CN107407939A - 球平衡机器人 - Google Patents

球平衡机器人 Download PDF

Info

Publication number
CN107407939A
CN107407939A CN201680014943.7A CN201680014943A CN107407939A CN 107407939 A CN107407939 A CN 107407939A CN 201680014943 A CN201680014943 A CN 201680014943A CN 107407939 A CN107407939 A CN 107407939A
Authority
CN
China
Prior art keywords
robot body
spheroid
robot
angular
yawing moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680014943.7A
Other languages
English (en)
Other versions
CN107407939B (zh
Inventor
辻滋
北河满
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN107407939A publication Critical patent/CN107407939A/zh
Application granted granted Critical
Publication of CN107407939B publication Critical patent/CN107407939B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0891Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H11/00Self-movable toy figures
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/005Motorised rolling toys
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Manipulator (AREA)
  • Toys (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明提供一种球平衡机器人,在使载置在球体上的机器人主体以其重心所在的垂直轴为中心进行旋转(在偏转方向上旋转)的情况下,高精度地控制姿势。在机器人主体(20)的重心(G)与通过球体的中心(10a)的垂直轴(v1)一致的姿势下机器人主体(20)位于球体(10)上,摇摆方向角速度传感器(26)的基轴(Y1)在俯仰方向上相对于水平倾斜的状态下(倾斜角度θp),在以垂直轴(v1)为中心的偏转方向上使机器人主体(20)旋转的情况下,通过对基于摇摆方向角速度传感器(26)的基轴(Y1)的倾斜而生成的摇摆方向的角速度的检测误差进行抵消、修正,从而机器人主体(20)能保持规定姿势的同时进行旋转。

Description

球平衡机器人
技术领域
本发明涉及球平衡机器人,具体而言,涉及在以垂直轴为中心进行旋转的情况下能保持平衡的同时、保持规定姿势的球平衡机器人。
背景技术
有的球平衡机器人能够在一个球体上保持平衡的同时还保持规定姿势,还有的球平衡机器人能够使球体滚动来进行移动,或能够以通过球体中心的垂直轴为中心进行旋转。
然后,专利文献1中作为上述球平衡机器人的一个示例,公开了图5所示那样的球平衡机器人101。
专利文献1中公开的球平衡机器人101具备球体110以及配置于球体110上的机器人主体120。
机器人主体120具备用于使球体110滚动的多个驱动机构121、以及控制机器人主体120的姿势的姿势控制用致动器124。另外,在机器人主体的内部安装有检测机器人主体120的姿势的姿势检测传感器126。
然后,通过驱动多个驱动机构121来使球体110滚动,从而能使得载置在球体110的机器人主体120与球体110一起移动到所希望的位置。
另外,在该球平衡机器人101中构成为,利用姿势控制用致动器124来使配置于机器人主体120上部的重量在水平方向上移动从而改变重心,使球平衡机器人101往规定方向倾斜来控制姿势。
现有技术文献
专利文献
专利文献1:日本专利特开2005-342818号公报
发明内容
发明所要解决的技术问题
然而,在球平衡机器人中构成为,机器人主体基本上通过以其重心位于通过球体中心的垂直轴上的方式载置在球体上,从而防止摔倒或跌落等,从而能与球体一同移动,或在球体上旋转。
另一方面,机器人主体中具备装饰构件、姿势检测传感器、电池、控制设备等,因此在设计机器人时,不易使机器人主体的重心位于该轴线上。
因此,事实上在以机器人主体的重心位于上述垂直轴上的方式使机器人主体载置在球体上的情况下,配置于机器人主体的姿势检测传感器的位置、方向等与所设计的位置、方向(例如以机器人主体的轴线为转轴呈旋转对称的位置、方向)有某种程度的偏离这一情况难以避免。
此外,存在如下问题:在姿势检测传感器的位置、方向等偏离所意图的位置、方向的状态下,使机器人主体例如绕着机器人主体的重心所位于的通过球体中心的垂直轴旋转(朝偏转方向旋转)的情况下,姿势检测传感器检测因偏转方向的旋转而产生的其他方向的分量(例如为摇摆方向的分量),从而无法正确地进行姿势检测,难以高精度地控制机器人主体的姿势。
本发明用于解决上述问题,其目的在于提供一种球平衡机器人,在使载置在球体上的机器人主体以其重心所在的垂直轴为中心进行旋转(朝偏转方向旋转)的情况下,高精度地控制姿势。
解决技术问题的技术方案
为了解决上述问题,本发明的球平衡机器人包括:
球体;以及
机器人主体,该机器人主体构成为以载置在所述球体上的状态,使所述球体滚动,并能与所述球体一同移动,其特征在于,
所述机器人主体具有:
用于使自身在所述球体上朝偏转方向旋转的驱动机构;
偏转方向角速度传感器,该偏转方向角速度传感器检测所述机器人主体在偏转方向上的角速度;以及
摇摆方向角速度传感器,该摇摆方向角速度传感器检测所述机器人主体在摇摆方向上的角速度,
所述机器人主体以所述机器人主体的重心与通过所述球体的中心的垂直轴相一致的姿势而位于所述球体上,所述摇摆方向角速度传感器的基轴在俯仰方向相对于水平倾斜的状态下,使所述机器人主体在以所述垂直轴为中心的偏转方向上旋转的情况下,对基于所述摇摆方向角速度传感器的所述基轴的所述倾斜而生成的摇摆方向的角速度的检测误差进行抵消、修正,从而使得所述机器人主体能在保持规定姿势的同时进行旋转。
另外,本发明的球平衡机器人优选构成为,所述机器人主体具备对俯仰方向的角速度进行检测的俯仰方向角速度传感器,基于所述俯仰方向角速度传感器所检测出的角速度来求出所述摇摆方向角速度传感器的所述基轴相对于水平倾斜的角度,并基于所述角度来求出所述摇摆方向的角速度的误差。
由于机器人主体具备对俯仰方向的角速度进行检测的俯仰方向角速度传感器,基于俯仰方向角速度传感器所检测出的角速度来求出摇摆方向角速度传感器的基轴相对于水平倾斜的角度,并基于所述角度来求出摇摆方向的角速度的误差,因此能提供一种能进一步稳定地在偏转方向旋转的球平衡机器人。
发明效果
由于本发明的球平衡机器人中,机器人主体以机器人主体的重心与通过球体的中心的垂直轴相一致的姿势而位于球体上,摇摆方向角速度传感器的基轴在俯仰方向相对于水平倾斜的状态下,使机器人主体朝以垂直轴为中心的偏转方向旋转的情况下,对基于摇摆方向角速度传感器的所述基轴的所述倾斜而生成的摇摆方向的角速度的检测误差进行抵消、修正,因此,能提供一种球平衡机器人,在以垂直轴为中心进行旋转(在偏转方向上旋转)的情况下,能高精度地控制姿势,使机器人主体以规定的姿势稳定地旋转。
此外,本发明中,在球平衡机器人朝向正面时,以向前后方向倾斜的方向为俯仰方向,以向左右倾斜的方向为摇摆方向,而球平衡机器人的正面可通过机器人的设计、展示方法等而任意决定。也就是说,本发明中,以球平衡机器人的哪个方向为正面是可任意决定的事项,例如构成为将摇摆方向与俯仰方向相互替换也能得到相同效果。
附图说明
图1是表示本发明的实施方式所涉及的球平衡机器人的概要的立体图。
图2是本发明的实施方式所涉及的球平衡机器人的侧视图,是表示机器人主体的重心与通过球体中心的垂直轴一致的状态的图。
图3是表示使图2所示的机器人主体朝偏转方向旋转时产生的偏转方向的角速度以及作为误差分量在摇摆方向产生的角速度的图。
图4是表示本发明的实施方式所涉及的球平衡机器人的控制输入输出图。
图5是表示现有的球平衡机器人的图。
具体实施方式
接着,示出本发明的实施方式,以对本发明进行更详细的说明。
本发明的实施方式所涉及的球平衡机器人1如图1所示,具备:一个球体10、以及构成为能以载置在球体10上的状态下使球体10滚动并与球体10一同移动的机器人主体20。
球平衡机器人1通过计算机等控制装置(未图示)来进行远程操作,通过使球体10滚动而在平台5上移动,另外,构成为能以通过球体10的中心的垂直轴v1为中心在偏转方向上旋转。
此外,本实施方式中,以使球平衡机器人1在平台5上的同一位置、以垂直轴v1为中心在偏转方向上旋转的情况为中心进行说明。
球平衡机器人1的球体10是由树脂材料构成的球形的刚体。球体10也可以由金属材料构成,另外,也可以通过用树脂材料覆盖金属材料来形成。其中,为了防止机器人主体20滑落,并使得来自下述全向轮21a~23a的驱动力传递充分,优选为表面具有合适的摩擦阻力。
机器人主体20具备三个驱动结构21、22、23,用于使机器人主体20在球体10上在偏转方向上旋转。
另外,机器人主体20具备:检测俯仰方向的角速度的俯仰方向角速度传感器25、检测摇摆方向的角速度的摇摆方向角速度传感器26、检测偏转方向的角速度的偏转方向角速度传感器27。
机器人主体20中内置有控制部30(参照图4),该控制部30对来自上述角速度传感器25~27的输入信号进行运算处理,分别对驱动机构21~23输出驱动指令。
驱动机构21~23具备:供机器人主体20能在全方位移动的全向轮(omni wheel)21a、22a、23a;以及分别使全向轮21a~23a旋转的带齿轮伺服电机21b、22b、23b。驱动机构21~23被配置成其轴心相对于垂直方向V呈三叉状分支,全向轮21a~23a的外周面以与球体10的表面相接触的方式配置于球体10上。构成为:通过使该驱动机构21~23进行驱动,机器人主体20能与球体10一同朝任意方向移动,且机器人主体20能在球体10上在偏转方向上旋转。此外,在机器人主体20旋转时,球体10也可以停止,也可以在反方向稍许旋转。
另外,该实施方式的球平衡机器人1中构成为,能够利用图1中未图示的控制单元来控制球平衡机器人1在平台5上的水平方向的位置。
另外,机器人主体20具有起到控制部30的作用的电路基板28,上述俯仰方向角速度传感器25及摇摆方向角速度传感器26被安装于电路基板28。另外,偏转方向角速度传感器27被配置于机器人主体20的盖部29的内侧,且其基轴与垂直方向V平行。
本实施方式的球平衡机器人1如上所述,具备驱动机构21~23、俯仰方向角速度传感器25、摇摆方向角速度传感器26、偏转方向角速度传感器27等,机器人主体20在其重心G位于通过球体10的垂直轴v1上的方式载置于球体10上的状态下,如图2所示,机器人主体20的轴线T与垂直轴v1不一致,轴线T与垂直轴v1具有规定角度(本实施方式中为θp),电路基板28的主面处于在俯仰方向上相对于水平倾斜规定角度(本实施方式中为θp)的状态。其结果是,摇摆方向角速度传感器26的基轴Y1也处于在摇摆方向上相对于水平倾斜规定角度(本实施方式中为θp)的状态。
因此,例如,以通过机器人主体20的重心G所位于的球体10的中心的垂直轴v1为中心使机器人主体20在偏转方向旋转的情况下,摇摆方向角速度传感器26所检测出的摇摆方向的角速度包含基于摇摆方向角速度传感器26的基轴Y1的倾斜而生成的误差。也就是说,获得因偏转方向的旋转而产生的摇摆方向的分量,这是摇摆方向的角速度的检测值所含的误差。
因此,本实施方式所涉及的球平衡机器人1构成为在上述状态下,使机器人主体20以垂直轴v1为中心旋转的情况下,对基于摇摆方向角速度传感器26的基轴Y1的倾斜而生成的摇摆方向的角速度的检测误差进行抵消、修正。
具体而言,在摇摆方向角速度传感器26的基轴Y1相对于水平的倾斜角度为θp的情况下,基于以下所示的(式1)来计算进行了上述修正后的摇摆方向的角速度。
ωr1=(ωr-ωy·sinθp)···(式1)
ωr1:修正后的摇摆方向的角速度
ωr:修正前的摇摆方向的角速度(摇摆方向角速度传感器所检测出的角速度)
ωy:偏转方向的角速度
θp:俯仰方向的倾斜角度(摇摆方向角速度传感器的基轴相对于水平的倾斜角度)
也就是说,球平衡机器人1在使机器人主体20在偏转方向旋转的情况下,作为误差分量根据偏转方向产生的角速度ωy来求得摇摆方向上产生的角速度(ωy·sinθp)(参照图3),从摇摆方向角速度传感器26所检测出的角速度(修正前)ωr减去作为误差分量的角速度(ωy·sinθp),从而求得修正后的摇摆方向的角速度ωr1
此外,在偏转方向上产生的角速度ωy能由上述偏转方向角速度传感器27来检测出。
然后,本实施方式所涉及的球平衡机器人1构成为,利用如上述那样求得的修正后的摇摆方向的角速度ωr1来控制球体10上的机器人主体20在偏转方向上旋转时在摇摆方向上的倾斜,从而机器人主体20能稳定地在偏转方向上旋转。
具体而言,构成为,基于以下所示的(式2)用时间t对修正后的摇摆方向的角速度ωr1进行积分,从而计算出机器人主体20在摇摆方向上的倾斜角度θr(未图示),通过将该摇摆方向上的倾斜角度θr控制为接近目标值(例如倾斜角度为0),从而机器人主体20能稳定地在偏转方向上旋转。
[数学式1]
θr:摇摆方向的倾斜角度
此外,作为上述实施方式的(式1)中的俯仰方向的倾斜角度θp,如图2所示,可以使用机器人主体20载置在球体10上且其重心G位于垂直轴v1的状态下的机器人主体20的轴线T与垂直轴v1所成的角度θp(固定值),另外,也可以使用根据俯仰方向角速度传感器25所检测出的角速度来算出的实际的倾斜角度θp(变动值)。
另外,上述实施方式中,以使球平衡机器人1在平台5上的同一位置、以垂直轴v1为中心在俯仰方向上旋转的情况为中心进行了说明,而在使球平衡机器人1在水平方向上匀速移动的同时,在偏转方向上旋转的情况下,也能使用本发明。
本发明即使在其它方面也能在发明的权利要求的范围内添加各种应用、变形,并不由上述实施方式所限定。
标号说明
1球平衡机器人
5 平台
10 球体
10a 球体的中心
20 机器人主体
21,22,23 驱动机构
21a,22a,23a 全向轮
21b,22b,23b 带齿轮伺服电机
25 俯仰方向角速度传感器
26 摇摆方向角速度传感器
27 偏转方向角速度传感器
28 电路基板
29 盖板
30 控制部
G 机器人主体的重心
H 水平方向
T 机器人主体的轴线
V 垂直方向
v1 通过球体的中心的垂直轴(偏转方向的基轴)
X 俯仰方向的基轴
Y 摇摆方向的基轴
Y1 摇摆方向角速度传感器的基轴
ωy 偏转方向的角速度
ωy·sinθp 作为误差分量在摇摆方向上产生的角速度
θp 俯仰方向的倾斜角度。

Claims (2)

1.一种球平衡机器人,包括:
球体;以及
机器人主体,该机器人主体构成为以载置在所述球体上的状态,使所述球体滚动,并能与所述球体一同移动,其特征在于,
所述机器人主体具有:
用于使自身在所述球体上朝偏转方向旋转的驱动机构;
偏转方向角速度传感器,该偏转方向角速度传感器检测所述机器人主体在偏转方向上的角速度;以及
摇摆方向角速度传感器,该摇摆方向角速度传感器检测所述机器人主体在摇摆方向上的角速度,
所述机器人主体以所述机器人主体的重心与通过所述球体的中心的垂直轴相一致的姿势而位于所述球体上,所述摇摆方向角速度传感器的基轴在俯仰方向相对于水平倾斜的状态下,使所述机器人主体在以所述垂直轴为中心的偏转方向上旋转的情况下,对基于所述摇摆方向角速度传感器的所述基轴的所述倾斜而生成的摇摆方向的角速度的检测误差进行抵消、修正,从而使得所述机器人主体能在保持规定姿势的同时进行旋转。
2.如权利要求1所述的球平衡机器人,其特征在于,
所述机器人主体具备对俯仰方向的角速度进行检测的俯仰方向角速度传感器,基于所述俯仰方向角速度传感器所检测出的角速度来求出所述摇摆方向角速度传感器的所述基轴相对于水平倾斜的角度,并基于所述角度来求出所述摇摆方向的角速度的误差。
CN201680014943.7A 2015-03-12 2016-02-29 球平衡机器人 Active CN107407939B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015-049356 2015-03-12
JP2015049356 2015-03-12
PCT/JP2016/056069 WO2016143581A1 (ja) 2015-03-12 2016-02-29 球乗りロボット

Publications (2)

Publication Number Publication Date
CN107407939A true CN107407939A (zh) 2017-11-28
CN107407939B CN107407939B (zh) 2020-08-14

Family

ID=56880581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680014943.7A Active CN107407939B (zh) 2015-03-12 2016-02-29 球平衡机器人

Country Status (4)

Country Link
US (1) US10168715B2 (zh)
JP (1) JP6344523B2 (zh)
CN (1) CN107407939B (zh)
WO (1) WO2016143581A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114148496A (zh) * 2021-12-14 2022-03-08 中国人民解放军海军特色医学中心 一种潜艇人员水下逃生装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6695061B2 (ja) * 2016-07-27 2020-05-20 パナソニックIpマネジメント株式会社 ロボット
JP6854722B2 (ja) * 2017-07-14 2021-04-07 パナソニック株式会社 ロボット
JP7081926B2 (ja) * 2018-01-10 2022-06-07 株式会社日立製作所 移動体、動作制御システム、及び移動体システム
CN110802596A (zh) * 2019-11-05 2020-02-18 任杰 一种机器人掌控自身平衡的监测感应器
CN114670202A (zh) * 2022-04-20 2022-06-28 北京航空航天大学 一种球平衡机器人的控制***

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342818A (ja) * 2004-06-01 2005-12-15 Furukawa Electric Co Ltd:The 一足球体輪移動ロボット
US7013200B2 (en) * 2002-05-17 2006-03-14 Victor Company Of Japan, Ltd. Movable robot
JP2006282160A (ja) * 2005-03-07 2006-10-19 Univ Of Tokyo 全方向移動ロボット及び該ロボットの全方向移動駆動機構
CN101085626A (zh) * 2006-06-06 2007-12-12 李天夫 平衡球车
CN101590323A (zh) * 2009-07-08 2009-12-02 北京工业大学 一种独轮机器人***及其控制方法
KR20100006966A (ko) * 2008-07-11 2010-01-22 정호원 로봇 완구
WO2010032493A1 (ja) * 2008-09-17 2010-03-25 株式会社村田製作所 転倒防止制御装置及びコンピュータプログラム
US8083013B2 (en) * 2006-12-06 2011-12-27 The Regents Of The University Of California Multimodal agile robots
CN102991600A (zh) * 2012-12-10 2013-03-27 北京交通大学 球式自平衡机器人
US20140067119A1 (en) * 2012-08-31 2014-03-06 Seiko Epson Corporation Robot
CN104155976A (zh) * 2014-07-18 2014-11-19 北京理工大学 自主式球轮移动机器人及其控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3070015B2 (ja) * 1990-11-30 2000-07-24 本田技研工業株式会社 不安定車両の走行制御装置
US6289263B1 (en) * 1997-12-16 2001-09-11 Board Of Trustees Operating Michigan State University Spherical mobile robot
JP2004129435A (ja) * 2002-10-04 2004-04-22 Sony Corp 搬送装置、制御方法、及び駆動機構
SE0402672D0 (sv) * 2004-11-02 2004-11-02 Viktor Kaznov Ball robot
CN100404212C (zh) * 2006-03-15 2008-07-23 北京邮电大学 带有可伸缩手臂的球形行走机器人
US7847504B2 (en) * 2006-10-10 2010-12-07 Carnegie Mellon University Dynamic balancing mobile robot
US20180043952A1 (en) * 2016-08-12 2018-02-15 Spin Master Ltd. Spherical mobile robot with shifting weight steering

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7013200B2 (en) * 2002-05-17 2006-03-14 Victor Company Of Japan, Ltd. Movable robot
JP2005342818A (ja) * 2004-06-01 2005-12-15 Furukawa Electric Co Ltd:The 一足球体輪移動ロボット
JP2006282160A (ja) * 2005-03-07 2006-10-19 Univ Of Tokyo 全方向移動ロボット及び該ロボットの全方向移動駆動機構
CN101085626A (zh) * 2006-06-06 2007-12-12 李天夫 平衡球车
US8083013B2 (en) * 2006-12-06 2011-12-27 The Regents Of The University Of California Multimodal agile robots
KR20100006966A (ko) * 2008-07-11 2010-01-22 정호원 로봇 완구
WO2010032493A1 (ja) * 2008-09-17 2010-03-25 株式会社村田製作所 転倒防止制御装置及びコンピュータプログラム
CN101590323A (zh) * 2009-07-08 2009-12-02 北京工业大学 一种独轮机器人***及其控制方法
US20140067119A1 (en) * 2012-08-31 2014-03-06 Seiko Epson Corporation Robot
CN102991600A (zh) * 2012-12-10 2013-03-27 北京交通大学 球式自平衡机器人
CN104155976A (zh) * 2014-07-18 2014-11-19 北京理工大学 自主式球轮移动机器人及其控制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
COULIBALY SOULEYMANE 等: "Self-balancing control using Wavelet Fuzzy CMAC for uncertain omnidirectional ball-driven vehicles", 《 2013 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY)》 *
T.B. LAUWERS 等: "A dynamically stable single-wheeled mobile robot with inverse mouse-ball drive", 《PROCEEDINGS 2006 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, 2006. ICRA 2006》 *
XIANG LI 等: "Nonlinear predictive control of an omnidirectional robot dribbling a rolling ball", 《2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION》 *
周爱国 等: "单球驱动机器人Ballbot的建模与控制研究", 《机电一体化》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114148496A (zh) * 2021-12-14 2022-03-08 中国人民解放军海军特色医学中心 一种潜艇人员水下逃生装置

Also Published As

Publication number Publication date
US20170357272A1 (en) 2017-12-14
WO2016143581A1 (ja) 2016-09-15
US10168715B2 (en) 2019-01-01
JP6344523B2 (ja) 2018-06-20
JPWO2016143581A1 (ja) 2017-11-30
CN107407939B (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
CN107407939A (zh) 球平衡机器人
CN105947006B (zh) 一种球形机器人及控制方法
TWI317498B (en) Inertial input apparatus with six-axial detection ability and the opearting method thereof
CN103809752B (zh) 可控制显示位置的便携式终端及其显示方法
CN106687182A (zh) 用于与虚拟现实***进行交互的移动地板及其使用
CN111044220B (zh) 无人机质心惯量集成测试方法
CN103869834B (zh) 基于经验模态法的三轴气浮台质心智能调节方法
JP5766641B2 (ja) 追尾装置
JP2004167676A5 (zh)
CN107063570B (zh) 可全方位倾斜的运动测试台及控制方法
CN106843258B (zh) 可全方位倾斜的小车跷跷板装置及其平衡控制方法
TW201142651A (en) Motion sensing system
US9586660B2 (en) Gyroscopic roll stabilizing device for marine vessels and method for same
Fuss et al. Determination of spin rate and axes with an instrumented cricket ball
CN103868648A (zh) 三轴气浮仿真实验平台的质心测量方法
CN105823600B (zh) 一种三轴气浮台上运动机构的动态平衡方法
CN106584474A (zh) 不倒翁机器人
CN108393882A (zh) 机器人姿态控制方法及机器人
TW201816561A (zh) 用於觸碰感測器之軌跡球
CN105128011B (zh) 一种基于视觉和移动的仿人机器人投射及稳定控制方法
US20230347501A1 (en) Movement control method for underactuated system robot and underactuated system robot
Zhang et al. Rider/bicycle pose estimation with IMU/seat force measurements
Zhao et al. A turning model of agricultural robot based on acceleration sensor
CN107024938B (zh) 一种轮式机器人的平衡***及其控制方法
US11268868B2 (en) Driving force applied position estimation system and driving force applied position estimation method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant