CN107342319A - 一种复合应变Si/SiGe异质结双极晶体管及其制备方法 - Google Patents

一种复合应变Si/SiGe异质结双极晶体管及其制备方法 Download PDF

Info

Publication number
CN107342319A
CN107342319A CN201710473915.8A CN201710473915A CN107342319A CN 107342319 A CN107342319 A CN 107342319A CN 201710473915 A CN201710473915 A CN 201710473915A CN 107342319 A CN107342319 A CN 107342319A
Authority
CN
China
Prior art keywords
base
substrate
layer
insulating barrier
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710473915.8A
Other languages
English (en)
Other versions
CN107342319B (zh
Inventor
周春宇
王冠宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Chengxin Micro Technology Co.,Ltd.
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201710473915.8A priority Critical patent/CN107342319B/zh
Publication of CN107342319A publication Critical patent/CN107342319A/zh
Application granted granted Critical
Publication of CN107342319B publication Critical patent/CN107342319B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • H01L29/0817Emitter regions of bipolar transistors of heterojunction bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66242Heterojunction transistors [HBT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)

Abstract

一种复合应变Si/SiGe异质结双极晶体管及其制备方法,所述晶体管选取晶向为(100)的单晶Si衬底;在所述单晶Si衬底的上部两端形成STI隔离区结构;在衬底表面淀积绝缘介质用以定义有源区位置;在有源区依次外延Si集电区、双轴应变Si1‑xGex基区和Si发射区;利用自对准工艺在所述有源区进行刻蚀,并选择性外延掺杂C的Si1‑yGey;在Si1‑yGey表面淀积一层多晶硅作为基极,在基极表面热生长一层绝缘层,在基极绝缘层上淀积多晶硅作为发射极。本发明提高了载流子的迁移率和器件的工作速度,也提高了集电区的击穿电压,实现了混合高速高压器件的集成,满足太赫兹频段对核心器件性能的要求。

Description

一种复合应变Si/SiGe异质结双极晶体管及其制备方法
技术领域
本发明涉及半导体集成电路技术领域,尤其涉及一种复合应变Si/SiGe异质结双极晶体管及其制备方法。
背景技术
SiGe异质结双极晶体管(HBT)是将Si基双极结型晶体管(BJT)的基区加入了少量的Ge组分。基区采用SiGe材料,显著的提高了器件性能,使得SiGe HBT已成为高速应用中的标准双极晶体管。超高频半导体器件的两个关键指标是截止频率(fT)和最高振荡频率(fmax)。在成熟的硅工艺基础上开发出来的基于锗硅(SiGe)工艺异质结双极晶体管(HBT)利用了“能带工程”的优势,从根本上解决了提高放大倍数与提高频率特性的矛盾。由于与成熟的硅工艺完全兼容,并且fT和fmax可以与III-V族化合物HBT接近甚至可以相比拟。
硅基应变技术可以有效的提高晶体管的迁移率,从而提高器件的性能,目前已成为高速/高性能半导体器件和集成电路重要的研究领域和发展方向之一。硅基小尺寸SiGeHBT在0.3-1THz频段内具有比较优异的性能,并且与硅基CMOS工艺完全兼容,所以从工艺技术的角度考虑,完全可以将单轴应力引入到小尺寸SiGe HBT的器件结构中,进而可以合理改变器件的能带结构与材料物理参数,进一步提高器件的高速和高频特性。同时单轴应变的引入,还可以进一步提高击穿电场(电压),即在高速的同时还可以实现高压大功率。
发明内容
本发明目的在于提供一种提高载流子迁移率、提高器件工作速度、提高集电区击穿电压的复合应变Si/SiGe异质结双极晶体管及其制备方法。
为实现上述目的,采用了以下技术方案:本发明所述晶体管选取晶向为(100)的单晶Si衬底;在所述单晶Si衬底的上部两端形成STI隔离区结构;在衬底表面淀积绝缘介质用以定义有源区位置;在有源区依次外延Si集电区、双轴应变Si1-xGex基区和Si发射区;利用自对准工艺在所述有源区进行刻蚀,并选择性外延掺杂C的Si1-yGey;在Si1-yGey表面淀积一层多晶硅作为基极,在基极表面热生长一层绝缘层作为基极和发射极的隔离层,在所述的基极绝缘层上淀积多晶硅作为发射极。
进一步的,所述衬底表面沉淀的绝缘介质为SiO2
进一步的,所述的选择性外延的Si1-yGey:C材料,在器件的集电区、基区和发射区同时引入应变,形成了双轴和单轴的复合应变。
本发明所述一种复合应变Si/SiGe异质结双极晶体管制备方法,制备步骤如下:
步骤1,选取单晶硅掺杂浓度为1015cm-3的P型Si(100)为初始材料,作为衬底;
步骤2,在单晶Si衬底上的两端形成STI结构,形成器件间的隔离区域;
步骤3,在形成的STI结构的衬底上,淀积一层SiO2绝缘层;
步骤4,通过掩膜光刻显影,刻蚀后留下的绝缘层,该绝缘层定义了器件的有源区位置;
步骤5,在两部分绝缘层之间,依次选择性外延生长N型Si集电区、P型Si1-xGex基区和N型Si发射区;
步骤6,采用和CMOS完全同样的方法,在N型Si发射区上制作MOS栅结构,该结构由氮化硅层、氧化硅层和侧墙组成;
步骤7,以形成的栅结构作为掩膜,在绝缘层之间,沿着垂直衬底方向刻蚀有源区的Si发射区、Si1-xGex基区和Si集电区;
步骤8,将刻蚀出来的凹坑处,选择性外延掺杂C的Si1-yGey
步骤9,Si发射区淀积一层多晶硅,进行一次光刻后,形成器件的基极;
步骤10,在多晶硅基极周围淀积一层绝缘层,隔离基极和发射极;
步骤11,淀积多晶硅,作为发射极。
与现有技术相比,本发明具有如下优点:将成熟的硅基集成电路工艺与快速发展的SiGe技术以及“硅基应变技术”这三者有机结合,通过在基区和发射区区域引入单轴应力来形成一种新的太赫兹频段下的复合应变Si/SiGe HBT新结构,从而实现器件发射区、基区和集电区均为应变结构,每个区域所施加的单轴应力均可以大幅提高纵向少数载流子的迁移率,从而提高器件的高频特性,尤其在集电区,应力的引入可以提高集电结的击穿电压,进而提高器件的功率特性,可实现混合高压高速器件的集成。
附图说明
图1是本发明的剖面示意图。
图2a—图2f为本发明制备方法示意图。
附图标号:100-Si、101-STI结构、102-绝缘层A、103-N型Si集电区、104-P型Si1- xGex基区、105-N型Si发射区、106-氮化硅层、107-氧化硅层、108-侧墙、109-掺杂C的Si1- yGey、110-基极、111-绝缘层B、112-发射极。
具体实施方式
下面结合附图对本发明做进一步说明:
如图1所示,本发明所述晶体管选取晶向为(100)的单晶Si衬底;在所述单晶Si衬底的上部两端形成STI隔离区结构;在衬底表面淀积绝缘介质用以定义有源区位置;在有源区依次外延Si集电区、双轴应变Si1-xGex基区和Si发射区;利用自对准工艺在所述有源区进行刻蚀,并选择性外延掺杂C的Si1-yGey;在Si1-yGey表面淀积一层多晶硅作为基极,在基极表面热生长一层绝缘层作为基极和发射极的隔离层,在所述的基极绝缘层上淀积多晶硅作为发射极。所述衬底表面沉淀的绝缘介质为SiO2。所述的选择性外延的Si1-yGey:C材料,由于和基区Si1-xGex材料以及发射区、集电区Si材料晶格的差异,在器件的集电区、基区和发射区同时引入应变,特别在基区,形成了双轴和单轴的复合应变。
一种复合应变Si/SiGe异质结双极晶体管制备方法,制备步骤如下:
步骤1,Si(100)衬底,如图2a所示;选取单晶硅掺杂浓度为1015cm-3的P型Si(100)为初始材料,作为衬底;
步骤2,在单晶Si衬底上的两端形成STI结构101,形成器件间的隔离区域;
步骤3,在形成的STI结构的衬底上,淀积一层SiO2绝缘层;
步骤4,通过掩膜光刻显影,刻蚀后留下的绝缘层A102,如图2b所示,该绝缘层定义了器件的有源区位置;
步骤5,在两部分绝缘层之间,依次选择性外延生长N型Si集电区103、P型Si1-xGex基区104和N型Si发射区105,如图2c所示;
由于Si1-xGex和Si晶格的差异,适当控制工艺条件,赝晶生长的Si1-xGex基区104沿着衬底平面方向具有张应变;
步骤6,采用和CMOS完全同样的方法,在N型Si发射区上制作MOS栅结构,该结构由氮化硅层106、氧化硅层107和侧墙108组成,如图2d所示;
步骤7,以形成的栅结构作为掩膜,在绝缘层之间,沿着垂直衬底方向刻蚀有源区的Si发射区、Si1-xGex基区和Si集电区;
步骤8,将刻蚀出来的凹坑处,选择性外延掺杂C的Si1-yGey109,如图2e所示;
在掺C的目的是为了抑制掺入的高剂量硼的进一步扩散;
外延生长的Si1-yGey,由于Ge组分的不同,在整个器件的有源区(集电区、发射区和基区)进一步引入了平行衬底方向的单轴应变;
应力的引入,可以降低载流子的有效质量,提高载流子的迁移率;
复合应力的引入,将大幅度提高载流子的迁移率,进而提高器件的频率特性,同时由于有效质量的降低,还进一步提高了集电结的击穿电场/电压,进而提高器件的功率特性。可以实现混合高速高压器件的集成。
步骤9,Si发射区淀积一层多晶硅,进行一次光刻后,形成器件的基极110;
步骤10,在多晶硅基极周围淀积一层绝缘层B111,隔离基极和发射极112;
步骤11,淀积多晶硅,作为发射极。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (4)

1.一种复合应变Si/SiGe异质结双极晶体管,其特征在于:所述晶体管选取晶向为(100)的单晶Si衬底;在所述单晶Si衬底的上部两端形成STI隔离区结构;在衬底表面淀积绝缘介质用以定义有源区位置;在有源区依次外延Si集电区、双轴应变Si1-xGex基区和Si发射区;利用自对准工艺在所述有源区进行刻蚀,并选择性外延掺杂C的Si1-yGey;在Si1-yGey表面淀积一层多晶硅作为基极,在基极表面热生长一层绝缘层作为基极和发射极的隔离层,在所述的基极绝缘层上淀积多晶硅作为发射极。
2.根据权利要求1所述的一种复合应变Si/SiGe异质结双极晶体管,其特征在于:所述衬底表面沉淀的绝缘介质为SiO2
3.根据权利要求1所述的一种复合应变Si/SiGe异质结双极晶体管,其特征在于:所述的选择性外延的Si1-yGey:C材料,在器件的集电区、基区和发射区同时引入应变,形成了双轴和单轴的复合应变。
4.一种复合应变Si/SiGe异质结双极晶体管制备方法,其特征在于,所述制备步骤如下:
步骤1,选取单晶硅掺杂浓度为1015cm-3的P型Si(100)为初始材料,作为衬底;
步骤2,在单晶Si衬底上的两端形成STI结构,形成器件间的隔离区域;
步骤3,在形成的STI结构的衬底上,淀积一层SiO2绝缘层;
步骤4,通过掩膜光刻显影,刻蚀后留下的绝缘层,该绝缘层定义了器件的有源区位置;
步骤5,在两部分绝缘层之间,依次选择性外延生长N型Si集电区、P型Si1-xGex基区和N型Si发射区;
步骤6,采用和CMOS完全同样的方法,在N型Si发射区上制作MOS栅结构,该结构由氮化硅层、氧化硅层和侧墙组成;
步骤7,以形成的栅结构作为掩膜,在绝缘层之间,沿着垂直衬底方向刻蚀有源区的Si发射区、Si1-xGex基区和Si集电区;
步骤8,将刻蚀出来的凹坑处,选择性外延掺杂C的Si1-yGey
步骤9,Si发射区淀积一层多晶硅,进行一次光刻后,形成器件的基极;
步骤10,在多晶硅基极周围淀积一层绝缘层,隔离基极和发射极;
步骤11,淀积多晶硅,作为发射极。
CN201710473915.8A 2017-06-21 2017-06-21 一种复合应变Si/SiGe异质结双极晶体管及其制备方法 Active CN107342319B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710473915.8A CN107342319B (zh) 2017-06-21 2017-06-21 一种复合应变Si/SiGe异质结双极晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710473915.8A CN107342319B (zh) 2017-06-21 2017-06-21 一种复合应变Si/SiGe异质结双极晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN107342319A true CN107342319A (zh) 2017-11-10
CN107342319B CN107342319B (zh) 2019-12-10

Family

ID=60220928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710473915.8A Active CN107342319B (zh) 2017-06-21 2017-06-21 一种复合应变Si/SiGe异质结双极晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN107342319B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630748A (zh) * 2018-05-09 2018-10-09 燕山大学 全平面太赫兹复合应变Si/SiGe异质结双极晶体管及制备方法
CN108649067A (zh) * 2018-05-09 2018-10-12 燕山大学 一种太赫兹SOI复合应变Si/SiGe异质结双极晶体管及制备方法
CN109148291A (zh) * 2018-08-15 2019-01-04 深圳市诚朗科技有限公司 一种晶体管及其制作方法
CN109405860A (zh) * 2018-09-19 2019-03-01 天津大学 基于天线直接匹配的锗硅异质结双极晶体管探测器
CN112992898A (zh) * 2021-02-05 2021-06-18 重庆邮电大学 一种SiGe BiCMOS晶体管集成结构及其实现方法
CN113838923A (zh) * 2021-09-23 2021-12-24 燕山大学 一种三维应变Si双极结型晶体管及其制备方法
CN113838926A (zh) * 2021-08-16 2021-12-24 北京工业大学 一种具有高压和高增益模式的高频横向双极晶体管电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030006407A1 (en) * 1996-10-16 2003-01-09 Taylor Geoff W. Apparatus and a method of fabricating inversion channel devices with precision gate doping for a monolithic integrated circuit
US20080116488A1 (en) * 2006-11-20 2008-05-22 Kyu-Hwan Shim Transistor structure and manufacturing method thereof
CN101257043A (zh) * 2007-02-28 2008-09-03 三洋电机株式会社 半导体装置及其制造方法
US20100062578A1 (en) * 2007-06-01 2010-03-11 Detlef Wilhelm Bipolar Transistor and Method for Making Same
CN103050400A (zh) * 2011-10-11 2013-04-17 Nxp股份有限公司 双极晶体管制造方法、双极晶体管和集成电路
CN106298896A (zh) * 2015-06-23 2017-01-04 格罗方德半导体公司 在有源装置区中具有埋入介电区的双极结晶体管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030006407A1 (en) * 1996-10-16 2003-01-09 Taylor Geoff W. Apparatus and a method of fabricating inversion channel devices with precision gate doping for a monolithic integrated circuit
US20080116488A1 (en) * 2006-11-20 2008-05-22 Kyu-Hwan Shim Transistor structure and manufacturing method thereof
CN101257043A (zh) * 2007-02-28 2008-09-03 三洋电机株式会社 半导体装置及其制造方法
US20100062578A1 (en) * 2007-06-01 2010-03-11 Detlef Wilhelm Bipolar Transistor and Method for Making Same
CN103050400A (zh) * 2011-10-11 2013-04-17 Nxp股份有限公司 双极晶体管制造方法、双极晶体管和集成电路
CN106298896A (zh) * 2015-06-23 2017-01-04 格罗方德半导体公司 在有源装置区中具有埋入介电区的双极结晶体管

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630748A (zh) * 2018-05-09 2018-10-09 燕山大学 全平面太赫兹复合应变Si/SiGe异质结双极晶体管及制备方法
CN108649067A (zh) * 2018-05-09 2018-10-12 燕山大学 一种太赫兹SOI复合应变Si/SiGe异质结双极晶体管及制备方法
CN108630748B (zh) * 2018-05-09 2020-05-29 燕山大学 全平面太赫兹复合应变Si/SiGe异质结双极晶体管及制备方法
CN108649067B (zh) * 2018-05-09 2020-12-01 燕山大学 一种太赫兹SOI复合应变Si/SiGe异质结双极晶体管及制备方法
CN109148291A (zh) * 2018-08-15 2019-01-04 深圳市诚朗科技有限公司 一种晶体管及其制作方法
CN109405860A (zh) * 2018-09-19 2019-03-01 天津大学 基于天线直接匹配的锗硅异质结双极晶体管探测器
CN109405860B (zh) * 2018-09-19 2020-12-29 天津大学 基于天线直接匹配的锗硅异质结双极晶体管探测器
CN112992898A (zh) * 2021-02-05 2021-06-18 重庆邮电大学 一种SiGe BiCMOS晶体管集成结构及其实现方法
CN113838926A (zh) * 2021-08-16 2021-12-24 北京工业大学 一种具有高压和高增益模式的高频横向双极晶体管电路
CN113838926B (zh) * 2021-08-16 2023-09-12 北京工业大学 一种具有高压和高增益模式的高频横向双极晶体管电路
CN113838923A (zh) * 2021-09-23 2021-12-24 燕山大学 一种三维应变Si双极结型晶体管及其制备方法
CN113838923B (zh) * 2021-09-23 2023-07-25 燕山大学 一种三维应变Si双极结型晶体管及其制备方法

Also Published As

Publication number Publication date
CN107342319B (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
CN107342319A (zh) 一种复合应变Si/SiGe异质结双极晶体管及其制备方法
US5637889A (en) Composite power transistor structures using semiconductor materials with different bandgaps
CN107275407A (zh) 一种碳化硅vdmos器件及其制作方法
CN100530684C (zh) 异质结双极型晶体管及其制造方法
CN108649067B (zh) 一种太赫兹SOI复合应变Si/SiGe异质结双极晶体管及制备方法
CN108630748B (zh) 全平面太赫兹复合应变Si/SiGe异质结双极晶体管及制备方法
CN107275406A (zh) 一种碳化硅TrenchMOS器件及其制作方法
US11322595B2 (en) Heterojunction bipolar transistor and preparation method thereof
CN109166916B (zh) 一种绝缘栅双极型晶体管及其制备方法
CN109192771B (zh) 一种电荷存储型绝缘栅双极型晶体管及其制备方法
CN107425068A (zh) 一种碳化硅TrenchMOS器件及其制作方法
CN105047719B (zh) 基于InAsN‑GaAsSb材料的交错型异质结隧穿场效应晶体管
CN107887430A (zh) 衬底施加单轴应力的硅锗异质结双极晶体管及其制造方法
CN106298943B (zh) 一种具有体电场调制的横向双扩散金属氧化物半导体场效应管
CN111739939A (zh) 一种高频硅锗异质结双极晶体管及其制造方法
CN109346509B (zh) 一种电荷存储型绝缘栅双极型晶体管及其制备方法
CN107146811A (zh) 基于阻挡层调制结构的电流孔径功率晶体管及其制作方法
CN108054203B (zh) 一种绝缘体上硅锗衬底的异质结双极晶体管及其制造方法
CN101944528B (zh) Mos栅基极开关四极管
CN104347403A (zh) 一种绝缘栅双极性晶体管的制造方法
CN101246825B (zh) 硅材料高频低功耗功率结型场效应晶体管(jfet)的制造方法
CN206422071U (zh) 功率半导体器件
CN106981510A (zh) 一种碳化硅双极结型晶体管
WO2015014282A1 (zh) 绝缘栅双极型晶体管的制造方法
US11195940B2 (en) High-voltage terahertz strained SiGe/InGaP heterojunction bipolar transistor and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Zhou Chunyu

Inventor after: Wang Guanyu

Inventor after: Song Yutong

Inventor before: Zhou Chunyu

Inventor before: Wang Guanyu

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220307

Address after: 518112 Room 601, building A3, No. 31, Bulan Road, xialilang community, Nanwan street, Longgang District, Shenzhen, Guangdong Province

Patentee after: Shenzhen Chengxin Micro Technology Co.,Ltd.

Address before: 066004 No. 438 west section of Hebei Avenue, seaport District, Hebei, Qinhuangdao

Patentee before: Yanshan University

TR01 Transfer of patent right