CN107450317A - A kind of space manipulator self-adapting power control method for coordinating - Google Patents

A kind of space manipulator self-adapting power control method for coordinating Download PDF

Info

Publication number
CN107450317A
CN107450317A CN201710700713.2A CN201710700713A CN107450317A CN 107450317 A CN107450317 A CN 107450317A CN 201710700713 A CN201710700713 A CN 201710700713A CN 107450317 A CN107450317 A CN 107450317A
Authority
CN
China
Prior art keywords
msub
mrow
mover
centerdot
mechanical arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710700713.2A
Other languages
Chinese (zh)
Inventor
徐拴锋
王汉磊
魏春岭
胡勇
张军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Control Engineering
Original Assignee
Beijing Institute of Control Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Control Engineering filed Critical Beijing Institute of Control Engineering
Priority to CN201710700713.2A priority Critical patent/CN107450317A/en
Publication of CN107450317A publication Critical patent/CN107450317A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The present invention relates to a kind of space manipulator self-adapting power control method for coordinating, on the basis of Space Manipulator System kinematics, dynamics is analysed in depth, the space manipulator kinematical equation of classics is augmented first, obtains that mechanical arm tail end motion and the space manipulator " extension movement equation " of attitude motion of spacecraft can be described simultaneously.Then, on the basis of excavated space mechanical arm system kinetics equation and conservation of angular momentum equation characteristic is goed deep into, spacecraft reference velocity and joint space reference velocity are defined respectively, and be based on this design space mechanical arm self-adapting power tuning controller.The invention discloses the self-adapting power control method for coordinating between a kind of space manipulator and pedestal spacecraft, mechanical arm tail end track following and the purpose of pedestal spacecraft attitude regulation can be reached simultaneously only by the motion can of control machinery arm in the case where systematic parameter has being uncertain of property.

Description

A kind of space manipulator self-adapting power control method for coordinating
Technical field
The invention belongs to robot for space maintainable technology on-orbit area of maintenance, is related to space manipulator self-adapting power and coordinates control Method processed.
Background technology
In-orbit service is generally completed by the pursuit spacecraft (being referred to as Space Manipulator System) equipped with mechanical arm.Area Not in ground machine arm, the pedestal of Space Manipulator System is not fixed, the appearance of the athletic meeting of mechanical arm to pedestal spacecraft State interferes.In view of communicating over the ground and Direct to the sun etc. requires, it is often desirable that to pedestal space flight when mechanical arm performs task Device posture is noiseless, or interference is as far as possible small.Reaction kernel method is a kind of effective control method for coordinating, this method energy Ensure that angular momentum caused by manipulator motion is zero, so as to which interference will not be produced to the posture of pedestal spacecraft.This method is A kind of kinematics control method, compared to dynamic control method, the energy expenditure of kinematics control method is larger;Moreover, should Method also need to Space Manipulator System kinematics and kinetic parameter it is accurately known.However, in space tasks, due to ground The factors such as face calibrated error, in-orbit fuel consumption, it is difficult to obtain the accurate parameters of Space Manipulator System.Therefore, join in system In the case of being uncertain of property being present in number, study between mechanical arm and pedestal spacecraft to collaborate mechanics control method very intentional Justice.
The content of the invention
Present invention solves the technical problem that it is:Overcome the deficiencies in the prior art, there is provided a kind of space manipulator adaptively moves Mechanics control method for coordinating, solves the Harmonic Control between mechanical arm and pedestal spacecraft in the case of parameter is uncertain of.
The technical scheme is that:A kind of space manipulator self-adapting power control method for coordinating, step are as follows:
1) the extension movement model of space manipulator is established;
The conservation of angular momentum equation of space manipulator and kinematical equation simultaneous are obtained explicitly comprising spacecraft motion The extension movement equation of Free-floating space manipulator, i.e.,
Wherein,For the inertia matrix of spacecraft,The speed for being mechanical arm tail end in inertial space Degree,To extend Jacobian matrix,For the extension Jacobian matrix corresponding to spacecraft,For the extension Jacobian matrix corresponding to mechanical arm;For the Jacobian matrix corresponding to spacecraft,For the Jacobian matrix corresponding to mechanical arm;For spacecraft and the coupling torque matrix of mechanical arm,For joint of mechanical arm speed, n is mechanical arm free degree number;Angle speed for spacecraft relative to inertial system Degree, and represent in spacecraft body series;
The extension movement equation of Space Manipulator System is expressed as the form of linear parameterization:
Wherein,For extension movement regression matrix, Z1For regression matrix, Z2Square is returned for kinematics Battle array,It is referred to as extension movement parameter, ak,1For one group of physical parameter, ak,2Transported for Space Manipulator System It is dynamic to learn parameter;
2) spacecraft reference angular velocities and joint of mechanical arm reference velocity are determined;
When the extension movement parameter and unknown kinetic parameter of Space Manipulator System, design spacecraft reference angle speed Spend ωbrMeet equation below:
Wherein, ωbr(0)=ωb(0),For ωbrTo the derivative of time,It is right respectively It should be Mbb、Mbm、Cbb、CbmEstimation,ForEstimation, by MbbIn parameter ak,1Use ak,1EstimateReplacement obtainsKb,Km,KbsFor positive definite symmetric matrices, sbbbrFor spacecraft sliding variable,For joint of mechanical arm georeferencing speed,ForTo the derivative of time;λbFor a positive number, Δ ∈bvFor spacecraft Attitude error matrixThe vector section of corresponding error quaternion, Rb,RbdThe respectively current appearance of spacecraft State matrix is with it is expected attitude matrix;Δ x=x-xdFor mechanical arm tail end position tracking error,It is that mechanical arm tail end is being used to Pose in property space,For mechanical arm tail end desired trajectory, For mechanical arm tail end pose Estimation,For mechanical arm tail end desired speed, α is a positive number;
Joint space reference velocity is
Wherein,ForEstimation,ForClassical pseudoinverse,For task Georeferencing speed;
3) determine that space manipulator self-adapting power coordinates control law and parameter more new law;
Defined variable is as follows
Wherein,For end of arm speed tracking error,Estimate for extension movement parameter Count error;
In the case of unknown parameters, the kinetics equation of space manipulator is the form of following linear parameterization
Wherein,M is corresponded to respectivelybm、Mmm、Cmb、CmmEstimation,WithFor dynamics regression matrix,For kinetic parameter adEstimate Meter,For joint of mechanical arm position, ForTo the derivative of time;
In space manipulator kinematics parameters and unknown kinetic parameter, using following adaptive control laws
Wherein,For positive definite symmetric matrices,For joint of mechanical arm space sliding variable;
The estimate of kinetic parameterWith the estimate of extension movement parameterRespectively by given below adaptive Rule is updated
Wherein,ΓdkFor positive definite symmetric matrices;
4) adaptive control laws and parameter more new law obtained using step 3), realize that spacecraft attitude regulation and end are held Tracking of the row device to desired trajectory in task space, i.e. as t → ∞, ωb→ 0, Rb→Rbd, Δ x → 0,
The present invention compared with prior art the advantages of be:
(1) compared with existing result, self-adapting power traffic signal coordination disclosed by the invention need not measure spacecraft Angular acceleration, therefore method has stronger robustness in the present invention;
(2) method disclosed by the invention can realize that mechanical arm is appointed simultaneously only by the motion of suitable control mechanical arm The tracking of business space desired trajectory and the regulation of pedestal spacecraft attitude, can save fuel on star;
(3) method disclosed by the invention can handle Space Manipulator System parameter and being uncertain of property be present, and join Being uncertain of property of number is widely present in engineering, therefore method has stronger practicality in the present invention.
Brief description of the drawings
Fig. 1 is three-freedom planar configuration Free-floating space manipulator schematic diagram;
Fig. 2 is pedestal spacecraft angular speed change curve;
Fig. 3 is pedestal spacecraft attitude angle change curve;
Fig. 4 is mechanical arm tail end position tracking error curve;
Fig. 5 is mechanical arm tail end actual path and desired trajectory.
Embodiment
As shown in figure 1, the Free-floating space manipulator system based on three-freedom planar configuration, verifies that present invention institute is public The self-adapting power traffic signal coordination opened.Mechanical arm uses cascaded structure, can only planar move.Pedestal spacecraft exists Translation in plane, also can be around the axle rotation perpendicular to plane.The Attitude and orbit control system of pedestal spacecraft is closed.In system In the case of unknown parameters, by designing joint of mechanical arm control moment and parameter update law, to reach pedestal space flight simultaneously The purpose of device attitude regulation and mechanical arm tail end track following.
The invention discloses a kind of space manipulator self-adapting power control method for coordinating, step are as follows:
1) the extension movement model of space manipulator is established;
The conservation of angular momentum equation of space manipulator and kinematical equation simultaneous are obtained explicitly comprising spacecraft motion The extension movement equation of Free-floating space manipulator, i.e.,
Wherein,For the inertia matrix of spacecraft,The speed for being mechanical arm tail end in inertial space Degree,To extend Jacobian matrix,For the extension Jacobian matrix corresponding to spacecraft,For the extension Jacobian matrix corresponding to mechanical arm;For the Jacobian matrix corresponding to spacecraft,For the Jacobian matrix corresponding to mechanical arm;For spacecraft and the coupling torque matrix of mechanical arm,For joint of mechanical arm speed, n is mechanical arm free degree number;Angle speed for spacecraft relative to inertial system Degree, and represent in spacecraft body series;
The extension movement equation of Space Manipulator System is expressed as the form of linear parameterization:
Wherein,For extension movement regression matrix, Z1For regression matrix, Z2Square is returned for kinematics Battle array,It is referred to as extension movement parameter, ak,1For one group of physical parameter, ak,2Transported for Space Manipulator System It is dynamic to learn parameter;
2) spacecraft reference angular velocities and joint of mechanical arm reference velocity are designed;
When the extension movement parameter and unknown kinetic parameter of Space Manipulator System, design spacecraft reference angle speed Spend ωbrMeet equation below:
Wherein, ωbr(0)=ωb(0),For ωbrTo the derivative of time,It is right respectively It should be Mbb、Mbm、Cbb、CbmEstimation,ForEstimation, by MbbIn parameter ak,1With its estimateReplace i.e. availableK=diag ([Kb,Km)], Kb,Km,KbsFor positive definite symmetric matrices, sbbbrFor spacecraft sliding variable,For joint of mechanical arm georeferencing speed,ForTo the derivative of time;λb>0 is a positive number, Δ ∈bvFor space flight The attitude error matrix of deviceThe vector section of corresponding error quaternion, Rb,RbdRespectively spacecraft is current Attitude matrix is with it is expected attitude matrix;Δ x=x-xdFor mechanical arm tail end position tracking error,Exist for mechanical arm tail end Pose in inertial space,For mechanical arm tail end desired trajectory, For mechanical arm tail end pose Estimation,For mechanical arm tail end desired speed, α>0 is a positive number;
Joint space reference velocity is
Wherein,ForEstimation,ForClassical pseudoinverse,For task Georeferencing speed;
3) mechanical arm self-adapting power in design space coordinates control law and parameter more new law;
Defined variable is as follows
Wherein,For end of arm speed tracking error,Estimate for extension movement parameter Count error;
In the case of unknown parameters, the kinetics equation of space manipulator is the form of following linear parameterization
Wherein,M is corresponded to respectivelybm、Mmm、Cmb、CmmEstimation,WithFor dynamics regression matrix,For kinetic parameter adEstimate Meter,For joint of mechanical arm position, ForTo the derivative of time;
In space manipulator kinematics parameters and unknown kinetic parameter, using following adaptive control laws
Wherein,For positive definite symmetric matrices,For joint of mechanical arm space sliding variable;
The estimate of kinetic parameterWith the estimate of extension movement parameterRespectively by given below adaptive Rule is updated
Wherein,ΓdkFor positive definite symmetric matrices;
4) adaptive control laws and parameter more new law obtained using step 3), realize that spacecraft attitude regulation and end are held Tracking of the row device to desired trajectory in task space, i.e. as t → ∞, ωb→ 0, Rb→Rbd, Δ x → 0,
Simulation object involved by the inventive method embodiment is the free floating space of Three Degree Of Freedom planar moved Mechanical arm.In simulations, spacecraft is needed to adjust to posture it is expected, robot arm end effector is wanted in tracing task space simultaneously A desired trajectory.Because this space manipulator planar moves, q is only usedbCan describes the posture of spacecraft.Imitative In very, q is madeb=0.The desired trajectory of robot arm end effector is a circle in inertial space.
Fig. 2 is pedestal spacecraft angular speed curve.As shown in Figure 2, when starting, there is overshoot in spacecraft angular speed, but very Just decay within 0.05 °/s soon.
Fig. 3 is pedestal spacecraft attitude angular curve.From the figure 3, it may be seen that the change of spacecraft attitude angle is smaller, finally stablize Within 0.02 °.Fig. 4 is mechanical arm tail end tracking error curve.As shown in Figure 4, mechanical arm tail end tracking error decays rapidly, most After stablize within 0.01m.
Fig. 5 is the actual path and desired trajectory of mechanical arm tail end.To show that the present invention is carried convergence, imitative The initial position of robot arm end effector is made to deviate from desired trajectory in very.As seen from Figure 5, increase with the time, mechanical arm end End actuator converges on rapidly desired trajectory.
Unspecified part of the present invention belongs to general knowledge as well known to those skilled in the art.

Claims (6)

1. a kind of space manipulator self-adapting power control method for coordinating, it is characterised in that step is as follows:
1) the extension movement model of space manipulator is established;
2) spacecraft reference angular velocities and joint of mechanical arm reference velocity are determined;
3) determine that space manipulator self-adapting power coordinates control law and parameter more new law;
4) adaptive control laws and parameter more new law obtained using step 3), spacecraft attitude regulation and end effector are realized Tracking to desired trajectory in task space.
A kind of 2. space manipulator self-adapting power control method for coordinating according to claim 1, it is characterised in that:Institute The concrete form for stating the extension movement model for establishing space manipulator is:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>M</mi> <mrow> <mi>b</mi> <mi>b</mi> </mrow> </msub> <msub> <mi>&amp;omega;</mi> <mi>b</mi> </msub> <mo>-</mo> <msub> <mi>M</mi> <mrow> <mi>b</mi> <mi>m</mi> </mrow> </msub> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>m</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>J</mi> <mi>b</mi> </msub> <msub> <mi>&amp;omega;</mi> <mi>b</mi> </msub> <mo>+</mo> <msub> <mi>J</mi> <mi>m</mi> </msub> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>m</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msub> <mi>Za</mi> <mi>k</mi> </msub> </mrow>
Wherein,For the inertia matrix of spacecraft,For the Jacobian matrix corresponding to spacecraft,For the Jacobian matrix corresponding to mechanical arm;For spacecraft and the coupling torque matrix of mechanical arm,For joint of mechanical arm speed;Angular speed for spacecraft relative to inertial system, and represent in spacecraft sheet In system;For extension movement regression matrix, Z1For regression matrix, Z2For kinematics regression matrix,It is referred to as extension movement parameter, ak,1For one group of physical parameter, ak,2Moved for Space Manipulator System Learn parameter.
A kind of 3. space manipulator self-adapting power control method for coordinating according to claim 2, it is characterised in that:Institute State determine spacecraft reference angular velocities detailed process be:
When the extension movement parameter and unknown kinetic parameter of Space Manipulator System, spacecraft reference angular velocities are determined ωbrMeet equation below:
<mrow> <msub> <mover> <mi>M</mi> <mo>^</mo> </mover> <mrow> <mi>b</mi> <mi>b</mi> </mrow> </msub> <msub> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>M</mi> <mo>^</mo> </mover> <mrow> <mi>b</mi> <mi>m</mi> </mrow> </msub> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>r</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>C</mi> <mo>^</mo> </mover> <mrow> <mi>b</mi> <mi>b</mi> </mrow> </msub> <msub> <mi>&amp;omega;</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>C</mi> <mo>^</mo> </mover> <mrow> <mi>b</mi> <mi>m</mi> </mrow> </msub> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mover> <mi>J</mi> <mo>^</mo> </mover> <mi>b</mi> <mrow> <mo>*</mo> <mi>T</mi> </mrow> </msubsup> <mi>K</mi> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mover> <mi>M</mi> <mo>^</mo> </mover> <mrow> <mi>b</mi> <mi>b</mi> </mrow> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&amp;omega;</mi> <mi>b</mi> </msub> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mi>b</mi> </msub> <mi>&amp;Delta;</mi> <msub> <mo>&amp;Element;</mo> <mrow> <mi>b</mi> <mi>v</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>Z</mi> <mn>1</mn> </msub> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mover> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>^</mo> </mover> <mo>+</mo> <mi>&amp;alpha;</mi> <mi>&amp;Delta;</mi> <mi>x</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <msub> <mi>K</mi> <mrow> <mi>b</mi> <mi>s</mi> </mrow> </msub> <msub> <mi>s</mi> <mi>b</mi> </msub> </mrow>
Wherein, ωbr(0)=ωb(0),For ωbrTo the derivative of time,Correspond to respectively Mbb、Mbm、Cbb、CbmEstimation,ForEstimation, by MbbIn parameter ak,1Use ak,1EstimateReplacement obtains K=diag ([Kb,Km)], Kb,Km,KbsFor positive definite symmetric matrices, sbbbrFor spacecraft sliding variable,For Joint of mechanical arm georeferencing speed,ForTo the derivative of time;λbFor a positive number, Δ ∈bvMissed for the posture of spacecraft Poor matrixThe vector section of corresponding error quaternion, Rb,RbdRespectively the current pose matrix of spacecraft with It is expected attitude matrix;Δ x=x-xdFor mechanical arm tail end position tracking error,It is mechanical arm tail end in inertial space Pose,For mechanical arm tail end desired trajectory, For the estimation of mechanical arm tail end pose,For mechanical arm tail end desired speed, α is a positive number.
A kind of 4. space manipulator self-adapting power control method for coordinating according to claim 3, it is characterised in that:Institute State determine joint of mechanical arm reference velocity formula be:
<mrow> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mover> <mi>J</mi> <mo>^</mo> </mover> <mi>m</mi> <mrow> <mo>*</mo> <mo>+</mo> </mrow> </msubsup> <mrow> <mo>{</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <msubsup> <mover> <mi>M</mi> <mo>^</mo> </mover> <mrow> <mi>b</mi> <mi>b</mi> </mrow> <mo>*</mo> </msubsup> <msub> <mi>&amp;lambda;</mi> <mi>b</mi> </msub> <mi>&amp;Delta;</mi> <msub> <mo>&amp;Element;</mo> <mrow> <mi>b</mi> <mi>v</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>r</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>}</mo> </mrow> <mo>-</mo> <msubsup> <mover> <mi>J</mi> <mo>^</mo> </mover> <mi>b</mi> <mo>*</mo> </msubsup> <msub> <mi>&amp;omega;</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>}</mo> <mo>;</mo> </mrow>
Wherein,ForEstimation,ForClassical pseudoinverse,For task space Reference velocity.
A kind of 5. space manipulator self-adapting power control method for coordinating according to claim 4, it is characterised in that:Step Suddenly the detailed process of (3) is:
Defined variable is as follows
Wherein,For end of arm speed tracking error,Missed for extension movement parameter Estimation Difference;
In the case of unknown parameters, the kinetics equation of space manipulator is the form of following linear parameterization
<mrow> <msub> <mover> <mi>M</mi> <mo>^</mo> </mover> <mrow> <mi>b</mi> <mi>b</mi> </mrow> </msub> <msub> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>M</mi> <mo>^</mo> </mover> <mrow> <mi>b</mi> <mi>m</mi> </mrow> </msub> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>r</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>C</mi> <mo>^</mo> </mover> <mrow> <mi>b</mi> <mi>b</mi> </mrow> </msub> <msub> <mi>&amp;omega;</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>C</mi> <mo>^</mo> </mover> <mrow> <mi>b</mi> <mi>m</mi> </mrow> </msub> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>Y</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mi>m</mi> </msub> <mo>,</mo> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>,</mo> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>,</mo> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> </mrow>
<mrow> <msubsup> <mover> <mi>M</mi> <mo>^</mo> </mover> <mrow> <mi>b</mi> <mi>m</mi> </mrow> <mi>T</mi> </msubsup> <msub> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>M</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>m</mi> </mrow> </msub> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>r</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>C</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>b</mi> </mrow> </msub> <msub> <mi>&amp;omega;</mi> <mrow> <mi>b</mi> <mi>r</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>C</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mi>m</mi> </mrow> </msub> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>Y</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mi>m</mi> </msub> <mo>,</mo> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>,</mo> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>,</mo> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> </mrow>
Wherein,M is corresponded to respectivelybm、Mmm、Cmb、CmmEstimation,WithFor dynamics regression matrix,For kinetic parameter adEstimate Meter,For joint of mechanical arm position, ForTo the derivative of time;
In space manipulator kinematics parameters and unknown kinetic parameter, using following adaptive control laws
<mrow> <msub> <mi>&amp;tau;</mi> <mi>m</mi> </msub> <mo>=</mo> <mo>-</mo> <msubsup> <mover> <mi>J</mi> <mo>^</mo> </mover> <mi>m</mi> <mrow> <mo>*</mo> <mi>T</mi> </mrow> </msubsup> <mi>K</mi> <msubsup> <mover> <mi>s</mi> <mo>^</mo> </mover> <mi>x</mi> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>K</mi> <mrow> <mi>m</mi> <mi>s</mi> </mrow> </msub> <msub> <mi>s</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>Y</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>,</mo> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>,</mo> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>,</mo> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>)</mo> </mrow> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> <mo>;</mo> </mrow>
Wherein,For positive definite symmetric matrices,For joint of mechanical arm space sliding variable;
The estimate of kinetic parameterWith the estimate of extension movement parameterIt is updated respectively by following adaptive law
<mrow> <msub> <mover> <mover> <mi>a</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>&amp;Gamma;</mi> <mi>d</mi> </msub> <msup> <mi>Y</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mi>m</mi> </msub> <mo>,</mo> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>,</mo> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>,</mo> <msub> <mover> <mi>q</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mi>s</mi> </mrow>
<mrow> <msub> <mover> <mover> <mi>a</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>&amp;Gamma;</mi> <mi>k</mi> </msub> <msup> <mi>Z</mi> <mi>T</mi> </msup> <msubsup> <mi>s</mi> <mi>x</mi> <mo>*</mo> </msubsup> </mrow>
Wherein,ΓdkFor positive definite symmetric matrices.
A kind of 6. space manipulator self-adapting power control method for coordinating according to claim 5, it is characterised in that:Institute State and spacecraft attitude regulation and tracking of the end effector to desired trajectory in task space are realized in step (4), i.e., as t → ∞ When, ωb→ 0, Rb→Rbd, Δ x → 0,
CN201710700713.2A 2017-08-16 2017-08-16 A kind of space manipulator self-adapting power control method for coordinating Pending CN107450317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710700713.2A CN107450317A (en) 2017-08-16 2017-08-16 A kind of space manipulator self-adapting power control method for coordinating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710700713.2A CN107450317A (en) 2017-08-16 2017-08-16 A kind of space manipulator self-adapting power control method for coordinating

Publications (1)

Publication Number Publication Date
CN107450317A true CN107450317A (en) 2017-12-08

Family

ID=60492443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710700713.2A Pending CN107450317A (en) 2017-08-16 2017-08-16 A kind of space manipulator self-adapting power control method for coordinating

Country Status (1)

Country Link
CN (1) CN107450317A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108519740A (en) * 2018-05-05 2018-09-11 曲阜师范大学 A kind of cooperative control method of total state constraint mechanical arm track following
CN108789426A (en) * 2017-12-29 2018-11-13 金门工程建设有限公司 The mechanical people of surface treatment
CN109270955A (en) * 2018-10-30 2019-01-25 中国运载火箭技术研究院 A kind of aircraft pose coupling fast and stable control method based on mechanical arm driving
CN109591017A (en) * 2019-01-07 2019-04-09 西北工业大学 Robot for space captures the method for planning track after Tum bling Target
CN110722557A (en) * 2019-10-21 2020-01-24 上海航天控制技术研究所 Platform-mechanical arm integrated control method
CN112975965A (en) * 2021-02-24 2021-06-18 深圳市优必选科技股份有限公司 Decoupling control method and device of humanoid robot and humanoid robot
CN113305831A (en) * 2021-04-30 2021-08-27 北京控制工程研究所 Method and system for designing position observer for space manipulator adaptive coordination control
CN114734441A (en) * 2022-04-15 2022-07-12 北京邮电大学 Method for optimizing motion capability of mechanical arm in failure fault space of joint part

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869704A (en) * 2014-04-08 2014-06-18 哈尔滨工业大学 Method for coordination control over satellite arms of space robot based on expanded Jacobian matrix
CN106945020A (en) * 2017-05-18 2017-07-14 哈尔滨工业大学 A kind of space double mechanical arms system motion control method for coordinating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869704A (en) * 2014-04-08 2014-06-18 哈尔滨工业大学 Method for coordination control over satellite arms of space robot based on expanded Jacobian matrix
CN106945020A (en) * 2017-05-18 2017-07-14 哈尔滨工业大学 A kind of space double mechanical arms system motion control method for coordinating

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HANLEI WANG: "On the Adaptive Zero Reaction Control of Free-Floating Space Manipulators", 《PROCEEDING OF THE 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION》 *
XU, SHUANFENG: "Adaptive Zero Reaction Motion Control for Free-Floating Space Manipulators", 《IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS》 *
XU, SHUANFENG: "Extended Jacobian Based Adaptive Zero Reaction Motion Control for Free-Floating Space Manipulators", 《CHINESE CONTROL CONFERENCE 》 *
徐拴锋: "柔性关节自由漂浮空间机械臂递推自适应控制", 《空间控制技术与应用》 *
徐拴锋: "空间机械臂自适应扩展雅克比零反作用控制", 《宇航学报》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108789426A (en) * 2017-12-29 2018-11-13 金门工程建设有限公司 The mechanical people of surface treatment
CN108519740B (en) * 2018-05-05 2020-11-17 曲阜师范大学 Cooperative control method for track tracking of all-state constraint mechanical arm
CN108519740A (en) * 2018-05-05 2018-09-11 曲阜师范大学 A kind of cooperative control method of total state constraint mechanical arm track following
CN109270955B (en) * 2018-10-30 2021-08-10 中国运载火箭技术研究院 Aircraft pose coupling rapid and stable control method based on mechanical arm driving
CN109270955A (en) * 2018-10-30 2019-01-25 中国运载火箭技术研究院 A kind of aircraft pose coupling fast and stable control method based on mechanical arm driving
CN109591017A (en) * 2019-01-07 2019-04-09 西北工业大学 Robot for space captures the method for planning track after Tum bling Target
CN109591017B (en) * 2019-01-07 2021-11-09 西北工业大学 Trajectory planning method for space robot after capturing rolling target
CN110722557B (en) * 2019-10-21 2021-11-05 上海航天控制技术研究所 Platform-mechanical arm integrated control method
CN110722557A (en) * 2019-10-21 2020-01-24 上海航天控制技术研究所 Platform-mechanical arm integrated control method
CN112975965A (en) * 2021-02-24 2021-06-18 深圳市优必选科技股份有限公司 Decoupling control method and device of humanoid robot and humanoid robot
WO2022179213A1 (en) * 2021-02-24 2022-09-01 深圳市优必选科技股份有限公司 Decoupling control method and apparatus for humanoid robot, and humanoid robot
CN113305831A (en) * 2021-04-30 2021-08-27 北京控制工程研究所 Method and system for designing position observer for space manipulator adaptive coordination control
CN113305831B (en) * 2021-04-30 2022-10-11 北京控制工程研究所 Design method and system of position observer for space manipulator adaptive coordination control
CN114734441A (en) * 2022-04-15 2022-07-12 北京邮电大学 Method for optimizing motion capability of mechanical arm in failure fault space of joint part
CN114734441B (en) * 2022-04-15 2023-11-24 北京邮电大学 Joint part failure fault space mechanical arm movement capacity optimization method

Similar Documents

Publication Publication Date Title
CN107450317A (en) A kind of space manipulator self-adapting power control method for coordinating
CN106945020B (en) A kind of space double mechanical arms system motion control method for coordinating
CN107490965B (en) Multi-constraint trajectory planning method for space free floating mechanical arm
Xu et al. The coordinated motion planning of a dual-arm space robot for target capturing
CN111251297B (en) Double-arm space robot coordinated path planning method based on random sampling
CN112904728B (en) Mechanical arm sliding mode control track tracking method based on improved approach law
CN106218922B (en) The joint actuating mechanism controls method of flexible agility satellite
Han et al. Robust coordinated motion control of an underwater vehicle-manipulator system with minimizing restoring moments
CN109176525A (en) A kind of mobile manipulator self-adaptation control method based on RBF
Srisuk et al. Inverse kinematics solution using neural networks from forward kinematics equations
Imanberdiyev et al. A fast learning control strategy for unmanned aerial manipulators
CN110244714A (en) Robot list leg swing phase double-closed-loop control method based on sliding formwork control
Cao et al. ESO-based robust and high-precision tracking control for aerial manipulation
CN108445768A (en) The augmentation adaptive fuzzy control method of robot for space operating space track following
Ge et al. Sliding mode variable structure control of mobile manipulators
Du et al. Learning to control a free-floating space robot using deep reinforcement learning
Cao et al. Adaptive NN motion control and predictive coordinate planning for aerial manipulators
Abiko et al. Adaptive control for a torque controlled free-floating space robot with kinematic and dynamic model uncertainty
Guo et al. Adaptive neural network control for coordinated motion of a dual-arm space robot system with uncertain parameters
Mohan et al. A null space control of an underactuated underwater vehicle-manipulator system under ocean currents
JP2004230530A (en) Space robot attitude controlling method and device
Kai A model predictive control approach to attitude stabilization and trajectory tracking control of a 3D universal joint space robot with an initial angular momentum
CN113305831B (en) Design method and system of position observer for space manipulator adaptive coordination control
CN115857342B (en) Spacecraft observation load follow-up mechanism control method based on self-adaptive neural network
Wu et al. Adaptive tracking control for a new mobile manipulator model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171208

RJ01 Rejection of invention patent application after publication