CN107450578B - 一种绕地球同步轨道卫星分布式共轨飞行的卫星群轨道设计方法 - Google Patents

一种绕地球同步轨道卫星分布式共轨飞行的卫星群轨道设计方法 Download PDF

Info

Publication number
CN107450578B
CN107450578B CN201710615587.0A CN201710615587A CN107450578B CN 107450578 B CN107450578 B CN 107450578B CN 201710615587 A CN201710615587 A CN 201710615587A CN 107450578 B CN107450578 B CN 107450578B
Authority
CN
China
Prior art keywords
satellite
orbit
orbiting
cir
ref
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710615587.0A
Other languages
English (en)
Other versions
CN107450578A (zh
Inventor
姜勇
李勇军
郑永兴
赵尚弘
曹桂兴
王星宇
辛宁
王翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Force Engineering University of PLA
Original Assignee
Air Force Engineering University of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Force Engineering University of PLA filed Critical Air Force Engineering University of PLA
Priority to CN201710615587.0A priority Critical patent/CN107450578B/zh
Publication of CN107450578A publication Critical patent/CN107450578A/zh
Application granted granted Critical
Publication of CN107450578B publication Critical patent/CN107450578B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Navigation (AREA)
  • Radio Relay Systems (AREA)

Abstract

一种绕地球同步轨道卫星分布式共轨飞行的卫星群轨道设计方法,包括建立参考卫星和绕飞卫星的位置关系模型;利用建立的位置关系模型构建绕飞卫星轨道模型;根据绕飞卫星轨道要求,计算绕飞卫星轨道根数;根据绕飞卫星轨道根数,生成绕飞卫星群轨道根数;本发明方法设计的绕飞卫星群轨道与参考卫星的相对距离波动小,绕飞卫星与参考卫星的方位角、仰角和距离关系满足多星共轨间隔设计要求,相邻绕飞卫星间的方位角、仰角和距离满足卫星间链路捕获跟踪设计要求,通过本发明可以解决单卫星节点功能弱、抗干扰能力差、不利于小型化等缺陷,通过绕飞卫星与参考卫星的协同工作,提高了***的抗毁能力、自组织能力。

Description

一种绕地球同步轨道卫星分布式共轨飞行的卫星群轨道设计 方法
技术领域
本发明涉及航天器轨道动力学和控制技术领域,具体涉及一种绕地球同步轨道卫星分布式共轨飞行的卫星群轨道设计方法。
背景技术
多星共轨是指由空间密集分布的多颗小卫星共同组成的,为实现某一特定功能而以协同方式进行工作的卫星***。由于采用了多星协同的工作方式,多星共轨机制在以下方面具有明显的优势:其一,将过去由单颗卫星完成的任务分散到星群中的每颗卫星,构成一颗大的“虚拟卫星”,以完成单颗大卫星完成的任务,大大提高了***的生存能力;其二,多颗小卫星协同工作,可以实现更多的功能,如协作通信、精确定位、立体成像等;其三,星群中卫星的数量可以根据任务需求逐步增加,有效避免了一次性投资造成的高成本和高风险。由于多星共轨机制具有巨大的潜在技术优势,在军用和民用领域都有非常广阔的应用前景,国内外众多专家学者对多星共轨展开了研究。文献“赵军,肖亚伦.用于对地观测定位的编队飞行卫星群轨道构形设计.宇航学报,24(6)2003.”给出了一种分布式星群的轨道设计方法,并将其应用于对地观测定位卫星***中。文献“董哲,张晓敏,尤政.基于最小二乘估计的卫星编队飞行轨道设计.清华大学学报,46(2)2006”给出了一种基于最小二乘估计的卫星编队飞行轨道设计方法,即在参考卫星轨道根数、相对运动轨迹和伴随卫星近点幅角已知的情况下应用最小二乘估计法设计伴随卫星其余轨道根数。文献“李革非,朱民才,韩潮.伴随卫星接近绕飞的轨道控制方法研究.宇航学报,30(6)2009”给出了通过轨道调相控制实现轨道接近,并且兼顾实现绕飞轨道构型参数的方法。上述方法均针对低轨道遥感卫星进行分布式轨道设计,不需要考虑轨道资源问题,考虑到地球同步轨道卫星轨道的特殊性,轨位资源稀缺,既要保证星群结构的稳定性,还要保证绕飞卫星不能干扰其他已在轨卫星,现有方法难以满足地球同步轨道卫星群多星共轨构型设计。
发明内容
为了克服现有技术的不足,本发明提供一种绕地球同步轨道卫星分布式共轨飞行的卫星群轨道设计方法,具体包括:
步骤S1:建立参考卫星和绕飞卫星的位置关系模型;
步骤S2:利用步骤S1建立的位置关系模型构建绕飞卫星轨道模型;
步骤S3:根据绕飞卫星轨道要求,计算绕飞卫星轨道根数;
步骤S4:根据绕飞卫星轨道根数,生成绕飞卫星群轨道根数。
进一步的,
步骤S1包括,
步骤S1-1建立参考卫星和绕飞卫星的轨道坐标系;
步骤S1-2建立地心到卫星的位置向量;
步骤S1-3建立绕飞卫星坐标系到参考卫星坐标系的转换矩阵;
步骤S2包括,
步骤S2-1构建绕飞轨道模型;
步骤S2-2简化绕飞轨道模型;
步骤S3中的所述绕飞卫星群轨道根数包括轨道半长轴、偏心率、轨道倾角、升交点赤经、近地点幅角、平近点角。
进一步的,
步骤S1-1中空间坐标系O-XYZ为地心赤道坐标系,其坐标原点O为地球中心,X轴沿地球赤道平面与黄道面的交线,指向春分点,Z轴指向北极,Y轴在赤道平面内与X轴垂直,O-XYZ构成右手坐标系;参考卫星轨道坐标系为Sref-xyz,其以参考卫星为坐标原点,x轴沿地心和卫星的连线并背向地心方向,y轴指向卫星运行的方向,z轴垂直于卫星轨道平面,并与x、y轴满足右手法则,绕飞卫星轨道坐标系为Scir-x'y'z',其以绕飞卫星为坐标原点,x'轴沿地心和卫星的连线并背向地心方向,y'轴指向卫星运行的方向,z'轴垂直于卫星轨道平面,并与x'、y'轴满足右手法则;
步骤S1-2中以参考卫星为原点的坐标系Sref-xyz中,地心到参考卫星的位置向量
Figure BDA0001360439750000031
为:
Figure BDA0001360439750000032
其中rref为地心到参考卫星的位置向量模值;
在以绕飞卫星为原点的坐标系Scir-x'y'z'中,地心到绕飞卫星的位置向量
Figure BDA0001360439750000035
为:
Figure BDA0001360439750000033
其中rcir为地心到绕飞卫星的位置向量模值;
步骤S1-3中,从绕飞卫星坐标系到参考卫星坐标系的转换矩阵为:
Figure BDA0001360439750000034
式中,Mx[·]为坐标系绕其x轴的旋转矩阵、Mz[·]为坐标系绕其z轴的旋转矩阵,其中,
Figure BDA0001360439750000041
uref为相对升交点A到参考卫星当前位置的地心角,ucir为相对升交点A到绕飞卫星当前位置的地心角,Δi为绕飞卫星与参考卫星的轨道倾角差,相对升交点A为绕飞卫星从南向北运动时与参考卫星轨道平面的交点;
由于分布式星群中Δi为极小量,有cosΔi≈1,sinΔi≈Δi式(5)可简化为,
Figure BDA0001360439750000042
式中Δu=uref-ucir为两星从相对升交点A开始到当前卫星位置的航迹地心角差,该量为极小量,有cosΔu≈1,sinΔu≈Δu,绕飞卫星坐标系到参考卫星坐标系的转换矩阵可简化为,
Figure BDA0001360439750000043
步骤S2-1中,在参考星轨道轨道坐标系中:
Figure BDA0001360439750000044
式中
Figure BDA0001360439750000045
为参考卫星到绕飞卫星的位置向量;
将式(3)~(7)带入到(8)中,得到绕飞卫星在参考卫星坐标系中的位置为:
Figure BDA0001360439750000046
其中,
Figure BDA0001360439750000047
Figure BDA0001360439750000048
Figure BDA0001360439750000049
Δu=Δλ+2(ecirsinMcir-erefsinMref) (13)其中,aref为参考卫星轨道半长轴,eref为参考卫星偏心率,Mref为参考卫星平近点角,acir为绕飞卫星轨道半长轴,ecir为绕飞卫星偏心率,Mcir为绕飞卫星平近点角,ωref为参考卫星近地点幅角,ωcir为绕飞卫星近地点幅角,
Figure BDA0001360439750000051
fcir为绕飞卫星的真近点角,fref为参考卫星的真近点角,kk为绕飞卫星升交点到相对升交点A的地心角,
Figure BDA0001360439750000052
为参考卫星的升交点到相对升交点A的地心角;
步骤S2-2中,绕飞卫星轨道半长轴acir与参考卫星轨道半长轴aref相同,即aref=acir=a,参考卫星的平近点角Mref=nt,nn为参考卫星轨道角速度,t为参考卫星轨道时间。将公式(10)~(13)代入(9)整理得到绕飞卫星在参考卫星坐标系中的坐标值为,
Figure BDA0001360439750000053
式中,
Figure BDA0001360439750000054
Figure BDA0001360439750000055
Figure BDA0001360439750000056
为推导过程中产生的中间变量。
步骤S3中所述的绕飞卫星轨道根数包括,
轨道半长轴acir
绕飞卫星轨道半长轴acir与参考卫星aref轨道半长轴相同,即acir=aref=a;偏心率ecir
由式(14)中eA及θ定义可得,
eAcosθ=ecircosφ-eref (15)
合并整理消除φ项可得
Figure BDA0001360439750000057
p为xy平面绕飞短半轴,进而得到,
Figure BDA0001360439750000058
对于参考卫星为圆轨道有,
Figure BDA0001360439750000061
轨道倾角icir
根据参考卫星与绕飞卫星间位置及角度关系,可知,
Figure BDA0001360439750000062
其中,ΔΩ为绕飞卫星与参考卫星升交点赤经差,iref为参考卫星轨道倾角,根据绕飞圆构型定义,
Figure BDA0001360439750000063
s为绕飞卫星在参考卫星z轴上的振幅,
Figure BDA0001360439750000064
α为初始相位差,即xy平面椭圆相位与z轴简谐运动相位差,对上式进一步整理可得,
Figure BDA0001360439750000065
Figure BDA0001360439750000066
Figure BDA0001360439750000067
升交点赤经Ωcir
根据参考卫星与绕飞卫星间位置及角度关系,可得,
Ωcir=Ωref-ΔΩ (22)
其中,Ωref为参考卫星升交点赤经;
近地点幅角ωcir
由式(15)可得,
Figure BDA0001360439750000068
又有
Figure BDA0001360439750000069
整理可得,
Figure BDA0001360439750000071
其中,l为绕飞卫星xy平面椭圆中心与参考卫星距离;
平近点角Mcir
由Δλ定义代入
Figure BDA0001360439750000074
可得φ=Mcir-Mref,也即,
Figure BDA0001360439750000072
其中,Mref为参考卫星平近点角;
在步骤S4中所述绕飞卫星个数为N,N颗绕飞卫星的六个轨道根数中轨道半长轴a、偏心率e、轨道倾角i、近地点辐角ω保持不变,第n颗卫星的升交点赤经Ωn和平近点角Mn的换算关系如下:
Figure BDA0001360439750000073
更进一步的,绕飞卫星个数为4,均匀分布,绕飞半径为100km。
本发明方法设计的绕飞卫星群轨道与参考卫星的相对距离波动小,绕飞卫星与参考卫星的方位角、仰角和距离关系满足多星共轨间隔设计要求,相邻绕飞卫星间的方位角、仰角和距离满足链路捕获跟踪设计要求,通过本发明可以解决单卫星节点功能弱、抗干扰能力差、不利于小型化等缺陷,通过绕飞卫星与参考卫星的协同工作,提高了***的抗毁能力、自组织能力。
附图说明
图1为绕地球同步轨道卫星分布式共轨飞行的卫星群空间位置关系图;
图2为绕飞卫星在地面的投影轨迹顶视图;
图3为本发明方法流程图;
图4为参考卫星和绕飞卫星之间的相对运动空间关系图;
图5为绕飞卫星坐标系到参考卫星坐标系的转换矩阵图;
图6为绕飞卫星与参考卫星的方位角、仰角和距离随纬度的变化关系;
图7为绕飞卫星与参考卫星的方位角、仰角和距离随时间的变化关系;
图8为绕飞卫星与参考卫星的方位角、仰角和距离变化率随纬度的变化关系;
图9为绕飞卫星与参考卫星的方位角、仰角和距离变化率随时间的变化关系;
图10为相邻绕飞卫星间方位角、仰角和距离随纬度的变化关系;
图11为相邻绕飞卫星间方位角、仰角和距离随时间的变化关系;
图12为相邻绕飞卫星间的方位角、仰角和距离变化率随纬度的变化关系;
图13为相邻绕飞卫星间的方位角、仰角和距离变化率随时间的变化关系;
其中,O为地心,A为相对升交点,M为春分点,Scir为绕飞卫星瞬时位置,Sref为参考卫星瞬时位置,Ncir为绕飞卫星升交点,Nref为参考卫星升交点。
具体实施方式
为使本发明的目的、技术方案以及优势更加明晰,下面结合附图和实施例,对本发明进行进一步详细说明。
轨道根数是用来描述卫星在其轨道运行状态的一组参数,包括轨道半长轴a,偏心率e,轨道倾角i,升交点赤经Ω,近地点幅角ω以及平近点角M,用矢量形式表示为:
Figure BDA0001360439750000081
式中,轨道半长轴a决定卫星轨道的大小和轨道周期、偏心率e决定了轨道形状,轨道倾角i、升交点赤经Ω与近地点幅角ω表征了卫星运行轨道面的空间指向,而平近点角M表示卫星在轨道上的瞬时位置。
绕地球同步轨道卫星分布式共轨飞行的卫星群空间位置关系如图1所示,包含一颗地球同步轨道参考卫星和多颗绕飞卫星所构建的分布式星群,绕飞卫星围绕参考卫星做圆周运动,如图2所示,其地面轨迹投影为圆形。首先要保证绕飞卫星与参考卫星的轨道半长轴相等,以确保两者的轨道周期相同,这样绕飞轨迹才能形成闭环;同时轨道的偏心率和倾角应略有差别,从而确保卫星间保持一定距离,避免发生碰撞。
为了便于分析且不失一般性,以一颗绕飞卫星与参考卫星之间的相对运动为例说明卫星群轨道设计方法,如图3所示,包括:
步骤S1:建立参考卫星和绕飞卫星的位置关系模型;
在分布式星群中,由于各卫星分布在较小的空间区域内,因此除了升交点赤经Ω和平近点角M,其它四个参数相差都很小。在采用轨道根数描述的相对运动模型中,利用“相对轨道根数”来分析星群中各卫星的相对位置关系,相对轨道根数
Figure BDA0001360439750000091
定义为卫星轨道根数的差,表示为:
Figure BDA0001360439750000092
式中,
Figure BDA0001360439750000093
为参考卫星轨道根数、
Figure BDA0001360439750000094
为绕飞卫星轨道根数、Δa为绕飞卫星与参考卫星轨道半长轴差、Δe为绕飞卫星与参考卫星偏心率差、Δi为绕飞卫星与参考卫星轨道倾角差、ΔΩ为绕飞卫星与参考卫星升交点赤经差、Δω为绕飞卫星与参考卫星的近地点幅角差、ΔM为绕飞卫星与参考卫星平近点角差。
步骤S1-1建立参考卫星和绕飞卫星的轨道坐标系;
图4给出了参考卫星和绕飞卫星之间的相对运动空间关系,O为地心,Sref表示参考卫星,Scir为绕飞卫星。空间坐标系O-XYZ为地心赤道坐标系,其坐标原点为O,X轴沿地球赤道平面与黄道面的交线,指向春分点,Z轴指向北极,Y轴在赤道平面内与X轴垂直,O-XYZ构成右手坐标系;参考卫星轨道坐标系为Sref-xyz,其以参考卫星为坐标原点,x轴沿地心和卫星的连线并背向地心方向,y轴指向卫星运行的方向,z轴垂直于卫星轨道平面,并与x、y轴满足右手法则,绕飞卫星轨道坐标系为Scir-x'y'z',其以绕飞卫星为坐标原点,x'轴沿地心和卫星的连线并背向地心方向,y'轴指向卫星运行的方向,z'轴垂直于卫星轨道平面,并与x'、y'轴满足右手法则;
步骤S1-2建立地心到卫星的位置向量;
以参考卫星为原点的坐标系Sref-xyz中,地心到参考卫星的位置向量
Figure BDA0001360439750000101
为:
Figure BDA0001360439750000102
其中rref为地心到参考卫星的位置向量模值;
在以绕飞卫星为原点的坐标系Scir-x'y'z'中,地心到绕飞卫星的位置向量
Figure BDA00013604397500001010
为:
Figure BDA0001360439750000103
其中rcir为地心到绕飞卫星的位置向量模值;
步骤S1-3建立绕飞卫星坐标系到参考卫星坐标系的转换矩阵;
如图5所示,绕飞卫星坐标系到参考卫星坐标系的转换矩阵为:
Figure BDA0001360439750000104
式中,Mx[·]为坐标系绕其x轴的旋转矩阵、Mz[·]为坐标系绕其z轴的旋转矩阵,其中,
Figure BDA0001360439750000105
uref为相对升交点A到参考卫星当前位置的地心角,即向量
Figure BDA0001360439750000106
和向量
Figure BDA0001360439750000107
的夹角,ucir为相对升交点A到绕飞卫星当前位置的地心角,即向量
Figure BDA0001360439750000108
和向量
Figure BDA0001360439750000109
的夹角,Δi为绕飞卫星与参考卫星的轨道倾角差,相对升交点A为绕飞卫星从南向北运动时与参考卫星轨道平面的交点;
由于分布式星群中Δi为极小量,有cosΔi≈1,sinΔi≈Δi,式(5)可简化为,
Figure BDA0001360439750000111
式中Δu=uref-ucir为两星从相对升交点A开始到当前卫星位置的航迹地心角差,该量为极小量,有cosΔu≈1,sinΔu≈Δu,绕飞卫星坐标系到参考卫星坐标系的转换矩阵可简化为,
Figure BDA0001360439750000112
步骤S2:利用步骤S1建立的位置关系模型构建绕飞卫星轨道模型;
首先构建绕飞轨道模型;
在参考卫星轨道坐标系中:
Figure BDA0001360439750000113
式中
Figure BDA0001360439750000114
为参考卫星到绕飞卫星的位置向量;
将式(3)~(7)带入到(8)中,得到绕飞卫星在参考卫星坐标系中的位置为:
Figure BDA0001360439750000115
其中,
Figure BDA0001360439750000116
Figure BDA0001360439750000117
Figure BDA0001360439750000118
Δu=Δλ+2(ecirsinMcir-erefsinMref) (13)
其中,aref为参考卫星轨道半长轴,eref为参考卫星偏心率,Mref为参考卫星平近点角,acir为绕飞卫星轨道半长轴,ecir为绕飞卫星偏心率,Mcir为绕飞卫星平近点角,ωref为参考卫星近地点幅角,ωcir为绕飞卫星近地点幅角,
Figure BDA0001360439750000121
fcir为绕飞卫星的真近点角,fref为参考卫星的真近点角,卫星轨道动力学中真近点角f和平近点角M关系为f=M+2esinM,kk为绕飞卫星升交点到相对升交点A的地心角,
Figure BDA0001360439750000122
为参考卫星的升交点到相对升交点A的地心角;
然后简化绕飞轨道模型,
因为参考卫星为地球同步轨道卫星,所以绕飞卫星轨道半长轴acir与参考卫星轨道半长轴aref相同,即aref=acir=a,假设初始时刻参考卫星的平近点角Mref=nt,n为参考卫星轨道角速度,t为参考卫星轨道时间。将公式(10)~(13)代入(9)整理得到绕飞卫星在参考卫星坐标系中的坐标值为,
Figure BDA0001360439750000123
式中,
Figure BDA0001360439750000124
Figure BDA0001360439750000125
Figure BDA0001360439750000126
为推导过程中产生的中间变量。
由式(14)可以得到以下结论:①x、y方向上分量满足
Figure BDA0001360439750000127
因此绕飞卫星在参考卫星轨道平面上的投影是一个长、短半轴之比为2:1的椭圆;②绕飞卫星在参考卫星坐标系的z轴方向上分量为一个独立的简谐振动,其振幅为aΔλ。
步骤S3:根据绕飞卫星轨道要求,计算绕飞卫星轨道根数;
假设卫星绕飞为空间圆构型,其绕飞半径设为r,l=a·Δλ为绕飞卫星x、y分量在参考卫星轨道平面投影椭圆中心到参考卫星的距离,投影椭圆初始相位为θ。当xy平面绕飞短半轴p=aeA=r/2,z轴上振幅
Figure BDA0001360439750000128
初始相位差α=θ-ψ=π/2或者3π/2时,才能保证其绕飞为空间圆构型。参考卫星的轨道参数是已知的,只要求出
Figure BDA0001360439750000129
就可以得到绕飞卫星的轨道参数。
绕飞卫星轨道根数包括,
轨道半长轴acir
绕飞卫星轨道半长轴acir与参考卫星aref轨道半长轴相同,即acir=aref=a;偏心率ecir
由式(14)中eA及θ定义可得,
eAcosθ=ecircosφ-eref (15)
合并整理消除φ项可得
Figure BDA0001360439750000131
p为xy平面绕飞短半轴,进而得到,
Figure BDA0001360439750000132
对于参考卫星为圆轨道有,
Figure BDA0001360439750000133
轨道倾角icir
根据图5给出的参考卫星与绕飞卫星间位置及角度关系,可知,
Figure BDA0001360439750000134
其中,ΔΩ为绕飞卫星与参考卫星升交点赤经差,iref为参考卫星轨道倾角,根据绕飞圆构型定义,
Figure BDA0001360439750000135
s为绕飞卫星在参考卫星z轴上的振幅,
Figure BDA0001360439750000136
α为初始相位差,即xy平面椭圆相位与z轴简谐运动相位差,对上式进一步整理可得,
Figure BDA0001360439750000137
Figure BDA0001360439750000141
Figure BDA0001360439750000142
升交点赤经Ωcir
根据图5给出的参考卫星与绕飞卫星间位置及角度关系,可得,
Ωcir=Ωref-ΔΩ (22)
其中,Ωref为参考卫星升交点赤经;
近地点幅角ωcir
由式(15)可得,
Figure BDA0001360439750000143
又有
Figure BDA0001360439750000144
整理可得,
Figure BDA0001360439750000145
其中,l为绕飞卫星xy平面椭圆中心与参考卫星距离;
平近点角Mcir
由Δλ定义代入
Figure BDA0001360439750000146
可得φ=Mcir-Mref,即,
Figure BDA0001360439750000147
其中,Mref为参考卫星平近点角;
步骤S4:根据绕飞卫星轨道根数,生成绕飞卫星群轨道根数。
绕飞卫星个数为N,N颗绕飞卫星的六个轨道根数中轨道半长轴a、偏心率e、轨道倾角i、近地点辐角ω保持不变,第n颗卫星的升交点赤经Ωn和平近点角Mn的换算关系如下:
Figure BDA0001360439750000148
由此可以得出整个绕飞星座的轨道参数集合,为多星共轨地球同步轨道中继卫星星座设计提供理论参考依据。
将本发明设计的卫星群轨道根数在STK软件中生成星座,计算其卫星间的方位角、仰角和距离(Azimuth,Elevation,Range,AER)特性,分析绕飞星座性能。
在一个具体实施例中,参考卫星为我国上空的地球同步轨道卫星,起始星历时间为“2016/12/0204:00:00.000UTCG”,绕飞卫星个数为4,均匀分布,绕飞半径为100km,通过本发明方法得出其轨道根数如表1所示:
表1
Figure BDA0001360439750000151
由于绕飞卫星的绕飞轨道为近圆轨道,各绕飞卫星运动具有周期性,选取绕飞卫星Sat_sub1和参考卫星Sat_main、相邻绕飞卫星Sat_sub1和Sat_sub2进行链路变化关系分析。图6给出了该星座构型中绕飞卫星与参考卫星的方位角、仰角和距离(Azimuth,Elevation,Range,AER)随纬度的变化关系,图7给出了该星座构型中绕飞卫星与参考卫星的方位角、仰角和距离随时间的变化关系,从两幅图中可以看出方位角变化范围为0deg~360deg,仰角变化范围为±30deg,距离变化101.1km~101.85km,满足多星共轨间隔±0.1deg设计要求,也即147km距离差(SRINIVASAMURTH Y K N.Strategy analysis forcollocation of INSAT2 satellites[J].Acta Astronautica,2002,50(6):43-349.)。
图8给出了该星座构型中绕飞卫星与参考卫星的方位角、仰角和距离变化率随纬度的变化关系,图9给出了该星座构型中绕飞卫星与参考卫星的方位角、仰角和距离变化率随时间的变化关系,从两幅图中可以看出方位角变化率变化范围为6.1×10-5deg/s~8×10-5deg/s,仰角变化范围为±3.5×10-5deg/s,距离变化±0.75×10-6km/s,AER变化速率都在10-5量级,满足链路捕获跟踪设计要求(跟瞄速度<0.05m/s,指向误差<9μrad≈5.16×10-4deg,Berry Smutny.Coherent Laser Communication Terminals[C].14th CLRC,2007July,Snowmass,US.),链路连接状态稳定。
图10给出了该星座构型中相邻绕飞卫星间方位角、仰角和距离随纬度的变化关系,图11给出了该星座构型中相邻绕飞卫星间的方位角、仰角和距离随时间的变化关系,从两幅图中可以看出方位角变化范围为0deg~360deg,仰角变化范围为±30deg,距离变化143km~143.9km,满足多星共轨轨位间隔设计要求。
图12给出了该星座构型中相邻绕飞卫星间的方位角、仰角和距离变化率随纬度的变化关系,图13给出了该星座构型中相邻绕飞卫星间的方位角、仰角和距离变化率随时间的变化关系,从两幅图中可以看出方位角变化率变化范围为6.1×10-5deg/s~8×10-5deg/s,仰角变化范围为±3.5×10-5deg/s,距离变化±1.2×10-6km/s,AER变化速率都在10-5量级,满足链路捕获跟踪设计要求。
本发明方法设计的绕飞卫星群轨道与参考卫星相对距离波动小于1km,通过本发明可以解决单卫星节点功能弱、抗干扰能力差、不利于小型化的问题,通过绕飞卫星与参考卫星的协同工作,提高了***的抗毁能力和自组织能力。另外,本发明还可以即时增发绕飞卫星,使得***可重构、功能可扩展。

Claims (2)

1.一种绕地球同步轨道卫星分布式共轨飞行的卫星群轨道设计方法,其特征在于,包括:
步骤S1:建立参考卫星和绕飞卫星的位置关系模型;
步骤S2:利用步骤S1建立的位置关系模型构建绕飞卫星轨道模型;
步骤S3:根据绕飞卫星轨道要求,计算绕飞卫星轨道根数;
步骤S4:根据绕飞卫星轨道根数,生成绕飞卫星群轨道根数;
步骤S1包括,
步骤S1-1建立参考卫星和绕飞卫星的轨道坐标系;
步骤S1-2建立地心到卫星的位置向量;
步骤S1-3建立绕飞卫星坐标系到参考卫星坐标系的转换矩阵;
步骤S2包括,
步骤S2-1构建绕飞卫星轨道模型;
步骤S2-2简化绕飞卫星轨道模型;
步骤S3中的所述绕飞卫星轨道根数包括轨道半长轴、偏心率、轨道倾角、升交点赤经、近地点幅角、平近点角;
步骤S1-1中空间坐标系O-XYZ为地心赤道坐标系,其坐标原点O为地球中心,X轴沿地球赤道平面与黄道面的交线,指向春分点,Z轴指向北极,Y轴在赤道平面内与X轴垂直,O-XYZ构成右手坐标系;参考卫星轨道坐标系为Sref-xyz,其以参考卫星为坐标原点,x轴沿地心和卫星的连线并背向地心方向,y轴指向卫星运行的方向,z轴垂直于卫星轨道平面,并与x、y轴满足右手法则,绕飞卫星轨道坐标系为Scir-x'y'z',其以绕飞卫星为坐标原点,x'轴沿地心和卫星的连线并背向地心方向,y'轴指向卫星运行的方向,z'轴垂直于卫星轨道平面,并与x'、y'轴满足右手法则;
步骤S1-2中以参考卫星为原点的坐标系Sref-xyz中,地心到参考卫星的位置向量
Figure FDA0002457958900000021
为:
Figure FDA0002457958900000022
其中rref为地心到参考卫星的位置向量模值;
在以绕飞卫星为原点的坐标系Scir-x'y'z'中,地心到绕飞卫星的位置向量
Figure FDA0002457958900000023
为:
Figure FDA0002457958900000024
其中rcir为地心到绕飞卫星的位置向量模值;
步骤S1-3中,绕飞卫星坐标系到参考卫星坐标系的转换矩阵为:
Figure FDA0002457958900000025
式中,Mx[·]为坐标系绕其x轴的旋转矩阵、Mz[·]为坐标系绕其z轴的旋转矩阵,其中,
Figure FDA0002457958900000026
uref为相对升交点A到参考卫星当前位置的地心角,ucir为相对升交点A到绕飞卫星当前位置的地心角,Δi为绕飞卫星与参考卫星的轨道倾角差,相对升交点A为绕飞卫星从南向北运动时与参考卫星轨道平面的交点;
由于分布式星群中Δi为极小量,有cosΔi≈1,sinΔi≈Δi,式(5)可简化为,
Figure FDA0002457958900000027
式中Δu=uref-ucir为两星从相对升交点A开始到当前卫星位置的航迹地心角差,该量为极小量,有cosΔu≈1,sinΔu≈Δu,绕飞卫星坐标系到参考卫星坐标系的转换矩阵可简化为,
Figure FDA0002457958900000031
步骤S2-1中,在参考卫星轨道坐标系中:
Figure FDA0002457958900000032
式中
Figure FDA0002457958900000033
为参考卫星到绕飞卫星的位置向量;
将式(3)~(7)带入到(8)中,得到绕飞卫星在参考卫星坐标系中的位置为:
Figure FDA0002457958900000034
其中,
Figure FDA0002457958900000035
Figure FDA0002457958900000036
Figure FDA0002457958900000037
Δu=Δλ+2(ecirsinMcir-erefsinMref) (13)
其中,aref为参考卫星轨道半长轴,eref为参考卫星偏心率,Mref为参考卫星平近点角,acir为绕飞卫星轨道半长轴,ecir为绕飞卫星偏心率,Mcir为绕飞卫星平近点角,ωref为参考卫星近地点幅角,ωcir为绕飞卫星近地点幅角,
Figure FDA0002457958900000038
fcir为绕飞卫星的真近点角,fref为参考卫星的真近点角,k为绕飞卫星升交点到相对升交点A的地心角,
Figure FDA0002457958900000039
为参考卫星的升交点到相对升交点A的地心角;
步骤S2-2中,绕飞卫星轨道半长轴acir与参考卫星轨道半长轴aref相同,即aref=acir=a,参考卫星的平近点角Mref=nt,n为参考卫星轨道角速度,t为参考卫星轨道时间,将公式(10)~(13)代入(9)整理得到绕飞卫星在参考卫星坐标系中的坐标值为,
Figure FDA0002457958900000041
式中,
Figure FDA0002457958900000042
Figure FDA0002457958900000043
Figure FDA0002457958900000044
为推导过程中产生的中间变量;
步骤S3中所述的绕飞卫星轨道根数包括,
轨道半长轴acir
绕飞卫星轨道半长轴acir与参考卫星aref轨道半长轴相同,即aref=acir=a;
偏心率ecir
由式(14)中eA及θ定义可得,
eAcosθ=ecircosφ-eref (15)
合并整理消除φ项可得
Figure FDA0002457958900000045
p为xy平面绕飞短半轴,进而得到,
Figure FDA0002457958900000046
对于参考卫星为圆轨道有,
Figure FDA0002457958900000047
轨道倾角icir
根据参考卫星与绕飞卫星间位置及角度关系,可知,
Figure FDA0002457958900000048
其中,ΔΩ为绕飞卫星与参考卫星升交点赤经差,iref为参考卫星轨道倾角,根据绕飞圆构型定义,
Figure FDA0002457958900000051
s为绕飞卫星在参考卫星z轴上的振幅,
Figure FDA0002457958900000052
α为初始相位差,对上式进一步整理可得,
Figure FDA0002457958900000053
Figure FDA0002457958900000054
Figure FDA0002457958900000055
升交点赤经Ωcir
根据参考卫星与绕飞卫星间位置及角度关系,可得,
Ωcir=Ωref-ΔΩ (22)
其中,Ωref为参考卫星升交点赤经;
近地点幅角ωcir
由式(15)可得,
Figure FDA0002457958900000056
又有
Figure FDA0002457958900000057
整理可得,
Figure FDA0002457958900000058
其中,l为绕飞卫星xy平面椭圆中心与参考卫星距离;
平近点角Mcir
由Δλ定义代入
Figure FDA0002457958900000059
可得φ=Mcir-Mref,即,
Figure FDA00024579589000000510
其中,Mref为参考卫星平近点角;
在步骤S4中所述绕飞卫星个数为N,N颗绕飞卫星的六个轨道根数中轨道半长轴、偏心率、轨道倾角、近地点辐角相同,第n颗卫星的升交点赤经Ωn和平近点角Mn的换算关系如下:
Figure FDA0002457958900000061
2.如权利要求1中所述的一种绕地球同步轨道卫星分布式共轨飞行的卫星群轨道设计方法,其特征在于:绕飞卫星个数为4,均匀分布,绕飞半径为100km。
CN201710615587.0A 2017-07-26 2017-07-26 一种绕地球同步轨道卫星分布式共轨飞行的卫星群轨道设计方法 Active CN107450578B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710615587.0A CN107450578B (zh) 2017-07-26 2017-07-26 一种绕地球同步轨道卫星分布式共轨飞行的卫星群轨道设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710615587.0A CN107450578B (zh) 2017-07-26 2017-07-26 一种绕地球同步轨道卫星分布式共轨飞行的卫星群轨道设计方法

Publications (2)

Publication Number Publication Date
CN107450578A CN107450578A (zh) 2017-12-08
CN107450578B true CN107450578B (zh) 2020-06-30

Family

ID=60489009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710615587.0A Active CN107450578B (zh) 2017-07-26 2017-07-26 一种绕地球同步轨道卫星分布式共轨飞行的卫星群轨道设计方法

Country Status (1)

Country Link
CN (1) CN107450578B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108490973B (zh) * 2018-04-19 2021-04-13 哈尔滨工业大学 航天器编队相对轨道确定方法及装置
CN108875175A (zh) * 2018-06-06 2018-11-23 北京航空航天大学 一种高阶非中心引力场下的不变相对轨道初值确定方法
CN108923838B (zh) * 2018-06-14 2021-08-03 上海卫星工程研究所 共轨主从分布式geo通信卫星***
CN109274622B (zh) * 2018-10-09 2021-08-06 中国人民解放军国防科技大学 飞卫星载波频率补偿方法
CN110471432B (zh) * 2019-07-04 2020-09-08 中国科学院电子学研究所 一种卫星编队构型的方法、装置及存储介质
CN111290433B (zh) * 2020-02-24 2023-05-09 上海航天控制技术研究所 一种长期自主编队联合管道保持方法
CN111806729B (zh) * 2020-08-05 2021-08-24 上海卫星工程研究所 考虑拱线旋转的非冻结轨道多星定位编队设计方法
CN112235034B (zh) * 2020-10-08 2021-04-06 军事科学院***工程研究院网络信息研究所 一种空间分布式星群设计方法
CN112564770A (zh) * 2020-12-01 2021-03-26 天地信息网络研究院(安徽)有限公司 一种多星共位的卫星通信***
CN113148227B (zh) * 2020-12-11 2024-05-31 中国空间技术研究院 卫星集群分布式控制方法和装置
CN113297672B (zh) * 2021-05-27 2022-09-02 中国人民解放军63921部队 基于轨道误差分析的卫星绕飞机动参数确定方法
CN113721650B (zh) * 2021-07-20 2024-02-02 西北工业大学 空间4n卫星正方形编队设计方法、***、设备及存储介质
CN114265432B (zh) * 2021-12-20 2023-12-26 中国科学院空间应用工程与技术中心 一种基于地球轨道的卫星集群控制方法和***
CN117279066A (zh) * 2022-06-14 2023-12-22 华为技术有限公司 一种卫星网络路由方法及通信装置
CN117834000B (zh) * 2024-03-04 2024-05-10 银河航天(北京)网络技术有限公司 信息处理方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255978A (ja) * 2003-02-25 2004-09-16 Mitsubishi Electric Corp 情報処理装置及び軌道制御装置及び人工衛星及び通信装置及び通信方法
CN101520511A (zh) * 2009-03-13 2009-09-02 北京航空航天大学 一种分布式卫星合成孔径雷达编队构形方法
CN102322862A (zh) * 2011-06-29 2012-01-18 航天东方红卫星有限公司 一种编队飞行卫星绝对和相对轨道确定方法
CN104407321A (zh) * 2014-11-25 2015-03-11 西安电子科技大学 基于量子测距的编队卫星相对轨道估计方法及其设备
CN104537202A (zh) * 2014-10-31 2015-04-22 哈尔滨工业大学深圳研究生院 基于卫星编队协作的空间天线阵列合成方法
CN105035371A (zh) * 2015-08-04 2015-11-11 北京控制工程研究所 一种基于osg三维引擎的经典轨道三维空间关系构建方法
CN105737834A (zh) * 2014-12-09 2016-07-06 上海新跃仪表厂 一种基于轨道平根数的相对导航鲁棒滤波方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1673953A2 (en) * 2003-10-01 2006-06-28 LAIRD, Mark, D. Wireless virtual campus escort system
WO2016168722A1 (en) * 2015-04-16 2016-10-20 Skydio, Inc. Magic wand interface and other user interaction paradigms for a flying digital assistant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255978A (ja) * 2003-02-25 2004-09-16 Mitsubishi Electric Corp 情報処理装置及び軌道制御装置及び人工衛星及び通信装置及び通信方法
CN101520511A (zh) * 2009-03-13 2009-09-02 北京航空航天大学 一种分布式卫星合成孔径雷达编队构形方法
CN102322862A (zh) * 2011-06-29 2012-01-18 航天东方红卫星有限公司 一种编队飞行卫星绝对和相对轨道确定方法
CN104537202A (zh) * 2014-10-31 2015-04-22 哈尔滨工业大学深圳研究生院 基于卫星编队协作的空间天线阵列合成方法
CN104407321A (zh) * 2014-11-25 2015-03-11 西安电子科技大学 基于量子测距的编队卫星相对轨道估计方法及其设备
CN105737834A (zh) * 2014-12-09 2016-07-06 上海新跃仪表厂 一种基于轨道平根数的相对导航鲁棒滤波方法
CN105035371A (zh) * 2015-08-04 2015-11-11 北京控制工程研究所 一种基于osg三维引擎的经典轨道三维空间关系构建方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Weighted Algebraic Connectivity Maximization for Optical Satellite Networks;yongxing zheng等;《IEEE ACCESS》;20170607;第5卷;6885-6893页 *
四层梯阶控制在卫星编队的应用仿真;刘猛等;《火力与指挥控制》;20120430;第37卷(第4期);154-156页 *

Also Published As

Publication number Publication date
CN107450578A (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
CN107450578B (zh) 一种绕地球同步轨道卫星分布式共轨飞行的卫星群轨道设计方法
CN107450582B (zh) 一种基于星上实时规划的相控阵数传引导控制方法
CN111427002B (zh) 地面测控天线指向卫星的方位角计算方法
Scharf et al. Flight-like ground demonstrations of precision maneuvers for spacecraft formations—Part I
CN109146157A (zh) 一种基于太阳同步回归轨道的共轨迹应急侦察星座优化设计方法
Xu et al. Application of Hamiltonian structure-preserving control to formation flying on a J 2-perturbed mean circular orbit
CN112629543A (zh) 一种大椭圆轨道及小倾角圆轨道的轨道规划方法
CN110647163B (zh) 对geo空间目标持续可见光探测的绕飞轨道设计方法
CN112014869A (zh) 基于天文导航的星间链路自主导航方法及***
Lee et al. Preliminary design of the guidance, navigation, and control system of the Altair Lunar lander
Kang et al. Nanosat formation flying design for SNIPE mission
Kimura et al. Attitude control experiment of a spinning spacecraft using only magnetic torquers
Grassi Attitude determination and control for a small remote sensing satellite
He et al. Dynamics and control of satellite formation flying based on relative orbit elements
Wang et al. Adaptive algorithm to determine the coverage belt for agile satellite with attitude maneuvers
Somov et al. Attitude & orbit digital and pulse-width control of large-scale communication spacecraft
Duxbury et al. Pole and prime meridian expressions for Phobos and Deimos
CN110830103B (zh) 一种空间卫星星群的集中推力式部署方法
Scharf et al. Flight-like ground demonstration of precision formation flying spacecraft
CN112013834A (zh) 基于天文导航的星间链路自主恢复方法及***
Hadaegh et al. Initialization of distributed spacecraft for precision formation flying
Gartrell Simultaneous eccentricity and drift rate control
Parker et al. Navigating a crewed lunar vehicle using liaison
Xie et al. Autonomous guidance, navigation, and control of spacecraft
Ibrahim Attitude and orbit control of small satellites for autonomous terrestrial target tracking

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant