CN107449444A - 一种多星图姿态关联的星敏感器内参数标定方法及其装置 - Google Patents

一种多星图姿态关联的星敏感器内参数标定方法及其装置 Download PDF

Info

Publication number
CN107449444A
CN107449444A CN201710581215.0A CN201710581215A CN107449444A CN 107449444 A CN107449444 A CN 107449444A CN 201710581215 A CN201710581215 A CN 201710581215A CN 107449444 A CN107449444 A CN 107449444A
Authority
CN
China
Prior art keywords
star
star sensor
asterism
parameter
chart
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710581215.0A
Other languages
English (en)
Other versions
CN107449444B (zh
Inventor
戴东凯
刘宇
马丽衡
秦石乔
王省书
吴伟
郑佳兴
黄宗升
魏文俭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201710581215.0A priority Critical patent/CN107449444B/zh
Publication of CN107449444A publication Critical patent/CN107449444A/zh
Application granted granted Critical
Publication of CN107449444B publication Critical patent/CN107449444B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)

Abstract

一种多星图姿态关联的星敏感器内参数标定方法及其装置,将GPS天线3、陀螺组合体1、待标定星敏感器2分别与GPS接收机4通信,将数据处理计算机5分别与所述陀螺组合体1、待标定星敏感器2连接;利用GPS接收机4采集得到的世界协调时(UTC)时间信息实现陀螺组合体1和星敏感器2数据同步采集并在数据处理计算机5中完成待标定星敏感器2的标定算法求解。该方法实现了利用陀螺组合体提供精确旋转角度信息实现多帧星图的拼接关联,从而增加用于星敏感器内参数标定的观测数据样本,可以用于动态条件下的标定,并对待标定星敏感器2的运动状态无严格的要求,提高了标定精度和可靠性,简化了标定流程且便于实施待标定星敏感器2的动态标定,该方法和装置也适用于惯性/天文组合导航***的标定。

Description

一种多星图姿态关联的星敏感器内参数标定方法及其装置
技术领域
本发明涉及航天测量领域中的星敏感器内参数标定方法及其装置;具体地说是一种姿态关联帧星敏感器的内参数标定方法及其专用装置。
背景技术
星敏感器是航天器姿态控制的核心传感器之一,它通过敏感星光的入射角度信息实现航天器姿态的测量。对光学镜头焦距、主点以及畸变等参数(统称为内参数)的精确标定是星敏感器实现高精度姿态测量的前提和关键,因此星敏感器在投入使用前都必须在地面进行严格的标定。
我国的国家军用标准“星敏感器标定与测试方法”(GJB 8237-2013) 规定了星敏感器内参数标定的标准方法,其实施过程需要在光学实验室条件下采用单星模拟器配合高精度二维转台实现标定,标定精度高,但是对标定环境和设备的要求苛刻,成本较高。另一种通用的标定方法是根据恒星对间的星角距正交变换不变的特性,以采集到的星点的图像坐标和对应观测时刻导航星的视赤经和视赤纬作为输入,无需高精度标定设备即可实现星敏感器镜头参数的估计。然而,这种方法没有充分考虑星角距误差的真实统计特性,简单地把它当作白噪声进行处理,因而算法在理论上不是最优估计,标定精度较差。
如何提高星敏感器内参数的标定精度、简化标定流程从而实现星敏感器姿态测量精度整体提升是本领域技术人员极为关注的技术问题。
发明内容
本发明在国军标GJB 8237-2013规定的星敏感器标定数学模型基础上进行改进,在大气扰动小的地点对晴朗夜空进行恒星拍摄,利用陀螺组合体 (Gyroscope Unit,GU)提供精确旋转角度信息实现多帧星图的拼接关联,从而增加用于星敏感器内参数标定的观测数据样本,可以用于动态条件下的标定,提高标定精度和可靠性,简化了标定流程且便于实施。
为解决上述问题,本发明所采用的技术方案是:一种利用多星图姿态关联实现星敏感器内参数标定方法采用的装置由陀螺组合体、GPS天线、GPS 接收机、数据处理计算机以及待标定星敏感器组成;
所述陀螺组合体与所述待标定星敏感器刚性安装,以下将刚性安装的陀螺组合体和星敏感器简称为星惯组合***;
所述GPS天线与所述GPS接收机通信;
所述陀螺组合体与所述GPS接收机通信;
所述待测星敏感器与所述GPS接收机通信,利用GPS接收机采集得到的世界协调时(UTC)时间信息可以实现陀螺组合体和星敏感器数据的时间同步;
所述数据处理计算机分别与所述陀螺组合体、待测星敏感器连接,并进行同步数据采集,在数据处理计算机中完成星敏感器的标定算法求解。
为实现多星图姿态关联的星敏感器内参数标定方法的技术方案采用以下步骤实现:
标定前选择在晴朗无云的夜晚、远离城市灯光的环境下实施标定,将星惯组合***平放于地面,使星敏感器的光轴大致朝向天顶方向,确保星敏感器的视场内无障碍物遮挡以便于拍摄恒星,标定开始前将陀螺组合体通电1小时以上。
步骤1:标定开始;
1.1通过数据处理计算机控制陀螺组合体,使其开始进行姿态解算,并输出陀螺组合体相对于惯性坐标系的姿态,利用数据处理计算机开始采集陀螺组合体输出的姿态数据和每个数据所对应的UTC时间信息,陀螺组合体进行姿态解算的算法如下:
1.1.1给定初始时刻t0陀螺组合体的初始姿态矩阵为
1.1.2第k个采样时刻记为tk,陀螺组合体中三个陀螺11,陀螺12,陀螺 13输出的角增量分别记为利用陀螺的角增量构造姿态四元数:
其中符号[ ]T表示矩阵的转置;令q0、q1、 q2、q3分别为qk的第1~4个元素;利用式(1)初始姿态矩阵计算tk-1时刻到tk时刻的陀螺组合体坐标系的姿态变化矩阵:
利用步骤1.1.1给出的初始姿态和式(2)给出的姿态变化矩阵进行陀螺组合体姿态迭代更新,直至测量结束;姿态更新迭代方程如下:
(1.2)利用数据处理计算机控制星敏感器使其开始拍摄恒星,并采集星敏感器拍摄得到的星图,记录每帧星图对应的UTC时间。
步骤2:标定数据采集;
在标定过程中通过手动或者二轴转台缓慢地绕任意3个不同方向的转轴分别转动星惯组合***,使星敏感器在不同的姿态下拍摄恒星,转动星惯组合***的过程保证星敏感器的光轴的俯仰角不小于45°,在该过程中采用数据处理计算机连续地同步采集星敏感器和陀螺组合体的测量数据,标定数据采集的过程持续小于5分钟。
步骤3:结束标定数据采集;
通过数据处理计算机控制陀螺组合体,使其停止测量,控制星敏感器使其停止拍摄恒星。
步骤4:标定数据处理;
通过数据处理计算机运行以下步骤算法进行标定数据处理,标定数据处理算法如下:
步骤4.1标定数据的预处理;
4.1.1计算载体的平均角速度;步骤2所采集到的陀螺数据相对应的时标记为tk,利用陀螺输出的角增量计算tk时刻的载体运动的近似平均角速度,计算方法如下:
其中(m=x,y,z);N为1秒内陀螺的采样个数;
4.1.2时标取齐;给定步骤2拍摄得到的第i帧星图(i=1…L,L为全部星图帧数),相对应的时标记为ti,读取全部陀螺组合体数据时标,查找陀螺组合体时标数据,如果满足|ti-tk|<τ,(τ为陀螺数据采样间隔),则保存新的数据记录,该新数据记录的内容包括时标ti,第i帧星图,tk时刻对应的陀螺组合体姿态输出以及载体角速度ωk
4.1.3剔除大动态数据;
依次读取步骤4.1.2保存的新数据记录,如果ωk>0.1°/s,则剔除该数据记录;
步骤4.2星点提取与全天时星图识别;
对步骤4.1保存的数据记录中的星图依次进行星点提取和星图识别,星点提取的方法参照《光学技术》2009年第35卷第3期刊载的“基于背景自适应预测的星点提取算法”,提取得到的第j帧的中的第k个星点图像坐标记为 (uj,k,vj,k),其中k=1...Mj,Mj为第j帧星图中的星点总数;星图识别方法参照《光学精密工程》2009年第17卷第1期刊载的“改进的基于主星的星图识别算法”,通过星图识别可以得到第j帧的中的第k个星点的天球坐标为
步骤4.3给定星敏感器星的主点、焦距以及外参数初值;根据星敏感器光学镜头的标称参数给定星敏感器主点、焦距的初值不考虑畸变参数,根据实际星敏感器与陀螺组合体的安装角度关系给定星敏感器相对于陀螺组合体的安装角初值利用给定的星敏感器内参数初步计算第1帧星图对应的星敏感器姿态欧拉角初值令初始参数矢量为给定初始畸变参数
步骤4.4估计星敏感器的主点、焦距以及外参数;
4.4.1建立姿态帧关联星点成像模型;
建立星敏感器的星点成像模型如下:
其中,(u0,v0)、f分别为待标定的星敏感器的主点、焦距;为第j帧的中的第k个星点在星敏坐标系下的坐标;光学镜头畸变采用下式(6)给出的(5)参数模型计算;
其中p1,p2,q1,q2,q3为待标定的星敏感器镜头畸变参数,令畸变参
数矢量为Kd=[p1,p2,q1,q2,q3]T,rj,k为星点图像坐标
(uj,k,vj,k)相对于主点(u0,v0)的距离;
对于第1帧星图,星点在星敏感器坐标系与惯性坐标系下的坐标存在如下映射关系:
其中为第一帧星图时刻星敏感器坐标系相对于惯性坐标系的姿态矩阵,可以用欧拉角表示如下:
第j帧的中的第k个星点在星敏坐标系下的坐标可以通过第1帧星图的坐标递推得到:
其中,表示星敏感器相对于陀螺组合体的安装矩阵,可以用欧拉角θ123表示如下:
上式(8)中的可以由步骤1所述陀螺组合体解算得到的姿态计算得到:
联合上式(5)、(6)、(7)、(8)、(9)可以建立以下成像模型:
4.4.2给定星敏感器参数矢量畸变参数矢量和星点在天球坐标系下的坐标根据式(10)给出的星点成像模型计算全部星点的图像坐标估计值根据步骤4.2提取得到的星点实际坐标(uj,k,vj,k)计算星点图像坐标估计误差:
4.4.3估计星敏感器内外参数误差;
不考虑镜头畸变,星敏感器的参数误差矢量
与星点图像坐标估计误差满足如下关系:
其中,为星敏感器的参数矢量;对参数矢量X的偏导数矢量;对参数X的偏导数矢量;
对于步骤4.2提取的所有的星图的全部星点联立方程:
其中:
,N为全部星图的总帧数,M为第N帧星图的星点数;
进一步将式(13)简写为Z=H·ΔX,其中采用最小二乘算法计算ΔX如下:
ΔX=(HT·H)-1HT·Z (14)
4.4.4更新星敏感器内外参数;
利用估计得到的星敏感器内外参数误差更新星敏感器的内外参数,更新方法如下:
然后将新的星敏感器的参数矢量X赋值给内外参数初值
步骤4.5星敏感器的光学镜头畸变估计;
4.5.1给定星敏感器参数矢量畸变参数矢量和星点在天球坐标系下的坐标根据式(10)给出的星点成像模型计算全部星点的图像坐标估计值根据步骤4.2提取得到的星点实际坐标(uj,k,vj,k)计算星点图像坐标估计误差:
4.5.2估计星敏感器镜头畸变,优化内外参数;
星点图像坐标估计误差满足如下关系:
其中,对参数矢量X的偏导数矢量;对参数X 的偏导数矢量,
ΔKd为畸变参数误差;
对于步骤4.2提取到的所有的星图的全部星点联立方程:
其中:
N为全部星图的总帧数,M为第N帧星图的星点数;
进一步将式(18)简写为Z=H·ΔX+,其中
采用最小二乘算法计算ΔX如下:
ΔX+=(HT·H)-1HT·Z (19)
4.5.3更新星敏感器内外参数和畸变参数;
利用估计得到的星敏感器内外参数误差更新星敏感器的内外参数,更新方法如下:
然后将新的星敏感器的参数矢量X赋值给内外参数初值
将新的星敏感器的畸变参数矢量Kd赋值给畸变参数初值
步骤4.6判断是否满足标定精度的要求;
利用标定得到的星敏感器参数矢量X、畸变参数矢量Kd和星点在天球坐标系下的坐标根据式(10)给出的星点成像模型计算全部星点的图像坐标估计值根据步骤4.2提取得到的星点实际坐标(uj,k,vj,k)计算星点图像坐标估计误差:
如果则跳转到步骤5.7,否则跳转到步骤 4.4.2重新进行参数估计;其中max()为取最大值函数,| |用于求矢量的模,ε为星点重构误差的阈值。
步骤4.7结束标定。
本发明具有以下技术效果:
1.本发明所述的标定方法无需昂贵的内场标定设备,只需要通过室外拍星便可以完成标定,可以降低标定的硬件成本;
2.该方法可以实现星敏感器的动态标定,对星敏感器的运动状态无严格的要求,可以简化标定步骤,提高标定效率,还可以推广用于星敏感器的在轨标定;
3.可以同时标定星敏感器相对于陀螺组合体的安装角,特别适用于惯性/天文组合导航***的标定。
附图说明
图1是本发明所述的星敏感器标定装置结构示意图;
图中:1.陀螺组合体,2.星敏感器,3.GPS天线,4.GPS接收机,5.数据处理计算机;
图2是本发明所述陀螺组合体的示意图,陀螺组合体包括三个陀螺:陀螺11,陀螺12,陀螺13;
图3是本发明所述的星敏感器标定步骤;
图4为一组用于星敏感器标定的典型的星惯组合***转动次序;
图5是本发明所述的星敏感器标定数据处理算法流程图示意图。
具体实施方式
下面将结合附图和实例对本发明作进一步的详细说明;
本发明采用的星敏感器内参数标定装置如图1所示,由陀螺组合体1、待标定星敏感器2、GPS天线3、GPS接收机4、数据处理计算机5组成。所述陀螺组合体1与所述待标定星敏感器2刚性安装,以下将刚性安装的陀螺组合体1 和星敏感器2简称为星惯组合***;所述GPS天线3与所述GPS接收机4通信;所述陀螺组合体1与所述GPS接收机4通信;所述待测星敏感器2与所述GPS 接收机4通信,利用GPS接收机4采集得到的世界协调时(UTC)时间信息可以实现陀螺组合体1和星敏感器2数据的时间同步;所述数据处理计算机5分别与所述陀螺组合体1、星敏感器2连接,并进行同步数据采集,在数据处理计算机5中完成星敏感器2的标定算法求解。
如图2所示,所述的陀螺组合体1由三个正交安装的陀螺11、12、13 组成,优选的陀螺类型是激光陀螺;
定义陀螺组合体1的坐标系为b系Ob-xbybzb,定义星敏感器2的坐标系为s系Os-xsyszs,惯性坐标系为i系Oi-xiyizi
图3为本发明测量方法总体流程图,本发明具体实施步骤如下:
标定前选择在晴朗无云的夜晚、远离城市灯光的环境下实施标定;将星惯组合***平放于地面,使星敏感器2的光轴大致朝向天顶方向,确保星敏感器2 的视场内无障碍物遮挡以便于拍摄恒星;标定开始前将陀螺组合体1通电1小时以上。
步骤1:标定开始;
1.1通过数据处理计算机控制控制陀螺组合体1,使其开始进行姿态解算,并输出陀螺组合体1相对于惯性坐标系的姿态,利用数据处理计算机5开始采集陀螺组合体1输出的姿态数据和每个数据所对应的UTC时间信息;
1.2控制星敏感器2使其开始拍摄恒星,利用数据处理计算机5采集待标定星敏感器2拍摄得到的星图,并记录每帧星图对应的UTC时间;
步骤2:标定数据采集;在标定过程中通过手动或者二轴转台缓慢地绕任意3个不同方向的转轴分别转动星惯组合***,使星敏感器2在不同的姿态下拍摄恒星,转动星惯组合***的过程保证星敏感器2的光轴的俯仰角不小于 45°,在该过程中采用数据处理计算机5连续地同步采集星敏感器2和陀螺组合体1的测量数据;标定数据采集的过程持续小于5分钟;
图4为为一组用于星敏感器标定的典型的星惯组合***转动次序,可以看到星惯组合***分别围绕独立的三个正交轴X轴、Y轴以及Z轴进行了三次旋转,且旋转的角度相同;
步骤3:结束标定数据采集;通过数据处理计算机5控制陀螺组合体1,使其停止测量,控制星敏感器1使其停止拍摄恒星;
步骤4:标定数据处理;通过数据处理计算机5运行以下算法进行标定数据处理;标定数据处理算法的流程图如图5所示,具体说明如下:
4.1标定数据的预处理;
4.1.1计算载体的平均角速度;步骤2所采集到的陀螺数据相对应的时标记为 tk,利用陀螺输出的角增量计算tk时刻的载体运动的近似平均角速度,计算方法如下:
其中(m=x,y,z),N为1秒内陀螺的采样个数,
4.1.2时标取齐;给定步骤2拍摄得到的第i帧星图(i=1…L,L为全部星图帧数),相对应的时标记为ti,读取全部陀螺组合体1数据时标,查找陀螺组合体1时标数据,如果满足|ti-tk|<τ,(τ为陀螺数据采样间隔),则保存新的数据记录,该新数据记录的内容包括时标ti,第i帧星图,tk时刻对应的陀螺组合体1姿态输出以及载体角速度ωk
4.1.3剔除大动态数据;
依次读取步骤4.1.2保存的新数据记录,如果ωk>0.1°/s,则剔除该数据记录;
4.2星点提取与全天时星图识别;
对步骤4.1保存的数据记录中的星图依次进行星点提取和星图识别,星点提取的方法参照《光学技术》2009年第35卷第3期刊载的“基于背景自适应预测的星点提取算法”,提取得到的第j帧的中的第k个星点图像坐标记为 (uj,k,vj,k),其中k=1...Mj,Mj为第j帧星图中的星点总数;星图识别方法参照《光学精密工程》2009年第17卷第1期刊载的“改进的基于主星的星图识别算法”,通过星图识别可以得到第j帧的中的第k个星点的天球坐标为
4.3给定星敏感器星的主点、焦距以及外参数初值;根据星敏感器2光学镜头的标称参数给定星敏感器2主点、焦距的初值不考虑畸变参数,根据实际星敏感器2与陀螺组合体1的安装角度关系给定星敏感器2相对于陀螺组合体1的安装角初值利用给定的星敏感器2内参数初步计算第1帧星图对应的星敏感器2姿态欧拉角初值
令初始参数矢量为
给定初始畸变参数
4.4估计星敏感器2的主点、焦距以及外参数;
4.4.1建立姿态帧关联星点成像模型;
建立星敏感器2的星点成像模型如下:
其中(u0,v0)、f分别为待标定星敏感器2的主点、焦距;为第j帧的中的第k个星点在星敏坐标系下的坐标;光学镜头畸变采用下式(6)给出的(5)参数模型计算;
其中p1,p2,q1,q2,q3为待标定的星敏感器2镜头畸变参数,令畸变参数矢量为Kd=[p1,p2,q1,q2,q3]T,rj,k为星点图像坐标(uj,k,vj,k)相对于主点(u0,v0)的距离;
对于第1帧星图,星点在星敏感器2坐标系与惯性坐标系下的坐标存在如下映射关系:
其中为第一帧星图时刻星敏感器2坐标系相对于惯性坐标系的姿态矩阵,可以用欧拉角表示如下:
第j帧的中的第k个星点在星敏坐标系下的坐标可以通过第1帧星图的坐标递推得到:
其中表示星敏感器2相对于陀螺组合体1的安装矩阵,可以用欧拉角θ123表示如下:
可以由步骤1所述陀螺组合体1解算得到的姿态计算得到:
联合式(5)、(6)、(7)、(8)、(9)可以建立以下成像模型:
4.4.2给定星敏感器2参数矢量畸变参数矢量和星点在天球坐标系下的坐标根据式(7)给出的星点成像模型计算全部星点的图像坐标估计值根据步骤5.2提取得到的星点实际坐标(uj,k,vj,k)计算星点图像坐标估计误差:
4.4.3估计星敏感器2内外参数误差。
不考虑镜头畸变,星敏感器2的参数误差矢量
与星点图像坐标估计误差满足如下关系:
其中,为星敏感器2的参数矢量;对参数矢量X的偏导数矢量;对参数X的偏导数矢量;
对于步骤4.2提取所有的星图提取的全部星点联立方程:
其中:
N为全部星图的总帧数,M为第N帧星图的星点数;
进一步将式(10)简写为Z=H·ΔX,其中采用最小二乘算法计算ΔX如下:
ΔX=(HT·H)-1HT·Z (14)
4.4.4更新星敏感器2内外参数;
利用估计得到的星敏感器2内外参数误差更新星敏感器2的内外参数,更新方法如下:
然后将新的星敏感器2的参数矢量X赋值给内外参数初值
4.5星敏感器2的光学镜头畸变估计;
4.5.1给定星敏感器2参数矢量畸变参数矢量和星点在天球坐标系下的坐标根据式(7)给出的星点成像模型计算全部星点的图像坐标估计值根据步骤4.2提取得到的星点实际坐标(uj,k,vj,k)计算星点图像坐标估计误差:
4.5.2估计星敏感器镜头畸变,优化内外参数;
星点图像坐标估计误差满足如下关系:
其中:对参数矢量X的偏导数矢量;对参数X的偏导数矢量,
ΔKd为畸变参数误差;
对于步骤4.2提取所有的星图提取的全部星点联立方程:
其中:
为全部星图的总帧数,M为第N帧星图的星点数;
进一步将式(15)简写为Z=H·ΔX+,其中
采用最小二乘算法计算ΔX如下:
ΔX+=(HT·H)-1HT·Z (19)
4.5.3更新星敏感器2内外参数和畸变参数;
利用估计得到的星敏感器2内外参数误差更新星敏感器2的内外参数,更新方法如下:
然后将新的星敏感器2的参数矢量X赋值给内外参数初值
将新的星敏感器2的畸变参数矢量Kd赋值给畸变参数初值
4.6判断是否满足标定精度的要求;
利用标定得到的星敏感器2参数矢量X、畸变参数矢量Kd和星点在天球坐标系下的坐标根据式(7)给出的星点成像模型计算全部星点的图像坐标估计值根据步骤4.2提取得到的星点实际坐标(uj,k,vj,k)计算星点图像坐标估计误差:
如果则跳转到步骤4.7,否则跳转到步骤5.4.2 重新进行参数估计;其中max()为取最大值计算,||用于求矢量的模,ε为星点重构误差的阈值,ε的典型值为0.1像素;
4.7结束标定。

Claims (11)

1.一种多星图姿态关联的星敏感器内参数标定方法,其特征在于:为实现多星图姿态关联的星敏感器内参数标定方法的技术方案采用以下步骤实现:
步骤(1):标定开始;
(1.1)通过数据处理计算机控制陀螺组合体,使其开始进行姿态解算,并输出陀螺组合体相对于惯性坐标系的姿态,利用数据处理计算机采集陀螺组合体输出的姿态数据和每个数据所对应的UTC时间信息;
(1.2)利用数据处理计算机控制星敏感器使其开始拍摄恒星,并采集星敏感器拍摄得到的星图,记录每帧星图对应的UTC时间;
步骤(2):标定数据采集;
在标定过程中通过手动或者二轴转台绕任意3个不同方向的转轴分别转动星惯组合***,使星敏感器在不同的姿态下拍摄恒星;
步骤(3):结束标定数据采集;控制陀螺组合体和星敏感器停止工作;
步骤(4):标定数据处理;通过数据处理计算机运行算法进行标定数据处理。
2.根据权利要求1所述的一种利用多星图姿态关联的星敏感器内参数标定方法,其特征在于:陀螺组合体进行姿态解算的算法如下:
给定初始时刻t0陀螺组合体的初始姿态矩阵为
第k个采样时刻记为tk,陀螺组合体中三个陀螺11,陀螺12,陀螺13输出的角增量分别记为利用陀螺的角增量构造姿态四元数:
其中符号[]T表示矩阵的转置;令q0、q1、q2、q3分别为qk的第1~4个元素;
利用式(1)初始姿态矩阵计算tk-1时刻到tk时刻的陀螺组合体坐标系的姿态变化矩阵:
利用步初始姿态矩阵和姿态变化矩阵进行陀螺组合体姿态迭代更新,直至测量结束;
所述姿态更新迭代方程如下:
3.根据权利要求1所述的一种利用多星图姿态关联的星敏感器内参数标定方法,其特征在于:所述步骤(4)中具体的数据处理过程如下:
(4.1)标定数据的预处理;
(4.2)星点提取与全天时星图识别;
(4.3)给定星敏感器星的主点、焦距以及外参数初值;
(4.4)估计星敏感器的主点、焦距以及外参数;
(4.5)星敏感器的光学镜头畸变估计;
(4.6)判断是否满足标定精度的要求;
(4.7)结束标定。
4.根据权利要求3所述的一种利用多星图姿态关联的星敏感器内参数标定方法,其特征在于:所述步骤(4.1)中标定数据预处理的算法如下:
(4.1.1)计算载体的平均角速度:步骤2所采集到的陀螺数据相对应的时标记为tk,利用陀螺输出的角增量计算tk时刻的载体运动的近似平均角速度,计算方法如下:
其中(m=x,y,z);N为1秒内陀螺的采样个数;
(4.1.2)时标取齐:给定步骤2拍摄得到的第i帧星图(i=1…L,L为全部星图帧数),相对应的时标记为ti,读取全部陀螺组合体数据时标,查找陀螺组合体时标数据,如果满足|ti-tk|<τ,(τ为陀螺数据采样间隔),则保存新的数据记录,该新数据记录的内容包括时标ti,第i帧星图,tk时刻对应的陀螺组合体姿态输出以及载体角速度ωk
(4.1.3)剔除大动态数据:依次读取步骤(4.1.2)保存的新数据记录,如果ωk>0.1°/s,则剔除该数据记录。
5.根据权利要求3或4所述的一种利用多星图姿态关联的星敏感器内参数标定方法,其特征在于:所述步骤(4.2)中标定数据预处理的具体方法如下:
对步骤(4.1)保存的数据记录中的星图依次进行星点提取和星图识别,提取得到的第j帧的中的第k个星点图像坐标记为(uj,k,vj,k),其中k=1...Mj,Mj为第j帧星图中的星点总数;通过星图识别可以得到第j帧的中的第k个星点的天球坐标为
6.根据权利要求3所述的一种利用多星图姿态关联的星敏感器内参数标定方法,其特征在于:所述步骤(4.3)中标定数据预处理的具体方法如下:
根据星敏感器光学镜头的标称参数给定星敏感器主点、焦距的初值 不考虑畸变参数,根据实际星敏感器与陀螺组合体的安装角度关系给定星敏感器相对于陀螺组合体的安装角初值利用给定的星敏感器内参数初步计算第1帧星图对应的星敏感器姿态欧拉角初值
初始参数矢量为
给定初始畸变
7.根据权利要求3所述的一种利用多星图姿态关联的星敏感器内参数标定方法,其特征在于:所述步骤(4.4)中标定数据预处理的具体方法如下:
(4.4.1)建立姿态帧关联星点成像模型;
建立星敏感器的星点成像模型如下:
其中,(u0,v0)、f分别为待标定的星敏感器的主点、焦距,为第j帧的中的第k个星点在星敏坐标系下的坐标,光学镜头畸变采用下式(6)给出的(5)参数模型计算:
其中p1,p2,q1,q2,q3为待标定的星敏感器镜头畸变参数,令畸变参数矢量为Kd=[p1,p2,q1,q2,q3]T,rj,k为星点图像坐标(uj,k,vj,k)相对于主点(u0,v0)的距离;
对于第1帧星图,星点在星敏感器坐标系与惯性坐标系下的坐标存在如下映射关系:
其中为第一帧星图时刻星敏感器坐标系相对于惯性坐标系的姿态矩阵,可以用欧拉角表示如下:
第j帧的中的第k个星点在星敏坐标系下的坐标可以通过第1帧星图的坐标递推得到:
其中,表示星敏感器相对于陀螺组合体的安装矩阵,可以用欧拉角θ123表示如下:
上式中的可以由步骤1所述陀螺组合体解算得到的姿态计算得到:
联合上式可以建立以下成像模型:
(4.4.2)给定星敏感器参数矢量畸变参数矢量和星点在天球坐标系下的坐标根据上式给出的星点成像模型计算全部星点的图像坐标估计值根据步骤(4.2)提取得到的星点实际坐标(uj,k,vj,k)计算星点图像坐标估计误差:
(4.4.3)估计星敏感器内外参数误差:
不考虑镜头畸变,星敏感器的参数误差矢量
与星点图像坐标估计误差满足如下关系:
其中,为星敏感器的参数矢量;对参数矢量X的偏导数矢量;对参数X的偏导数矢量;
对于步骤(4.2)提取的所有的星图的全部星点联立方程:
其中:
N为全部星图的总帧数,M为第N帧星图的星点数;
将全部星点联立方程简写为Z=H·ΔX,其中采用最小二乘算法计算ΔX如下:
ΔX=(HT·H)-1HT·Z (14)
(4.4.4)更新星敏感器内外参数;
利用估计得到的星敏感器内外参数误差更新星敏感器的内外参数,更新方法如下:
然后将新的星敏感器的参数矢量X赋值给内外参数初值
8.根据权利要求3所述的一种利用多星图姿态关联的星敏感器内参数标定方法,其特征在于:所述步骤(4.5)中标定数据预处理的具体方法如下:
(4.5.1)给定星敏感器参数矢量畸变参数矢量和星点在天球坐标系下的坐标根据式(10)给出的星点成像模型计算全部星点的图像坐标估计值根据步骤(4.2)提取得到的星点实际坐标(uj,k,vj,k)计算星点图像坐标估计误差:
(4.5.2)估计星敏感器镜头畸变,优化内外参数;
星点图像坐标估计误差满足如下关系:
其中,对参数矢量X的偏导数矢量;对参数X的偏导数矢量,
ΔKd为畸变参数误差;
对于步骤(4.2)提取到的所有的星图的全部星点联立方程:
其中:
N为全部星图的总帧数,M为第N帧星图的星点数;
将上式全部星点联立方程简写为Z=H·ΔX+,其中
采用最小二乘算法计算ΔX如下:
ΔX+=(HT·H)-1HT·Z (19)
(4.5.3)更新星敏感器内外参数和畸变参数;
利用估计得到的星敏感器内外参数误差更新星敏感器的内外参数,更新方法如下:
然后将新的星敏感器的参数矢量X赋值给内外参数初值
将新的星敏感器的畸变参数矢量Kd赋值给畸变参数初值
9.根据权利要求3所述的一种利用多星图姿态关联的星敏感器内参数标定方法,其特征在于:所述步骤(4.6)中标定数据预处理的具体方法如下:
利用标定得到的星敏感器参数矢量X、畸变参数矢量Kd和星点在天球坐标系下的坐标根据式(10)给出的星点成像模型计算全部星点的图像坐标估计值根据步骤(4.2)提取得到的星点实际坐标(uj,k,vj,k)计算星点图像坐标估计误差:
如果则跳转到步骤(4.7),否则跳转到步骤(4.4.2)重新进行参数估计,其中max()为取最大值函数,||用于求矢量的模,ε为星点重构误差的阈值。
10.一种利用多星图姿态关联的星敏感器内参数标定方法采用的装置,其特征在于该装置由陀螺组合体、GPS天线、GPS接收机、数据处理计算机以及待标定星敏感器组成;
所述陀螺组合体与所述待标定星敏感器刚性安装,将刚性安装的陀螺组合体和星敏感器简称为星惯组合***;
所述GPS天线与所述GPS接收机通信;
所述陀螺组合体与所述GPS接收机通信;
所述待测星敏感器与所述GPS接收机通信,利用GPS接收机采集得到的世界协调时(UTC)时间信息可以实现陀螺组合体和待标定星敏感器数据的时间同步;
所述数据处理计算机分别与所述陀螺组合体、待测星敏感器连接,并进行同步数据采集,在数据处理计算机中完成星敏感器的标定算法求解。
11.根据权利要求10所述的一种利用多星图姿态关联的星敏感器内参数标定方法及其装置,其特征在于所述的陀螺组合体由三个正交安装的陀螺、陀螺、陀螺组成,优选的陀螺类型是激光陀螺。
CN201710581215.0A 2017-07-17 2017-07-17 一种多星图姿态关联的星敏感器内参数标定方法 Active CN107449444B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710581215.0A CN107449444B (zh) 2017-07-17 2017-07-17 一种多星图姿态关联的星敏感器内参数标定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710581215.0A CN107449444B (zh) 2017-07-17 2017-07-17 一种多星图姿态关联的星敏感器内参数标定方法

Publications (2)

Publication Number Publication Date
CN107449444A true CN107449444A (zh) 2017-12-08
CN107449444B CN107449444B (zh) 2020-04-10

Family

ID=60487725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710581215.0A Active CN107449444B (zh) 2017-07-17 2017-07-17 一种多星图姿态关联的星敏感器内参数标定方法

Country Status (1)

Country Link
CN (1) CN107449444B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107588785A (zh) * 2017-09-12 2018-01-16 中国人民解放军国防科技大学 一种考虑像点误差的星敏感器内外参数简化标定方法
CN108592945A (zh) * 2018-03-27 2018-09-28 中国人民解放军国防科技大学 一种惯性/天文组合***误差的在线标定方法
CN108645401A (zh) * 2018-04-03 2018-10-12 中国人民解放军国防科技大学 基于姿态关联图像叠加的全天时星敏感器星点提取方法
CN109459065A (zh) * 2018-12-26 2019-03-12 长光卫星技术有限公司 一种基于卫星惯性空间旋转姿态的陀螺安装矩阵标定方法
CN109506656A (zh) * 2018-11-28 2019-03-22 上海航天控制技术研究所 一种高精度在轨姿态信息下传还原方法
CN109798921A (zh) * 2019-02-22 2019-05-24 中国科学院光电技术研究所 一种星敏感器内方位元素室内校准方法
CN111402300A (zh) * 2020-04-21 2020-07-10 中国科学院光电技术研究所 一种基于双谱域主成分分析的高动态星敏感器运动参数估计方法
CN112254743A (zh) * 2020-10-15 2021-01-22 长春工业大学 一种基于星角距相减的星敏感器在轨标定方法
CN112882483A (zh) * 2021-01-12 2021-06-01 北京控制工程研究所 星敏感器在轨标定方法、装置和存储介质
CN112989637A (zh) * 2021-05-06 2021-06-18 中国人民解放军国防科技大学 基于分布折算、近似和综合的星敏***可靠性评估方法
CN113514055A (zh) * 2021-07-09 2021-10-19 北京航空航天大学 一种地基星敏感器大气折射与对地姿态的联合估计方法
CN114199275A (zh) * 2020-09-18 2022-03-18 阿里巴巴集团控股有限公司 传感器的参数确定方法和装置
CN114663492A (zh) * 2022-02-16 2022-06-24 西北工业大学 一种利用事件相机作为星敏感器的飞行器姿态确定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101013033A (zh) * 2006-03-21 2007-08-08 北京航空航天大学 一种基于无偏差带的星敏感器地面校准方法
US8019544B2 (en) * 2005-01-03 2011-09-13 The Boeing Company Real-time refinement method of spacecraft star tracker alignment estimates
CN105659815B (zh) * 2007-08-08 2012-01-04 北京航空航天大学 一种星敏感器动态校准装置和校准方法
CN103674023A (zh) * 2013-12-26 2014-03-26 中国人民解放军国防科学技术大学 一种基于陀螺精确角度关联的星敏感器动态测姿方法
CN105737858A (zh) * 2016-05-04 2016-07-06 北京航空航天大学 一种机载惯导***姿态参数校准方法与装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8019544B2 (en) * 2005-01-03 2011-09-13 The Boeing Company Real-time refinement method of spacecraft star tracker alignment estimates
CN101013033A (zh) * 2006-03-21 2007-08-08 北京航空航天大学 一种基于无偏差带的星敏感器地面校准方法
CN105659815B (zh) * 2007-08-08 2012-01-04 北京航空航天大学 一种星敏感器动态校准装置和校准方法
CN103674023A (zh) * 2013-12-26 2014-03-26 中国人民解放军国防科学技术大学 一种基于陀螺精确角度关联的星敏感器动态测姿方法
CN105737858A (zh) * 2016-05-04 2016-07-06 北京航空航天大学 一种机载惯导***姿态参数校准方法与装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
XINGUO WEI 等: "Star sensor calibration based on integrated modelling with intrinsic and extrinsic parameters", 《MEASUREMENT》 *
乔培玉 等: "高精度星敏感器的标定", 《红外与激光工程》 *
何家维: "高精度全天时星敏感器关键技术研究", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *
姜文英 等: "星敏感器外场观星标定及检验方法研究", 《计量学报》 *
张广军 等: "《星敏感器标定与精度测试方法》", 10 July 2013, 总装备部军标出版发行部 *
郝雪涛 等: "星敏感器模型参数分析与校准方法研究", 《光电工程》 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107588785A (zh) * 2017-09-12 2018-01-16 中国人民解放军国防科技大学 一种考虑像点误差的星敏感器内外参数简化标定方法
CN107588785B (zh) * 2017-09-12 2019-11-05 中国人民解放军国防科技大学 一种考虑像点误差的星敏感器内外参数简化标定方法
CN108592945A (zh) * 2018-03-27 2018-09-28 中国人民解放军国防科技大学 一种惯性/天文组合***误差的在线标定方法
CN108592945B (zh) * 2018-03-27 2020-08-21 中国人民解放军国防科技大学 一种惯性/天文组合***误差的在线标定方法
CN108645401A (zh) * 2018-04-03 2018-10-12 中国人民解放军国防科技大学 基于姿态关联图像叠加的全天时星敏感器星点提取方法
CN109506656A (zh) * 2018-11-28 2019-03-22 上海航天控制技术研究所 一种高精度在轨姿态信息下传还原方法
CN109459065A (zh) * 2018-12-26 2019-03-12 长光卫星技术有限公司 一种基于卫星惯性空间旋转姿态的陀螺安装矩阵标定方法
CN109459065B (zh) * 2018-12-26 2020-06-19 长光卫星技术有限公司 一种基于卫星惯性空间旋转姿态的陀螺安装矩阵标定方法
CN109798921A (zh) * 2019-02-22 2019-05-24 中国科学院光电技术研究所 一种星敏感器内方位元素室内校准方法
CN109798921B (zh) * 2019-02-22 2022-07-19 中国科学院光电技术研究所 一种星敏感器内方位元素室内校准方法
CN111402300A (zh) * 2020-04-21 2020-07-10 中国科学院光电技术研究所 一种基于双谱域主成分分析的高动态星敏感器运动参数估计方法
CN111402300B (zh) * 2020-04-21 2022-09-20 中国科学院光电技术研究所 一种基于双谱域主成分分析的高动态星敏感器运动参数估计方法
CN114199275A (zh) * 2020-09-18 2022-03-18 阿里巴巴集团控股有限公司 传感器的参数确定方法和装置
CN112254743A (zh) * 2020-10-15 2021-01-22 长春工业大学 一种基于星角距相减的星敏感器在轨标定方法
CN112254743B (zh) * 2020-10-15 2024-05-31 长春工业大学 一种基于星角距相减的星敏感器在轨标定方法
CN112882483B (zh) * 2021-01-12 2022-03-04 北京控制工程研究所 星敏感器在轨标定方法、装置和存储介质
CN112882483A (zh) * 2021-01-12 2021-06-01 北京控制工程研究所 星敏感器在轨标定方法、装置和存储介质
CN112989637A (zh) * 2021-05-06 2021-06-18 中国人民解放军国防科技大学 基于分布折算、近似和综合的星敏***可靠性评估方法
CN113514055A (zh) * 2021-07-09 2021-10-19 北京航空航天大学 一种地基星敏感器大气折射与对地姿态的联合估计方法
CN113514055B (zh) * 2021-07-09 2022-10-28 北京航空航天大学 一种地基星敏感器大气折射与对地姿态的联合估计方法
CN114663492A (zh) * 2022-02-16 2022-06-24 西北工业大学 一种利用事件相机作为星敏感器的飞行器姿态确定方法
CN114663492B (zh) * 2022-02-16 2024-02-09 西北工业大学 一种利用事件相机作为星敏感器的飞行器姿态确定方法

Also Published As

Publication number Publication date
CN107449444B (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
CN107449444A (zh) 一种多星图姿态关联的星敏感器内参数标定方法及其装置
CN108592950B (zh) 一种单目相机和惯性测量单元相对安装角标定方法
CN105371870B (zh) 一种基于星图数据的星敏感器在轨精度测量方法
CN109945856A (zh) 基于惯性/雷达的无人机自主定位与建图方法
CN109029433A (zh) 一种移动平台上基于视觉和惯导融合slam的标定外参和时序的方法
CN102175241B (zh) 一种火星探测器巡航段自主天文导航方法
CN112987065B (zh) 一种融合多传感器的手持式slam装置及其控制方法
CN112649016A (zh) 一种基于点线初始化的视觉惯性里程计方法
CN107504969A (zh) 基于视觉和惯性组合的四旋翼室内导航方法
CN110081875B (zh) 一种仿鸽子智能的无人机自主导航***及方法
CN110187375A (zh) 一种基于slam定位结果提高定位精度的方法及装置
CN110675453B (zh) 一种已知场景中运动目标的自定位方法
CN103674021A (zh) 基于捷联惯导与星敏感器的组合导航***及方法
CN113551668B (zh) 一种航天器惯性/恒星星光矢量/星光折射组合导航方法
CN113739795B (zh) 一种基于偏振光/惯性/视觉组合导航的水下同步定位与建图方法
CN106643670B (zh) 一种无人机航摄站点坐标求解装置及方法
KR102239562B1 (ko) 항공 관측 데이터와 지상 관측 데이터 간의 융합 시스템
CN110887486B (zh) 一种基于激光线辅助的无人机视觉导航定位方法
CN110044377B (zh) 一种基于Vicon的IMU离线标定方法
CN113686299B (zh) 一种海上动态目标定位与移速预测方法
CN115574816B (zh) 仿生视觉多源信息智能感知无人平台
CN114019552A (zh) 一种基于贝叶斯多传感器误差约束的定位置信度优化方法
CN115272596A (zh) 一种面向单调无纹理大场景的多传感器融合slam方法
CN108444468B (zh) 一种融合下视视觉与惯导信息的定向罗盘
CN112797985A (zh) 基于加权扩展卡尔曼滤波的室内定位方法及室内定位***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant