯度99.1%,收率79.4%。
元素分析结构(分子式C19H15BO3):理论值C,75.53;H,5.00;B,3.58;O,15.89;测试值:C,75.52;H,5.01;B,3.56;O,15.91。ESI-MS(m/z)(M+):理论值为302.11,实测值为302.47。
(2)250mL的三口瓶,在通入氮气的气氛下,加入0.01mol中间体IS-1,0.015mol1,4-二溴苯,用混合溶剂溶解(90ml甲苯,45ml乙醇),然后加入0.03mol Na2CO3水溶液(2M),通氮气搅拌1小时,然后加入0.0001mol Pd(PPh3)4,加热回流15小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到中间体M5,纯度99.1%,收率77.2%。
元素分析结构(分子式C25H17BrO):理论值C,72.65;H,4.15;Br,19.33;O,3.87;测试值:C,72.64;H,4.17;Br,19.34;O,3.85。ESI-MS(m/z)(M+):理论值为412.05,实测值为412.35。
b.中间体II的合成
Figure BDA0001424670180000182
(1)称取原料A和原料B,用体积比为1.5~3.0:1的甲苯乙醇混合溶剂溶解;再加入Na2CO3水溶液、Pd(PPh3)4;在氮气保护下,将上述混合溶液于95~100℃下,搅拌反应10~24小时,然后冷却至室温、过滤反应溶液,滤液旋蒸,过硅胶柱,得到中间体S1;所述原料B与原料A的摩尔比为1:1.5~3.0;Pd(PPh3)4与原料B的摩尔比为0.006~0.02:1,Na2CO3与原料B的摩尔比为2.0~3.0:1;
(2)在氮气保护下,将上一步制备的中间体S1溶于邻二氯苯中,加入三苯基膦,在170~190℃下搅拌反应12~16小时,反应结束后冷却至室温,过滤,滤液减压旋蒸,过中性硅胶柱,得中间体S2;所述中间体S1与三苯基膦摩尔比为1:1~2;
(3)在氮气保护下,依次称取中间体S2、原料C、叔丁醇钠、Pd2(dba)3、三叔丁基膦,用甲苯搅拌混合,加热至110~120℃,回流反应12~24小时,取样点板,显示无中间体S2剩余,反应完全;自然冷却至室温,过滤,滤液减压旋蒸至无馏分,过中性硅胶柱,得到中间体S3;所述中间体S2与原料C的摩尔比为1:1~2;所述Pd2(dba)3与中间体S2的摩尔比为0.006~0.02:1,所述三叔丁基膦与中间体S2的摩尔比为0.006~0.02:1;所述叔丁醇钠与中间体S2的摩尔比为2.0~3.0:1;
(4)称取中间体S3溶于乙酸中,用冰盐浴降温至0℃;称取液溴溶于冰醋酸中,并缓慢滴加至中间体S3的乙酸溶液中,室温搅拌5h,取样点板,显示无中间体S3剩余,反应完全;反应结束后,向反应液中加入碱液中和,用二氯甲烷萃取,分层,取有机相过滤,滤液减压旋蒸至无馏分,过硅胶柱,得到中间体S4;所述中间体S3与液溴的摩尔比为1:1~1.5;
(5)在氮气保护下,称取中间体S4溶于四氢呋喃中,冷却至-78℃,然后向反应体系中加入1.6mol/L正丁基锂的四氢呋喃溶液,在-78℃下反应3h后加入硼酸三异丙酯,反应2h,然后将反应体系升至0℃,加入2mol/L盐酸溶液,搅拌3h,反应完全,加入***萃取,萃取液加入无水硫酸镁干燥,旋蒸,用乙醇溶剂重结晶,得到中间体II;所述中间体S4与正丁基锂的摩尔比为1:1~1.5;所述中间体S4与硼酸三异丙酯的摩尔比为1:1~1.5。
中间体II-1的合成分为五步:由原料A和原料B合成中间体S1;中间体S1经成环反应形成中间体S2;中间体S2和原料C合成中间体S3;中间体S3溴化形成中间体S4;最后由中间体S4和硼酸三异丙酯合成中间体II,具体结构如表2所示。
表2
Figure BDA0001424670180000191
Figure BDA0001424670180000201
Figure BDA0001424670180000211
Figure BDA0001424670180000221
实施例2:化合物8的合成:
Figure BDA0001424670180000222
250mL的三口瓶,在通入氮气的气氛下,加入0.01mol中间体M1,0.015mol中间体N1,用混合溶剂溶解(90ml甲苯,45ml乙醇),然后加入0.03mol Na2CO3水溶液(2M),通氮气搅拌1小时,然后加入0.0001mol Pd(PPh3)4,加热回流15小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.2%,收率78.4%。元素分析结构(分子式C43H27NO2):理论值C,87.58;H,4.62;N,2.38;O,5.43;测试值:C,87.59;H,4.61;N,2.36;O,5.44。ESI-MS(m/z)(M+):理论值为589.20,实测值为589.44。
实施例3:化合物18的合成:
Figure BDA0001424670180000231
250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体M1,0.015mol中间体N2,用混合溶剂溶解(90ml甲苯,45ml乙醇),然后加入0.03mol Na2CO3水溶液(2M),通氮气搅拌1小时,然后加入0.0001mol Pd(PPh3)4,加热回流15小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.4%,收率74.6%。元素分析结构(分子式C46H33NO):理论值C,89.73;H,5.40;N,2.27;O,2.60;测试值:C,89.75;H,5.41;N,2.24;O,2.61。ESI-MS(m/z)(M+):理论值为615.26,实测值为615.52。
实施例4:化合物26的合成:
Figure BDA0001424670180000232
250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体M1,0.015mol中间体N3,用混合溶剂溶解(90ml甲苯,45ml乙醇),然后加入0.03mol Na2CO3水溶液(2M),通氮气搅拌1小时,然后加入0.0001mol Pd(PPh3)4,加热回流15小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.5%,收率75.7%。元素分析结构(分子式C49H32N2O):理论值C,88.53;H,4.85;N,4.21;O,2.41;测试值:C,88.52;H,4.84;N,4.22;O,2.42。ESI-MS(m/z)(M+):理论值为664.25,实测值为664.47。
实施例5:化合物32的合成:
Figure BDA0001424670180000233
化合物32的制备方法同实施例2,不同之处在于采用中间体N4替换中间体N1。元素分析结构(分子式C55H36N2O):理论值C,89.16;H,4.90;N,3.78;O,2.16;测试值:C,89.15;H,4.91;N,3.77;O,2.17。ESI-MS(m/z)(M+):理论值为740.28,实测值为740.48。
实施例6:化合物38的合成:
Figure BDA0001424670180000234
化合物38的制备方法同实施例2,不同之处在于采用中间体N5替换中间体N1。元素分析结构(分子式C50H35NO):理论值C,90.19;H,5.30;N,2.10;O,2.40;测试值:C,90.17;H,5.31;N,2.11;O,2.41。ESI-MS(m/z)(M+):理论值为665.27,实测值为665.50。
实施例7:化合物42的合成:
Figure BDA0001424670180000241
化合物42的制备方法同实施例2,不同之处在于采用中间体M2替换中间体M1和中间体N6替换中间体N1。元素分析结构(分子式C49H31NO2):理论值C,88.40;H,4.69;N,2.10;O,4.81;测试值C,88.41;H,4.66;N,2.11;O,4.82。ESI-MS(m/z)(M+):理论值为665.24,实测值为665.45。
实施例8:化合物49的合成:
Figure BDA0001424670180000242
化合物49的制备方法同实施例2,不同之处在于采用中间体M3替换中间体M1和中间体N7替换中间体N1。元素分析结构(分子式C42H26N2OS):理论值C,83.14;H,4.32;N,4.62;O,2.64;S,5.28;测试值:C,83.15;H,4.31;N,4.61;O,2.65;S,5.28。ESI-MS(m/z)(M+):理论值为606.18,实测值为606.34。
实施例9:化合物52的合成:
Figure BDA0001424670180000243
化合物52的制备方法同实施例2,不同之处在于采用中间体M4替换中间体M1和中间体N8替换中间体N1。元素分析结构(分子式C49H31NOS):理论值C,86.31;H,4.58;N,2.05;O,2.35;S,4.70;测试值:C,86.32;H,4.56;N,2.04;O,2.36;S,4.72。ESI-MS(m/z)(M+):理论值为681.21,实测值为681.44。
实施例10:化合物58的合成:
Figure BDA0001424670180000244
化合物58的制备方法同实施例2,不同之处在于采用中间体M2替换中间体M1和中间体N9替换中间体N1。元素分析结构(分子式C52H37NO):理论值C,90.27;H,5.39;N,2.02;O,2.31;测试值:C,90.25;H,5.37;N,2.04;O,2.34。ESI-MS(m/z)(M+):理论值为691.29,实测值为691.56。
实施例11:化合物68的合成:
Figure BDA0001424670180000251
化合物68的制备方法同实施例2,不同之处在于采用中间体N10替换中间体N1。元素分析结构(分子式C49H31NO2):理论值C,88.40;H,4.69;N,2.10;O,4.81;测试值:C,88.41;H,4.68;N,2.11O,4.80。ESI-MS(m/z)(M+):理论值为665.24,实测值为665.48。
实施例12:化合物75的合成:
Figure BDA0001424670180000252
化合物75的制备方法同实施例2,不同之处在于采用中间体N11替换中间体N1。元素分析结构(分子式C52H37NO):理论值C,90.27;H,5.39;N,2.02;O,2.31;测试值:C,90.26;H,5.38;N,2.03;O,2.33。ESI-MS(m/z)(M+):理论值为691.29,实测值为691.57。
实施例13:化合物81的合成:
Figure BDA0001424670180000253
化合物81的制备方法同实施例2,不同之处在于采用中间体N12替换中间体N1。元素分析结构(分子式C55H36N2O):理论值C,89.16;H,4.90;N,3.78;O,2.16;测试值:C,89.15;H,4.91;N,3.79;O,2.15。ESI-MS(m/z)(M+):理论值为740.28,实测值为740.49。
实施例14:化合物86的合成:
Figure BDA0001424670180000254
化合物86的制备方法同实施例2,不同之处在于采用中间体N13替换中间体N1。元素分析结构(分子式C49H31NO2):理论值C,88.40;H,4.69;N,2.10;O,4.81;测试值:C,88.42;H,4.67;N,2.11;O,4.80。ESI-MS(m/z)(M+):理论值为665.24,实测值为665.47。
实施例15:化合物90的合成:
Figure BDA0001424670180000255
化合物90的制备方法同实施例2,不同之处在于采用中间体N14替换中间体N1。元素分析结构(分子式C49H31NO2):理论值C,88.40;H,4.69;N,2.10;O,4.81;测试值:C,88.41;H,4.67;N,2.12;O,4.80。ESI-MS(m/z)(M+):理论值为665.24,实测值为665.45。
实施例16:化合物98的合成:
Figure BDA0001424670180000261
化合物98的制备方法同实施例2,不同之处在于采用中间体N15替换中间体N1。元素分析结构(分子式C52H37NO):理论值C,90.27;H,5.39;N,2.02;O,2.31;测试值:C,90.25;H,5.37;N,2.04;O,2.34。ESI-MS(m/z)(M+):理论值为691.29,实测值为691.54。
实施例17:化合物102的合成:
Figure BDA0001424670180000262
化合物102的制备方法同实施例2,不同之处在于采用中间体N16替换中间体N1。元素分析结构(分子式C55H36N2O):理论值C,89.16;H,4.90;N,3.78;O,2.16;测试值:C,89.15H,4.91;N,3.77;O,2.17。ESI-MS(m/z)(M+):理论值为740.28,实测值为740.52。
实施例18:化合物104的合成:
Figure BDA0001424670180000263
化合物104的制备方法同实施例2,不同之处在于采用中间体N17替换中间体N1。元素分析结构(分子式C55H36N2O):理论值C,89.16;H,4.90;N,3.78;O,2.16;测试值:C,89.17H,4.91;N,3.76;O,2.16。ESI-MS(m/z)(M+):理论值为740.28,实测值为740.55。
实施例19:化合物110的合成:
Figure BDA0001424670180000264
化合物110的制备方法同实施例2,不同之处在于采用中间体N18替换中间体N1。元素分析结构(分子式C49H31NO2):理论值C,88.40;H,4.69;N,2.10;O,4.81;测试值:C,88.42;H,4.67;N,2.11;O,4.80。ESI-MS(m/z)(M+):理论值为665.24,实测值为665.43。
实施例20:化合物122的合成:
Figure BDA0001424670180000271
化合物122的制备方法同实施例2,不同之处在于采用中间体N19替换中间体N1。元素分析结构(分子式C52H37NO):理论值C,90.27;H,5.39;N,2.02;O,2.31;测试值:C,90.23;H,5.36;N,2.05;O,2.36。ESI-MS(m/z)(M+):理论值为691.29,实测值为691.51。
实施例21:化合物132的合成:
Figure BDA0001424670180000272
化合物132的制备方法同实施例2,不同之处在于采用中间体N20替换中间体N1。元素分析结构(分子式C49H29NO3):理论值C,86.58;H,4.30;N,2.06;O,7.06;测试值:C,86.59;H,4.31;N,2.05;O,7.05。ESI-MS(m/z)(M+):理论值为679.21,实测值为679.38。
实施例22:化合物141的合成:
Figure BDA0001424670180000273
化合物141的制备方法同实施例2,不同之处在于采用中间体N21替换中间体N1。元素分析结构(分子式C52H35NO2):理论值C,88.48;H,5.00;N,1.98;O,4.53;测试值:C,88.47;H,5.01;N,1.96;O,4.56。ESI-MS(m/z)(M+):理论值为705.27,实测值为705.46。
实施例23:化合物149的合成:
Figure BDA0001424670180000274
化合物149的制备方法同实施例2,不同之处在于采用中间体N22替换中间体N1。元素分析结构(分子式C55H34N2O2):理论值C,87.51;H,4.54;N,3.71;O,4.24;测试值:C,87.53;H,4.52;N,3.73;O,4.22。ESI-MS(m/z)(M+):理论值为754.26,实测值为754.45。
实施例24:化合物158的合成:
Figure BDA0001424670180000275
化合物158的制备方法同实施例2,不同之处在于采用中间体N23替换中间体N1。元素分析结构(分子式C49H29NO2S):理论值C,84.58;H,4.20;N,2.01;O,4.60;S,4.61;测试值:C,84.56;H,4.22;N,2.00;O,4.61;S,4.61。ESI-MS(m/z)(M+):理论值为695.19,实测值为695.37。
实施例25:化合物169的合成:
Figure BDA0001424670180000281
化合物169的制备方法同实施例2,不同之处在于采用中间体N24替换中间体N1。元素分析结构(分子式C55H34N2OS):理论值C,85.69;H,4.45;N,3.63;O,2.08;S,4.16;测试值:C,85.66;H,4.47;N,3.65;O,2.07;S,4.15。ESI-MS(m/z)(M+):理论值为770.24,实测值为770.56。
实施例26:化合物179的合成:
Figure BDA0001424670180000282
化合物179的制备方法同实施例2,不同之处在于采用中间体N25替换中间体N1。元素分析结构(分子式C55H41NO):理论值C,90.25;H,5.65;N,1.91;O,2.19;测试值:C,90.26;H,5.67;N,1.92;O,2.15。ESI-MS(m/z)(M+):理论值为731.32,实测值为731.65。
实施例27:化合物184的合成:
Figure BDA0001424670180000283
化合物184的制备方法同实施例2,不同之处在于采用中间体N26替换中间体N1。元素分析结构(分子式C55H34N2O2):理论值C,87.51;H,4.54;N,3.71;O,4.24;测试值:C,87.52;H,4.53;N,3.72;O,4.23。ESI-MS(m/z)(M+):理论值为754.26,实测值为754.57。
实施例28:化合物190的合成:
Figure BDA0001424670180000284
化合物190的制备方法同实施例2,不同之处在于采用中间体M5替换中间体M1和中间体N6替换中间体N1。元素分析结构(分子式C49H31NO2):理论值C,88.40;H,4.69;N,2.10;O,4.81;测试值:C,88.41;H,4.67;N,2.11;O,4.81。ESI-MS(m/z)(M+):理论值为665.24,实测值为665.47。
实施例29:化合物203的合成:
Figure BDA0001424670180000291
化合物203的制备方法同实施例2,不同之处在于采用中间体M5替换中间体M1和中间体N27替换中间体N1。元素分析结构(分子式C55H36N2O):理论值C,89.16;H,4.90;N,3.78;O,2.16;测试值:C,89.14;H,4.91;N,3.77;O,2.18。ESI-MS(m/z)(M+):理论值为740.28,实测值为740.56。
本发明的有机化合物在发光器件中使用,可以作为电子阻挡层材料,也可以作为发光层主体材料使用。对本发明化合物进行热性能、HOMO能级、循环伏安稳定性的测试,如表3所示。
表3
Figure BDA0001424670180000292
Figure BDA0001424670180000301
注:三线态能级T1是由日立的F4600荧光光谱仪测试,材料的测试条件为2*10-5的甲苯溶液;玻璃化温度Tg由示差扫描量热法(DSC,德国耐驰公司DSC204F1示差扫描量热仪)测定,升温速率10℃/min;热失重温度Td是在氮气气氛中失重1%的温度,在日本岛津公司的TGA-50H热重分析仪上进行测定,氮气流量为20mL/min;最高占据分子轨道HOMO能级是由电离能量测试***(IPS3)测试,测试为大气环境。循环伏安稳定性是通过循环伏安法观测材料的氧化还原特性来进行鉴定;测试条件:测试样品溶于体积比为2:1的二氯甲烷和乙腈混合溶剂,浓度1mg/mL,电解液是0.1M的四氟硼酸四丁基铵或六氟磷酸四丁基铵的有机溶液。参比电极是Ag/Ag+电极,对电极为钛板,工作电极为ITO电极,循环次数为20次。
由上表数据可知,本发明的有机化合物具有不同的HOMO能级,可应用于不同的功能层,本发明氧杂蒽类的有机化合物具有较高的三线态能级、较高的热稳定性及化学稳定性,使得所制作的含有本发明有机化合物的OLED器件效率和寿命均得到提升。
以下通过器件实施例1~25和器件比较例1详细说明本发明合成的OLED材料在器件中的应用效果。本发明所述器件实施例2~25、器件比较例1与器件实施例1相比所述器件的制作工艺完全相同,并且所采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是器件实施例2~12为使用本发明所述材料作为电子阻挡层应用;器件实施例13~25对器件中的发光层的主体材料做了变换。各实施例所得器件的性能测试结果如表4所示。
器件实施例1:如图1所示,一种电致发光器件,其制备步骤包括:
a)清洗透明基板层1上的ITO阳极层2,分别用去离子水、丙酮、乙醇超声清洗各15分钟,然后在等离子体清洗器中处理2分钟;b)在ITO阳极层2上,通过真空蒸镀方式蒸镀空穴注入层材料HAT-CN,厚度为10nm,这层作为空穴注入层3;c)在空穴注入层3上,通过真空蒸镀方式蒸镀空穴传输材料NPB,厚度为60nm,该层为空穴传输层4;d)在空穴传输层4上,通过真空蒸镀方式蒸镀电子阻挡层材料本发明化合物18,厚度为20nm,该层为电子阻挡层5;e)在电子阻挡层5之上蒸镀发光层6,使用CBP作为主体材料,Ir(ppy)3作为掺杂材料,Ir(ppy)3和CBP的质量比为10:90,厚度为30nm;f)在发光层6之上,通过真空蒸镀方式蒸镀电子传输材料TPBI,厚度为40nm,这层有机材料作为空穴阻挡/电子传输层7使用;g)在空穴阻挡/电子传输层7之上,真空蒸镀电子注入层LiF,厚度为1nm,该层为电子注入层8;h)在电子注入层8之上,真空蒸镀阴极Al(100nm),该层为阴极反射电极层9;按上述步骤制作电致发光器件,测量器件的电流效率和寿命,其结果见表4所示。相关材料的分子结构式如下所示:
Figure BDA0001424670180000311
器件实施例2:本实施例与器件实施例1的不同之处在于:电致发光器件的电子阻挡层材料为本发明化合物26。器件实施例3:电致发光器件的电子阻挡层材料为本发明化合物32。器件实施例4:电致发光器件的电子阻挡层材料为本发明化合物58。器件实施例5:电致发光器件的电子阻挡层材料为本发明化合物75。器件实施例6:电致发光器件的电子阻挡层材料为本发明化合物98。器件实施例7:电致发光器件的电子阻挡层材料为本发明化合物122。器件实施例8:电致发光器件的电子阻挡层材料为本发明化合物141。器件实施例9:电致发光器件的电子阻挡层材料为本发明化合物149。器件实施例10:电致发光器件的电子阻挡层材料为本发明化合物169。器件实施例11:电致发光器件的电子阻挡层材料为本发明化合物179。器件实施例12:电致发光器件的电子阻挡层材料为本发明化合物184。器件实施例13:电致发光器件的电子阻挡层材料为NPB,电致发光器件的发光层主体材料变为本发明化合物8,掺杂材料为Ir(ppy)3,Ir(ppy)3和化合物8的质量比为10:90。器件实施例14:电致发光器件的电子阻挡层材料为NPB,电致发光器件的发光层主体材料变为本发明化合物52,掺杂材料为Ir(ppy)3,Ir(ppy)3和化合物52的质量比为10:90。器件实施例15:电致发光器件的电子阻挡层材料为NPB,电致发光器件的发光层主体材料变为本发明化合物68,掺杂材料为Ir(ppy)3,Ir(ppy)3和化合物68的质量比为10:90。器件实施例16:电致发光器件的电子阻挡层材料为NPB,电致发光器件的发光层主体材料变为本发明化合物90,掺杂材料为Ir(ppy)3,Ir(ppy)3和化合物90的质量比为10:90。器件实施例17:电致发光器件的电子阻挡层材料为NPB,电致发光器件的发光层主体材料变为本发明化合物110,掺杂材料为Ir(ppy)3,Ir(ppy)3和化合物110的质量比为10:90。器件实施例18:电致发光器件的电子阻挡层材料为NPB,电致发光器件的发光层主体材料变为本发明化合物132,掺杂材料为Ir(ppy)3,Ir(ppy)3和化合物132的质量比为10:90。器件实施例19:电致发光器件的电子阻挡层材料为NPB,电致发光器件的发光层主体材料变为本发明化合物158,掺杂材料为Ir(ppy)3,Ir(ppy)3和化合物158的质量比为10:90。器件实施例20:电致发光器件的电子阻挡层材料为NPB,电致发光器件的发光层主体材料变为本发明化合物42和化合物GHN,掺杂材料为Ir(ppy)3,化合物42、GHN和Ir(ppy)3三者质量比为为60:30:10。器件实施例21:电致发光器件的电子阻挡层材料为NPB,电致发光器件的发光层主体材料变为本发明化合物81和化合物GHN,掺杂材料为Ir(ppy)3,化合物81、GHN和Ir(ppy)3三者质量比为为60:30:10。器件实施例22:电致发光器件的电子阻挡层材料为NPB,电致发光器件的发光层主体材料变为本发明化合物86和化合物GHN,掺杂材料为Ir(ppy)3,化合物86、GHN和Ir(ppy)3三者质量比为为60:30:10。器件实施例23:电致发光器件的电子阻挡层材料为NPB,电致发光器件的发光层主体材料变为本发明化合物102和化合物GHN,掺杂材料为Ir(ppy)3,化合物102、GHN和Ir(ppy)3三者质量比为为60:30:10。器件实施例24:电致发光器件的电子阻挡层材料为NPB,电致发光器件的发光层主体材料变为本发明化合物190和化合物GHN,掺杂材料为Ir(ppy)3,化合物190、GHN和Ir(ppy)3三者质量比为为60:30:10。器件实施例25:电致发光器件的电子阻挡层材料为NPB,电致发光器件的发光层主体材料变为本发明化合物203和化合物GHN,掺杂材料为Ir(ppy)3,化合物203、GHN和Ir(ppy)3三者质量比为为60:30:10。器件比较例1:本实施例与器件实施例1的不同之处在于:电致发光器件的电子阻挡层材料为NPB,电致发光器件的发光层主体材料为公知化合物CBP,掺杂材料为Ir(ppy)3,Ir(ppy)3和CBP的质量比为10:90,所得电致发光器件的检测数据见表4所示。
表4
Figure BDA0001424670180000321
注:寿命测试***为本发明所有权人与上海大学共同研究的OLED器件寿命测试仪。
由表4的结果可以看出本发明所述氧杂蒽类的机化合物可应用于OLED发光器件制作,并且与器件比较例1相比,无论是效率还是寿命均比已知OLED材料获得较大改观,特别是器件的寿命衰减获得较大的提升。
进一步的本发明材料制备的的OLED器件在高温下能够保持长寿命,将器件实施例1~25和器件比较例1在85℃进行高温驱动寿命测试,所得结果如表5所示。
表5
器件编号 高温LT95寿命Hr 器件编号 高温LT95寿命Hr
器件实施例1 24.1 器件实施例14 24.6
器件实施例2 25.4 器件实施例15 25.7
器件实施例3 27.7 器件实施例16 26.8
器件实施例4 25.9 器件实施例17 26.3
器件实施例5 28.3 器件实施例18 25.6
器件实施例6 27.5 器件实施例19 25.4
器件实施例7 26.6 器件实施例20 36.3
器件实施例8 27.9 器件实施例21 37.4
器件实施例9 25.8 器件实施例22 38.9
器件实施例10 28.3 器件实施例23 38.5
器件实施例11 27.8 器件实施例24 39.2
器件实施例12 26.1 器件实施例25 38.8
器件实施例13 24.7 器件比较例1 0.7
从表5的数据可知,器件实施例1~25为本发明材料和已知材料搭配的器件结构,和器件比较例1相比,高温下,本发明提供的OLED器件具有很好的驱动寿命。
为了比较不同器件在高电流密度下效率衰减的情况,定义效率衰减系数
Figure BDA0001424670180000335
进行表示;
Figure BDA0001424670180000331
它表示驱动电流为100mA/cm2时器件的最大效率μ100与器件的最大效率μmax之差与最大效率μmax之间的比值,
Figure BDA0001424670180000332
值越大,说明器件的效率滚降越严重,反之,说明器件在高电流密度下快速衰降的问题得到了控制。
本发明的有机化合物在发光器件中使用,可以作为空穴传输层或电子阻挡层材料,也可以作为发光层主体材料使用。对器件实施例1~25和器件比较例1分别进行效率衰减系数
Figure BDA0001424670180000333
的测定,检测结果如表6所示。
表6
Figure BDA0001424670180000334
Figure BDA0001424670180000341
从表6的数据可知,和器件比较例1相比,本发明提供的OLED器件在高电流密度下具有较平缓的效率滚降趋势,为产业化提供了良好的前景。
进一步的本发明材料制备的OLED器件在低温下工作时效率也比较稳定,将器件实施例1、13、22和器件比较例1在-10~80℃区间进行效率测试,所得结果如表7和图2所示。
表7
Figure BDA0001424670180000342
从表7和图2的数据可知,器件实施例1、13、22为本发明材料和已知材料搭配的器件结构,和器件比较例1相比,不仅低温效率高,而且在温度升高过程中,效率平稳升高。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种氧杂蒽类有机化合物,其特征在于,所述有机化合物的结构如通式(1)所示:
Figure FDA0002515235050000011
通式(1)中,L表示为单键、亚苯基、亚二联苯基、亚吡啶基、亚嘧啶基、亚哒嗪基、亚吡嗪基或亚三嗪基中的一种;
通式(1)中,Ar、Ar1分别独立的表示为苯基、二联苯基、三联苯基、萘基、蒽基、菲基、芘基、吡啶基、嘧啶基、哒嗪基、吡嗪基或三嗪基中的一种;
Ar1还表示为通式(2)所示结构:
Figure FDA0002515235050000012
通式(2)中,X1表示为氧原子、硫原子、二甲基取代的亚甲基、苯基取代的亚胺基中的一种;
通式(1)中,R1表示为氢原子、通式(3)或通式(4)所示的结构;
Figure FDA0002515235050000013
其中,a选自
Figure FDA0002515235050000014
X2表示为氧原子、硫原子、二甲基取代的亚甲基、苯基取代的亚胺基中的一种;
通式(3)或通式(4)分别独立的通过CL1-CL2键、CL2-CL3键或CL3-CL4键与通式(1)连接。
2.根据权利要求1所述的有机化合物,其特征在于,所述通式(1)中
Figure FDA0002515235050000015
表示为:
Figure FDA0002515235050000016
Figure FDA0002515235050000021
Figure FDA0002515235050000031
Figure FDA0002515235050000032
中的任意一种。
3.根据权利要求1所述的有机化合物,其特征在于,所述化合物的具体结构式为:
Figure FDA0002515235050000033
Figure FDA0002515235050000041
Figure FDA0002515235050000051
Figure FDA0002515235050000061
Figure FDA0002515235050000071
Figure FDA0002515235050000081
Figure FDA0002515235050000091
Figure FDA0002515235050000101
Figure FDA0002515235050000111
Figure FDA0002515235050000112
中的任意一种。
4.如权利要求1~3任一项所述的氧杂蒽类有机化合物用于制备有机电致发光器件。
5.一种有机电致发光器件,其特征在于,所述有机电致发光器件包括至少一层功能层含有权利要求1~3任一项所述的氧杂蒽类有机化合物。
6.一种有机电致发光器件,包括空穴传输层或电子阻挡层,其特征在于,所述空穴传输层或电子阻挡层材料为权利要求1~3任一项所述的氧杂蒽类有机化合物。
7.一种有机电致发光器件,包括发光层,其特征在于,所述发光层含有权利要求1~3任一项所述的氧杂蒽类有机化合物。
CN201710909736.4A 2017-09-29 2017-09-29 一种氧杂蒽类有机化合物及其应用 Active CN107556297B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710909736.4A CN107556297B (zh) 2017-09-29 2017-09-29 一种氧杂蒽类有机化合物及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710909736.4A CN107556297B (zh) 2017-09-29 2017-09-29 一种氧杂蒽类有机化合物及其应用

Publications (2)

Publication Number Publication Date
CN107556297A CN107556297A (zh) 2018-01-09
CN107556297B true CN107556297B (zh) 2020-09-04

Family

ID=60984719

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710909736.4A Active CN107556297B (zh) 2017-09-29 2017-09-29 一种氧杂蒽类有机化合物及其应用

Country Status (1)

Country Link
CN (1) CN107556297B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102295248B1 (ko) * 2018-01-24 2021-08-27 주식회사 엘지화학 중합체, 이를 포함하는 코팅 조성물 및 이를 이용한 유기 발광 소자
CN108373440A (zh) * 2018-03-12 2018-08-07 中节能万润股份有限公司 一种吲哚并芴的制备方法
CN110272427B (zh) * 2018-03-14 2022-03-29 江苏三月科技股份有限公司 一种以芴为核心的化合物、其制备方法及其在有机电致发光器件上的应用
CN110504379A (zh) * 2018-05-18 2019-11-26 江苏三月光电科技有限公司 一种复合电子阻挡层及其oled器件
CN110551135A (zh) * 2018-05-31 2019-12-10 江苏三月光电科技有限公司 一种含有氮杂五元并环的化合物及其在有机电致发光器件上的应用
CN108752347A (zh) * 2018-07-26 2018-11-06 长春海谱润斯科技有限公司 一种有机化合物及其有机电致发光器件
CN109134349B (zh) * 2018-09-05 2020-08-25 大连九信精细化工有限公司 一种制备芴并咔唑的方法
CN113004270B (zh) * 2019-12-20 2023-08-01 江苏三月科技股份有限公司 一种以杂蒽酮骨架为核心的化合物及其应用
CN116253725A (zh) * 2021-12-09 2023-06-13 上海和辉光电股份有限公司 一种电子传输材料及有机电致发光器件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3133444A1 (en) * 2015-08-20 2017-02-22 Osaka University Chemically amplified resist material, pattern-forming method, compound, and production method of compound

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106478611B (zh) * 2016-08-26 2019-05-24 江苏三月光电科技有限公司 一种以氧杂蒽为核心的有机化合物及其应用
CN106467526B (zh) * 2016-08-26 2019-05-24 江苏三月光电科技有限公司 一种含有氧杂蒽的有机化合物及其应用
CN107089990B (zh) * 2017-06-07 2019-12-03 江苏三月光电科技有限公司 一种以芴为核心的有机化合物及其在有机电致发光器件上的应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3133444A1 (en) * 2015-08-20 2017-02-22 Osaka University Chemically amplified resist material, pattern-forming method, compound, and production method of compound

Also Published As

Publication number Publication date
CN107556297A (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
CN107556297B (zh) 一种氧杂蒽类有机化合物及其应用
CN107586261B (zh) 一种含有螺二苯并环庚烯芴的有机化合物及其应用
CN111377937B (zh) 一种以咔唑衍生物为核心的有机化合物及其在有机电致发光器件上的应用
CN110272427B (zh) 一种以芴为核心的化合物、其制备方法及其在有机电致发光器件上的应用
CN107513034B (zh) 一种二甲基蒽类有机化合物及其应用
CN109824684B (zh) 一种螺芴衍生物类有机化合物及其在有机电致发光器件上的应用
CN107522705B (zh) 一种氧杂蒽类有机化合物及其在oled上的应用
CN106674210A (zh) 一种以均苯为核心的有机化合物及其在有机电致发光器件上的应用
CN107602542B (zh) 一种含有二苯并六元环的有机化合物及其应用
CN110835304A (zh) 一种以螺芴烯结构为核心的化合物及其制备方法和其应用
CN107686487B (zh) 一种二甲基蒽类有机化合物及其在有机电致发光器件上的应用
CN107602397B (zh) 一种以二苯并环庚烯为核心的化合物及其应用
CN113004259A (zh) 一种以蒽酮骨架为核心的化合物及其应用
CN106883218A (zh) 一种以均苯为核心的有机化合物及其在有机电致发光器件上的应用
CN114605395A (zh) 一种含有三嗪和二苯并呋喃结构的化合物及其应用
CN110577488A (zh) 一种以咔唑为核心的化合物及其在有机电致发光器件上的应用
CN113135903A (zh) 一种芳香族二苯并呋喃类衍生物及其应用
CN110642732B (zh) 一种含螺芴蒽酮结构的有机化合物及其应用
CN110577523B (zh) 一种含三芳胺结构的化合物及其制备的有机电致发光器件
CN107417486A (zh) 一种以芴为核心的有机化合物及其应用
CN109796450B (zh) 一种以吡啶并吲哚为核心的化合物及其在电致发光器件上的应用
CN110294735B (zh) 一种以蒽和菲为核心的化合物及其在有机电致发光器件上的应用
CN107226811B (zh) 一种以二联二苯并五元杂环为骨架的有机化合物及其在oled上的应用
CN110845508A (zh) 一种以螺芴蒽酮为核心的化合物、制备方法及其应用
CN112479901B (zh) 一种以茚并蒽衍生物为核心的有机化合物及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200213

Address after: 264006 No. 11 Wuzhishan Road, Yantai economic and Technological Development Zone, Shandong

Applicant after: VALIANT Co.,Ltd.

Address before: 214112 No. 210, Xinzhou Road, New District, Jiangsu, Wuxi

Applicant before: JIANGSU SUNERA TECHNOLOGY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: An oxaanthracene organic compound and its application

Effective date of registration: 20211202

Granted publication date: 20200904

Pledgee: Yantai Branch of China Merchants Bank Co.,Ltd.

Pledgor: VALIANT Co.,Ltd.

Registration number: Y2021980013807

PC01 Cancellation of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20220823

Granted publication date: 20200904

Pledgee: Yantai Branch of China Merchants Bank Co.,Ltd.

Pledgor: VALIANT Co.,Ltd.

Registration number: Y2021980013807

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221027

Address after: 214112 No.210 Xinzhou Road, Wuxi City, Jiangsu Province

Patentee after: Jiangsu March Technology Co.,Ltd.

Address before: 264006 No. 11 Wuzhishan Road, Yantai economic and Technological Development Zone, Shandong

Patentee before: VALIANT Co.,Ltd.