CN107382286A - 一种纳米孔径的多孔刚玉‑莫来石陶瓷及其制备方法 - Google Patents

一种纳米孔径的多孔刚玉‑莫来石陶瓷及其制备方法 Download PDF

Info

Publication number
CN107382286A
CN107382286A CN201710633571.2A CN201710633571A CN107382286A CN 107382286 A CN107382286 A CN 107382286A CN 201710633571 A CN201710633571 A CN 201710633571A CN 107382286 A CN107382286 A CN 107382286A
Authority
CN
China
Prior art keywords
nano aperture
powder
porous corundum
mullite ceramics
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710633571.2A
Other languages
English (en)
Other versions
CN107382286B (zh
Inventor
鄢文
齐江涛
吴贵圆
李楠
李亚伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Wuhan University of Science and Technology WHUST
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201710633571.2A priority Critical patent/CN107382286B/zh
Publication of CN107382286A publication Critical patent/CN107382286A/zh
Application granted granted Critical
Publication of CN107382286B publication Critical patent/CN107382286B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明涉及一种纳米孔径的多孔刚玉‑莫来石陶瓷及其制备方法。其技术方案是:将氢氧化铝细粉依次升温至280~450℃和800~1200℃,分别保温,得到高孔隙率的氧化铝粉体。按高孔隙率的氧化铝粉体为70~90wt%、硅溶胶为9~29wt%和二氧化硅微粉为1~10wt%配料,先将高孔隙率的氧化铝粉体置于真空搅拌机中,抽真空至2.0kPa以下,再将硅溶胶和二氧化硅微粉加入所述真空搅拌机中,搅拌,得到混合料。将所述混合料在110~220℃保温,冷却,机压成型,干燥,然后依次升温至800~1100℃和1400~1600℃,分别保温,即得纳米孔径的多孔刚玉‑莫来石陶瓷。本发明所制制品的气孔孔径为纳米级,具有透气度低、导热系数低、体积稳定性好和强度高的特点。

Description

一种纳米孔径的多孔刚玉-莫来石陶瓷及其制备方法
技术领域
本发明属于多孔刚玉-莫来石陶瓷技术领域。尤其涉及一种纳米孔径的多孔刚玉-莫来石陶瓷及其制备方法。
背景技术
刚玉-莫来石材料具有荷重软化温度高、抗热震性好和高温蠕变率低等优点,广泛用作高炉热风炉、加热炉等工业炉窑的内衬材料。由于刚玉-莫来石材料气孔率较低和导热系数高,会造成一定的炉衬散热损失,为了减少工业窑炉散热损失、增加刚玉-莫来石材料气孔率和降低刚玉-莫来石材料的导热系数,发展多孔刚玉-莫来石陶瓷作为工作窑炉保温材料迫在眉睫。
目前,关于制备多孔刚玉-莫来石陶瓷的研究有:如文献技术(曹贺辉,王刚,袁波等.泡沫注凝法制备刚玉-莫来石多孔陶瓷[J].耐火材料,2013,47(5):334-337.)以板状刚玉粉、氧化铝微粉和硅溶胶为原料,采用泡沫注凝法制备了刚玉-莫来石多孔陶瓷,该方法制备的材料的不仅强度较低和气孔孔径大,且气孔孔径与体积稳定性差;又如文献技术(Yan W, Chen Q, Lin X, et al. Pore characteristics and phase compositions ofporous corundum-mullite ceramics prepared from kaolinite gangue and Al(OH)3with different amount of CaCO3 addition[J]. Journal of the Ceramic Society ofJapan, 2015, 123(1441):897-902.)采用原位分解成孔技术、以Al(OH)3和煤矸石为原料制备了多孔刚玉-莫来石陶瓷,但其气孔孔径较大、透气度较大和强度较低。
发明内容
本发明旨在克服现有技术缺陷,目的是提供一种纳米孔径的多孔刚玉-莫来石陶瓷的制备方法,所制备的纳米孔径的多孔刚玉-莫来石陶瓷透气度低、导热系数低、体积稳定性好和强度高。
为实现上述目的,本发明采用的技术方案的步骤是:
步骤一、将氢氧化铝细粉置于高温炉内,先以1~2℃/min的速率升温至280~450℃,保温1~4小时,再以2~2.9℃/min的速率升温至800~1200℃,保温1~5小时,冷却,得到高孔隙率的氧化铝粉体。
步骤二、按所述高孔隙率的氧化铝粉体为70~90wt%、硅溶胶为9~29wt%和二氧化硅微粉为1~10wt%配料,先将所述高孔隙率的氧化铝粉体置于真空搅拌机中,抽真空至2.0kPa以下,再将所述硅溶胶和所述二氧化硅微粉倒入所述真空搅拌机中,搅拌15~30min,关闭抽真空***,得到混合料。
步骤三、将所述混合料在110~220℃条件下保温2~5h,冷却,在30~150MPa条件下机压成型,成型后的坯体在110℃条件下干燥12~36小时;然后将干燥后的坯体置于高温炉内,以2~3℃/min的速率升温至800~1100℃,保温1~4h,再以3~5℃/min的速率升温至1400~1600℃,保温3~8h,即得纳米孔径的多孔刚玉-莫来石陶瓷。
所述氢氧化铝细粉中的Al2O3含量为60~66wt%,所述氢氧化铝细粉的粒径小于88μm。
所述硅溶胶的SiO2含量为30~40wt%。
所述二氧化硅微粉的SiO2含量大于97wt%,所述二氧化硅微粉的粒径小于2μm。
由于采用上述技术方案,本发明与现有技术相比具有如下积极效果:
本发明利用氢氧化铝细粉在280~450℃条件下分解产生纳米级气孔,形成氧化铝微晶,利用其在800~1200℃时会发生表面扩散物质传输过程,使氧化铝微晶之间产生颈部链接,限制烧结中后期的颗粒重排,得到高孔隙率的氧化铝粉体;采用高孔隙率的氧化铝粉体为主要原料降低了纳米孔径的多孔刚玉-莫来石陶瓷的体积密度。
本发明向高孔隙率的氧化铝粉体中引入硅溶胶,在真空条件下硅溶胶中的SiO2富集在氧化铝颗粒颈部,通过高温下原位反应生成具有一定体积膨胀的莫来石,阻碍纳米孔合并长大。
本发明向高孔隙率的氧化铝粉体中引入二氧化硅微粉以填充氧化铝粉体之间的空隙,一方面会使氧化铝颗粒间的气孔纳米化,提高了纳米孔径的多孔刚玉-莫来石陶瓷的强度,降低了制品的透气度和导热系数;另一方面二氧化硅微粉和硅溶胶与高孔隙率的氧化铝原位反应生成莫来石,由于莫来石生成在氧化铝颗粒的颈部,形成氧化铝颗粒颈部间的连接,阻止了氧化铝颗粒在高温烧结过程中的重排,同时增加了纳米孔径的多孔刚玉-莫来石陶瓷的强度和体积稳定性。
本发明所制备的纳米孔径的多孔刚玉-莫来石陶瓷经检测:显气孔率为25~55%;体积密度为1.38~2.30g/cm3;平均孔径为100~1000nm;耐压强度为40~125MPa;物相组成为刚玉相和莫来石相。
因此,本发明所制备的纳米孔径的多孔刚玉-莫来石陶瓷的气孔孔径为纳米级,具有透气度低、导热系数低、体积稳定性好和强度高的特点。
具体实施方式
下面结合具体实施方式对本发明作进一步的描述,并非对其保护范围的限制。
为避免重复,先将本具体实施方式中的物料统一描述如下,实施例中不再赘述:
所述氢氧化铝细粉的Al2O3含量为60~66wt%。
所述硅溶胶的SiO2含量为30~40wt%。
所述二氧化硅微粉中的SiO2含量大于97wt%。
实施例1
一种纳米孔径的多孔刚玉-莫来石陶瓷及其制备方法。本实施例所述制备方法的步骤:
步骤一、将氢氧化铝细粉置于高温炉内,先以1~2℃/min的速率升温至280~450℃,保温1~2小时,再以2~2.9℃/min的速率升温至800~1000℃,保温1~3小时,冷却,得到高孔隙率的氧化铝粉体。
步骤二、按所述高孔隙率的氧化铝粉体为70~75wt%、硅溶胶为24~29wt%和二氧化硅微粉为1~5wt%配料,先将所述高孔隙率的氧化铝粉体置于真空搅拌机中,抽真空至2.0kPa以下,再将所述硅溶胶和所述二氧化硅微粉倒入所述真空搅拌机中,搅拌15~30min,关闭抽真空***,得到混合料。
步骤三、将所述混合料在110~220℃条件下保温2~3h,冷却,在30~60MPa条件下机压成型,成型后的坯体在110℃条件下干燥12~24小时;然后将干燥后的坯体置于高温炉内,以2~3℃/min的速率升温至800~1000℃,保温1~2h,再以4~5℃/min的速率升温至1400~1500℃,保温3~5h,即得纳米孔径的多孔刚玉-莫来石陶瓷。
本实施例所述氢氧化铝细粉粒径小于88μm;所述二氧化硅微粉粒径小于2μm。
本实施例所制备的纳米孔径的多孔刚玉-莫来石陶瓷经检测:显气孔率为35~55%;体积密度为1.38~1.99g/cm3;平均孔径为700~1000nm;耐压强度为40~95MPa。
实施例2
一种纳米孔径的多孔刚玉-莫来石陶瓷及其制备方法。本实施例所述制备方法的步骤:
步骤一、将氢氧化铝细粉置于高温炉内,先以1~2℃/min的速率升温至280~450℃,保温2~3小时,再以2~2.9℃/min的速率升温至1000~1200℃,保温3~5小时,冷却,得到高孔隙率的氧化铝粉体。
步骤二、按所述高孔隙率的氧化铝粉体为75~80wt%、硅溶胶为17~22wt%和二氧化硅微粉为3~8wt%配料,先将所述高孔隙率的氧化铝粉体置于真空搅拌机中,抽真空至1.7kPa以下,再将所述硅溶胶和所述二氧化硅微粉倒入所述真空搅拌机中,搅拌15~30min,关闭抽真空***,得到混合料。
步骤三、将所述混合料在110~220℃条件下保温3~4h,冷却,在60~90MPa条件下机压成型,成型后的坯体在110℃条件下干燥18~24小时;然后将干燥后的坯体置于高温炉内,以2~3℃/min的速率升温至1000~1100℃,保温2~4h,再以4~5℃/min的速率升温至1500~1600℃,保温3~5h,即得纳米孔径的多孔刚玉-莫来石陶瓷。
本实施例所述氢氧化铝细粉粒径小于44μm;所述氢氧化铝微粉粒径小于2μm。
本实施例所制备的纳米孔径的多孔刚玉-莫来石陶瓷经检测:显气孔率为32~45%;体积密度为1.68~2.08g/cm3;平均孔径为500~800nm;耐压强度为60~105MPa。
实施例3
一种纳米孔径的多孔刚玉-莫来石陶瓷及其制备方法。本实施例所述制备方法的步骤:
步骤一、将氢氧化铝细粉置于高温炉内,先以1~2℃/min的速率升温至280~450℃,保温2~4小时,再以2~2.9℃/min的速率升温至800~1000℃,保温1~3小时,冷却,得到高孔隙率的氧化铝粉体。
步骤二、按所述高孔隙率的氧化铝粉体为75~85wt%、硅溶胶为10~19wt%和二氧化硅微粉为5~10wt%配料,先将所述高孔隙率的氧化铝粉体置于真空搅拌机中,抽真空至0.7kPa以下,再将所述硅溶胶和所述二氧化硅微粉倒入所述真空搅拌机中,搅拌15~30min,关闭抽真空***,得到混合料。
步骤三、将所述混合料在110~220℃条件下保温3~5h,冷却,在90~120MPa条件下机压成型,成型后的坯体在110℃条件下干燥16~30小时;然后将干燥后的坯体置于高温炉内,以2~3℃/min的速率升温至800~1000℃,保温1~2h,再以3~4℃/min的速率升温至1400~1500℃,保温5~8h,即得纳米孔径的多孔刚玉-莫来石陶瓷。
本实施例所述氢氧化铝细粉粒径为22~74μm;所述二氧化硅微粉粒径小于1μm。
本实施例所制备的纳米孔径的多孔刚玉-莫来石陶瓷经检测:显气孔率为28~40%;体积密度为1.83~2.20g/cm3;平均孔径为300~600nm;耐压强度为73~115MPa。
实施例4
一种纳米孔径的多孔刚玉-莫来石陶瓷及其制备方法。本实施例所述制备方法的步骤:
步骤一、将氢氧化铝细粉置于高温炉内,先以1~2℃/min的速率升温至280~450℃,保温3~4小时,再以2~2.9℃/min的速率升温至1000~1200℃,保温3~5小时,冷却,得到高孔隙率的氧化铝粉体。
步骤二、按所述高孔隙率的氧化铝粉体为85~90wt%、硅溶胶为9~14wt%和二氧化硅微粉为1~5wt%配料,先将所述高孔隙率的氧化铝粉体置于真空搅拌机中,抽真空至1.2kPa以下,再将所述硅溶胶和所述二氧化硅微粉倒入所述真空搅拌机中,搅拌15~30min,关闭抽真空***,得到混合料。
步骤三、将所述混合料在110~220℃条件下保温4~5h,冷却,在120~150MPa条件下机压成型,成型后的坯体在110℃条件下干燥24~36小时;然后将干燥后的坯体置于高温炉内,以2~3℃/min的速率升温至1000~1100℃,保温2~4h,再以3~4℃/min的速率升温至1500~1600℃,保温4~8h,即得纳米孔径的多孔刚玉-莫来石陶瓷。
本实施例所述氢氧化铝细粉粒径小于22μm;所述二氧化硅微粉粒径小于1μm。
本实施例所制备的纳米孔径的多孔刚玉-莫来石陶瓷经检测:显气孔率为25~35%;体积密度为1.99~2.30g/cm3;平均孔径为100~400nm;耐压强度为85~125MPa。
本具体实施方式与现有技术相比具有如下积极效果:
本具体实施方式利用氢氧化铝细粉在280~450℃条件下分解产生纳米级气孔,形成氧化铝微晶,利用其在800~1200℃时会发生表面扩散物质传输过程,使氧化铝微晶之间产生颈部链接,限制烧结中后期的颗粒重排,得到高孔隙率的氧化铝粉体;采用高孔隙率的氧化铝粉体为主要原料降低了纳米孔径的多孔刚玉-莫来石陶瓷的体积密度。
本具体实施方式向高孔隙率的氧化铝粉体中引入硅溶胶,在真空条件下硅溶胶中的SiO2富集在氧化铝颗粒颈部,通过高温下原位反应生成具有一定体积膨胀的莫来石,阻碍纳米孔合并长大。
本具体实施方式向高孔隙率的氧化铝粉体中引入二氧化硅微粉以填充氧化铝粉体之间的空隙,一方面会使氧化铝颗粒间的气孔纳米化,提高了纳米孔径的多孔刚玉-莫来石陶瓷的强度,降低了制品的透气度和导热系数;另一方面二氧化硅微粉和硅溶胶与高孔隙率的氧化铝原位反应生成莫来石,由于莫来石生成在氧化铝颗粒的颈部,形成氧化铝颗粒颈部间的连接,阻止了氧化铝颗粒在高温烧结过程中的重排,同时增加了纳米孔径的多孔刚玉-莫来石陶瓷的强度和体积稳定性。
本具体实施方式所制备的纳米孔径的多孔刚玉-莫来石陶瓷经检测:显气孔率为25~55%;体积密度为1.38~2.30g/cm3;平均孔径为100~1000nm;耐压强度为40~125MPa;物相组成为刚玉相和莫来石相。
因此,本具体实施方式所制备的纳米孔径的多孔刚玉-莫来石陶瓷的气孔孔径为纳米级,具有透气度低、导热系数低、体积稳定性好和强度高的特点。

Claims (5)

1.一种纳米孔径的多孔刚玉-莫来石陶瓷的制备方法,其特征在于所述制备方法的步骤是:
步骤一、将氢氧化铝细粉置于高温炉内,先以1~2℃/min的速率升温至280~450℃,保温1~4小时;再以2~2.9℃/min的速率升温至800~1200℃,保温1~5小时,冷却,得到高孔隙率的氧化铝粉体;
步骤二、按所述高孔隙率的氧化铝粉体为70~90wt%、硅溶胶为9~29wt%和二氧化硅微粉为1~10wt%配料,先将所述高孔隙率的氧化铝粉体置于真空搅拌机中,抽真空至2.0kPa以下,再将所述硅溶胶和所述二氧化硅微粉倒入所述真空搅拌机中,搅拌15~30min,关闭抽真空***,得到混合料;
步骤三、将所述混合料在110~220℃条件下保温2~5h,冷却,在30~150MPa条件下机压成型,成型后的坯体在110℃条件下干燥12~36小时;然后将干燥后的坯体置于高温炉内,以2~3℃/min的速率升温至800~1100℃,保温1~4h,再以3~5℃/min的速率升温至1400~1600℃,保温3~8h,即得纳米孔径的多孔刚玉-莫来石陶瓷。
2.根据权利要求1所述的纳米孔径的多孔刚玉-莫来石陶瓷的制备方法,其特征在于所述氢氧化铝细粉中的Al2O3含量为60~66wt%,所述氢氧化铝细粉的粒径小于88μm。
3.根据权利要求1所述的纳米孔径的多孔刚玉-莫来石陶瓷的制备方法,其特征在于所述硅溶胶的SiO2含量为30~40wt%。
4.根据权利要求1所述的纳米孔径的多孔刚玉-莫来石陶瓷的制备方法,其特征在于所述二氧化硅微粉的SiO2含量大于97wt%,所述二氧化硅微粉的粒径小于2μm。
5.一种纳米孔径的多孔刚玉-莫来石陶瓷,其特征在于所述纳米孔径的多孔刚玉-莫来石陶瓷是根据权利要求1~4项中任一项所述的纳米孔径的多孔刚玉-莫来石陶瓷的制备方法所制备的纳米孔径的多孔刚玉-莫来石陶瓷。
CN201710633571.2A 2017-07-28 2017-07-28 一种纳米孔径的多孔刚玉-莫来石陶瓷及其制备方法 Active CN107382286B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710633571.2A CN107382286B (zh) 2017-07-28 2017-07-28 一种纳米孔径的多孔刚玉-莫来石陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710633571.2A CN107382286B (zh) 2017-07-28 2017-07-28 一种纳米孔径的多孔刚玉-莫来石陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN107382286A true CN107382286A (zh) 2017-11-24
CN107382286B CN107382286B (zh) 2020-06-09

Family

ID=60342918

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710633571.2A Active CN107382286B (zh) 2017-07-28 2017-07-28 一种纳米孔径的多孔刚玉-莫来石陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN107382286B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108623322A (zh) * 2018-06-29 2018-10-09 深圳市商德先进陶瓷股份有限公司 多孔陶瓷及其制备方法、雾化芯和电子烟
CN110723978A (zh) * 2019-10-30 2020-01-24 浙江自立高温科技股份有限公司 用于钢包永久层的微孔莫来石砖及其制备方法
CN111253150A (zh) * 2020-03-03 2020-06-09 武汉理工大学 一种电子封装用莫来石-刚玉复合陶瓷基片的制备方法
WO2020240579A1 (en) * 2019-05-30 2020-12-03 INDIAN INSTITUTE OF TECHNOLOGY MADRAS (IIT Madras) Method for preparation of porous mullite ceramic from pickering emulsion
CN112480873A (zh) * 2020-11-30 2021-03-12 武汉科技大学 一种刚玉-莫来石复合壳层相变蓄热球及其制备方法
CN112745138A (zh) * 2021-01-08 2021-05-04 武汉科技大学 一种晶须增强轻量化铝锆碳质耐火材料及其制备方法
CN114790108A (zh) * 2022-04-13 2022-07-26 山西太钢不锈钢股份有限公司 一种闭口纳米孔径气孔莫来石-高硅氧玻璃复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557710A (zh) * 2011-09-15 2012-07-11 中钢集团洛阳耐火材料研究院有限公司 一种具有纳米孔结构的刚玉-莫来石复相陶瓷材料的制备方法
CN103011884A (zh) * 2013-01-07 2013-04-03 中钢集团洛阳耐火材料研究院有限公司 一种刚玉莫来石轻质隔热材料的制备方法
CN103242051A (zh) * 2013-05-30 2013-08-14 武汉科技大学 一种轻质刚玉-莫来石浇注料及其制备方法
CN103804002A (zh) * 2014-02-21 2014-05-21 武汉科技大学 一种轻质刚玉-莫来石耐火砖及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557710A (zh) * 2011-09-15 2012-07-11 中钢集团洛阳耐火材料研究院有限公司 一种具有纳米孔结构的刚玉-莫来石复相陶瓷材料的制备方法
CN103011884A (zh) * 2013-01-07 2013-04-03 中钢集团洛阳耐火材料研究院有限公司 一种刚玉莫来石轻质隔热材料的制备方法
CN103242051A (zh) * 2013-05-30 2013-08-14 武汉科技大学 一种轻质刚玉-莫来石浇注料及其制备方法
CN103804002A (zh) * 2014-02-21 2014-05-21 武汉科技大学 一种轻质刚玉-莫来石耐火砖及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108623322A (zh) * 2018-06-29 2018-10-09 深圳市商德先进陶瓷股份有限公司 多孔陶瓷及其制备方法、雾化芯和电子烟
CN108623322B (zh) * 2018-06-29 2020-06-23 深圳市商德先进陶瓷股份有限公司 多孔陶瓷及其制备方法、雾化芯和电子烟
WO2020240579A1 (en) * 2019-05-30 2020-12-03 INDIAN INSTITUTE OF TECHNOLOGY MADRAS (IIT Madras) Method for preparation of porous mullite ceramic from pickering emulsion
CN110723978A (zh) * 2019-10-30 2020-01-24 浙江自立高温科技股份有限公司 用于钢包永久层的微孔莫来石砖及其制备方法
CN111253150A (zh) * 2020-03-03 2020-06-09 武汉理工大学 一种电子封装用莫来石-刚玉复合陶瓷基片的制备方法
CN112480873A (zh) * 2020-11-30 2021-03-12 武汉科技大学 一种刚玉-莫来石复合壳层相变蓄热球及其制备方法
CN112480873B (zh) * 2020-11-30 2021-07-20 武汉科技大学 一种刚玉-莫来石复合壳层相变蓄热球及其制备方法
CN112745138A (zh) * 2021-01-08 2021-05-04 武汉科技大学 一种晶须增强轻量化铝锆碳质耐火材料及其制备方法
CN112745138B (zh) * 2021-01-08 2022-08-05 武汉科技大学 一种晶须增强轻量化铝锆碳质耐火材料及其制备方法
CN114790108A (zh) * 2022-04-13 2022-07-26 山西太钢不锈钢股份有限公司 一种闭口纳米孔径气孔莫来石-高硅氧玻璃复合材料及其制备方法

Also Published As

Publication number Publication date
CN107382286B (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
CN107382286A (zh) 一种纳米孔径的多孔刚玉‑莫来石陶瓷及其制备方法
Zong et al. Preparation of anorthite-based porous ceramics using high-alumina fly ash microbeads and steel slag
CN107311677B (zh) 一种钛铝酸钙-莫来石复相耐火材料及其制备方法
CN107266097A (zh) 一种轻量莫来石耐火材料及其制备方法
CN107311680A (zh) 一种轻量化刚玉‑莫来石浇注料及其制备方法
CN106220218A (zh) 一种泡沫陶瓷过滤器及其制造方法
CN103880448A (zh) 一种浇注成型大型自结合碳化硅制品
CN103232228B (zh) 一种多孔氧化铝复合陶瓷的制备方法
CN103819219A (zh) 一种耐酸碱腐蚀的碳化硅多孔支撑体
WO2017004776A1 (zh) 多孔氧化铝陶瓷及其制备方法
CN107285806A (zh) 纳米孔径的多孔刚玉‑镁铝尖晶石陶瓷及其制备方法
CN107010973B (zh) 一种轻质复相多孔隔热耐火材料和莫来石质耐火材料及其制备方法
CN105884394A (zh) 一种低温制备多孔碳化硅支撑体的方法
CN106673653A (zh) 一种金刚石/硅复合材料的制备方法
CN103833383B (zh) 一种闭孔结构的刚玉-镁铝尖晶石质耐火骨料的制备方法
CN103553583A (zh) 一种多孔莫来石-碳化硅复合陶瓷材料及其制备方法
CN104761274B (zh) 碳化硅多孔陶瓷及其制备工艺
CN111747759B (zh) 一种制备莫来石基轻质耐火材料并同步提纯钼焙砂的方法
CN108675819A (zh) 一种氧化铝-莫来石多孔陶瓷及其制备方法
CN108793911B (zh) 一种利用发泡法制备镁质轻质骨料的方法
CN104072142A (zh) 一种氧化物结合SiC多孔陶瓷的制备方法
CN103420684A (zh) 六铝酸钙/钙长石复相轻质隔热保温耐火材料及其制备方法
CN105084364B (zh) 一种多孔碳化硅球形粉末的制备工艺
CN106430981A (zh) 一种含改性粉煤灰的堇青石基微晶玻璃及其制备工艺
Hotta et al. Pore-size control in porous SiC ceramics prepared by spark plasma sintering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant