CN107337452A - 高透明性和发光热稳定性的Sm3+掺杂钨青铜发光铁电陶瓷材料及其制备方法 - Google Patents

高透明性和发光热稳定性的Sm3+掺杂钨青铜发光铁电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN107337452A
CN107337452A CN201710577173.3A CN201710577173A CN107337452A CN 107337452 A CN107337452 A CN 107337452A CN 201710577173 A CN201710577173 A CN 201710577173A CN 107337452 A CN107337452 A CN 107337452A
Authority
CN
China
Prior art keywords
ceramic material
luminous
preparation
tungsten bronze
adulterate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710577173.3A
Other languages
English (en)
Other versions
CN107337452B (zh
Inventor
魏灵灵
郝胜兰
杨祖培
晁小练
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201710577173.3A priority Critical patent/CN107337452B/zh
Publication of CN107337452A publication Critical patent/CN107337452A/zh
Application granted granted Critical
Publication of CN107337452B publication Critical patent/CN107337452B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高透明性和发光热稳定性的Sm3+掺杂钨青铜发光铁电陶瓷材料及其制备方法,该陶瓷材料的结构通式为Sr1.90Ca0.15Na0.90‑3xSmxNb5O15,其中x的取值为0.005~0.015,采用传统高温固相法制备而成,制备方法简单、成本低廉,便于规模化生产。本发明通过在陶瓷材料中掺杂Sm3+,显著提高了其透光率,在可见光区的透光率可达到51%,其介电、铁电性能也有所提高,当x=0.10时,其最大介电常数为1759、居里温度为289℃、室温介电常数达到2096。而且本发明陶瓷材料在蓝紫外光λ=406nm激发下发射出很强的橙红光,发光热稳定性很好,在150℃时仍有80%。

Description

高透明性和发光热稳定性的Sm3+掺杂钨青铜发光铁电陶瓷材 料及其制备方法
技术领域
本发明属于陶瓷材料技术领域,具体涉及一种多功能响应的高透明性和高发光热稳定性的Sm3+掺杂接近充满型Sr1.90Ca0.15Na0.90Nb5O15基钨青铜结构发光铁电陶瓷材料及其制备方法。
背景技术
近年来,无铅压铁电材料除了研究提高压铁电性能以期替代含铅材料外,还在储能、应变、电卡、热电、光电、发光等方面发现新的功能特性,使其受到越来越多的关注。而透明陶瓷作为一种先进功能材料,由于其具有优异的力学、热学、光学和电学等性能,应用十分广泛。自1962年美国首次制备氧化铝透明陶瓷以来,世界各国对透明陶瓷进行了大量研究,开发了氧化物和非氧化物透明陶瓷、掺镧的锆钛酸铅(PLZT)电光透明陶瓷、透明闪烁陶瓷等。
近年来,钨青铜结构材料由于其结构灵活多变的可调性,不同的离子掺杂或A位、B位离子的无序排布,可使其电学性能的调控性很大,故受到了广泛关注,但很少关注其透明性能。发明人所在的研究小组采用传统固相法研究了(Sr0.925Ca0.075)2.5-0.5xNaxNb5O15(SCNN)体系,通过调节Na的含量使钨青铜结构从未充满型向充满型转变,结果发现随着填充程度的增大,其电学性能也随之增大,但是当x=1.0时,虽然结构处于充满型,但会生成第二相,恶化其电学性能。而且所得SCNN陶瓷的透光率均较低。
发明内容
本发明所要解决的技术问题在于提供一种具有高透明性同时具有发光性能且发光热稳定高的Sm3+掺杂钨青铜发光铁电陶瓷材料,并为该陶瓷材料提供一种工艺简单、重复性好、成本低廉的制备方法。
解决上述技术问题所采用的陶瓷材料的通式为Sr1.90Ca0.15Na0.90-3xSmxNb5O15,其中x的取值为0.005~0.015,优选x的取值为0.010。
本发明Sm3+掺杂钨青铜发光铁电陶瓷材料的制备方法由下述步骤组成:
1、按照Sr1.90Ca0.15Na0.90-3xSmxNb5O15的化学计量分别称取纯度为99.00%以上的Nb2O5、Na2CO3、SrCO3、CaCO3、Sm2O3,充分混合球磨16~24小时,在80~100℃下干燥12~24小时,得到原料混合物。
2、将原料混合物在1180~1240℃下预烧5~8小时,得到预烧粉。
3、将预烧粉经造粒、压片、排胶后,在1300~1340℃下烧结3~5小时,得到Sm3+掺杂钨青铜发光铁电陶瓷材料。
上述步骤2中,优选将原料混合物在1200℃下预烧6小时。
上述步骤3中,优选将预烧粉经造粒、压片、排胶后,在1320℃下烧结4小时。
本发明通过在Sr1.90Ca0.15Na0.90Nb5O15陶瓷体系中掺杂Sm3+,不但提高了陶瓷材料的透明性,且所得陶瓷材料还具有发橙红光性能,发光热稳定高。同时陶瓷材料的介电、铁电性能都得到了显著提高。本发明方法简单、重复性好、成本低廉,较目前所报道的钨青铜结构材料,实现了透明-电-光等多功能特性的耦合,具有广阔的应用前景。
附图说明
图1是对比例1及实施例1~3制备的陶瓷材料的XRD图。
图2是对比例1及实施例1~3制备的陶瓷材料的透光率。
图3是实施例1~3制备的陶瓷材料的发射光谱。
图4是实施例2制备的陶瓷材料在不同温度下的发光强度图。
图5是对比例1及实施例1~3制备的陶瓷材料在10kHz下的居里温度和最大介电常数对比图。
图6是对比例1及实施例1~3制备的陶瓷材料在10kHz下的室温介电常数和介电损耗对比图。
图7是对比例1及实施例1~3制备的陶瓷材料的电滞回线。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
1、按照Sr1.90Ca0.15Na0.885Sm0.005Nb5O15的化学计量分别称取纯度为99.80%的Na2CO30.9297g、纯度为99.00%的SrCO3 5.6052g、纯度为99.99%的Nb2O5 13.1478g、纯度为99.00%的CaCO3 0.3000g、纯度为99.90%的Sm2O3 0.0173g,装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,用球磨机401转/分钟球磨24小时,然后置于干燥箱内在80℃下干燥15小时,用研钵研磨30分钟,过80目筛,得到原料混合物。
2、将原料混合物置于氧化铝坩埚内,用玛瑙棒压实,使其压实密度为1.5g/cm3,加盖,置于电阻炉内,以3℃/分钟的升温速率升温至1200℃预烧6小时,自然冷却至室温,用研钵研磨10分钟,过120目筛,得到预烧粉。
3、向预烧粉中加入其质量50%的质量分数为5%的聚乙烯醇水溶液,造粒,过120目筛,制成球状粉粒,将球状粉粒放入直径为15mm的不锈钢模具内,用粉末压片机在300MPa的压力下将其压制成厚度为1.5mm的圆柱状坯件,将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,先升温至500℃,保温2小时排胶,冷却至室温,以10℃/分钟的升温速率升温至1000℃,再以3℃/分钟的升温速率升温至1320℃,烧结4小时,随炉自然冷却至室温,得到Sm3+掺杂钨青铜发光铁电陶瓷材料。
实施例2
本实施例的步骤1中,按照Sr1.90Ca0.15Na0.870Sm0.01Nb5O15的化学计量分别称取纯度为99.80%的Na2CO3 0.9139g、纯度为99.00%的SrCO3 5.6048g、纯度为99.99%的Nb2O513.1468g、纯度为99.00%的CaCO3 0.3000g、纯度为99.90%的Sm2O3 0.0345g,其他步骤与实施例1相同,得到Sm3+掺杂钨青铜发光铁电陶瓷材料。
实施例3
本实施例的步骤1中,按照Sr1.90Ca0.15Na0.855Sm0.015Nb5O15的化学计量分别称取纯度为99.80%的Na2CO3 0.8980g、纯度为99.00%的SrCO3 5.6043g、纯度为99.99%的Nb2O513.1459g、纯度为99.00%的CaCO3 0.3000g、纯度为99.90%的Sm2O3 0.0518g,其他步骤与实施例1相同,得到Sm3+掺杂钨青铜发光铁电陶瓷材料。
对比例1
按照Sr1.90Ca0.15Na0.90Nb5O15的化学计量分别称取纯度为99.80%的Na2CO30.9455g、纯度为99.00%的SrCO3 5.6056g、纯度为99.99%的Nb2O5 13.1488g、纯度为99.00%的CaCO3 0.3000g,其他步骤与实施例1相同,得到Sr1.90Ca0.15Na0.90Nb5O15陶瓷材料。
上述实施例1~3以及对比例1制备的陶瓷材料分别采用D/max-2200X型射线衍射仪(由日本理学公司生产)进行XRD测试、采用UV-3600型紫外可见近红外光分光光度计(由日本岛津公司生产)进行光学透光率测试、采用F-4600型荧光分光光度计连接控温装置(THMS600)对其发光热稳定性进行测试,结果见图1~3。由图1可见,实施例1~3及对比例1制备的陶瓷材料均为纯的四方钨青铜相。从图2可以看到,对比例1中未掺杂Sm3+的陶瓷材料在可见光区的透光率仅为35%左右,而本发明实施例1~3通过在Sr1.90Ca0.15Na0.90Nb5O15陶瓷材料中掺杂Sm3+,陶瓷材料的透明性明显提高,在可见光区的透光率均能达到50%以上。从图3的发射光谱可见,本发明实施例1~3制备的陶瓷材料在紫外光激发下,在600nm处具有较强的橙红光发射,并且从图4可以看到陶瓷材料具有良好的发光热稳定性,在150℃时能保持80%。
将上述实施例1~3以及对比例1制备的陶瓷材料表面依次用320目、800目、1500目砂纸抛光至0.5~0.6mm厚,然后在陶瓷上下表面涂覆厚度为0.01~0.03mm的银浆,置于电阻炉中840℃保温30分钟。采用HIOKI3532-50和Agilient4980A型精密阻抗分析仪(由安捷伦科技有限公司生产)等进行陶瓷介电铁电性能测试,结果见图5~7。由图5~7可见,掺入Sm3+以后,陶瓷材料的介电和铁电性能显著提高,当x=0.010时,其最大介电常数为1759、居里温度为289℃、室温介电常数达到2096、剩余极化强度为3.78μC/cm2、矫顽场为13.61kV/cm。

Claims (5)

1.一种高透明性和发光热稳定性的Sm3+掺杂钨青铜发光铁电陶瓷材料,其特征在于:该陶瓷材料的通式为Sr1.90Ca0.15Na0.90-3xSmxNb5O15,其中x的取值为0.005~0.015。
2.根据权利要求1所述的高透明性和发光热稳定性的Sm3+掺杂钨青铜发光铁电陶瓷材料,其特征在于:所述x的取值为0.010。
3.一种权利要求1所述的Sm3+掺杂钨青铜发光铁电陶瓷材料的制备方法,其特征在于它由下述步骤组成:
(1)按照Sr1.90Ca0.15Na0.90-3xSmxNb5O15的化学计量分别称取纯度为99.00%以上的Nb2O5、Na2CO3、SrCO3、CaCO3、Sm2O3,充分混合球磨16~24小时,在80~100℃下干燥12~24小时,得到原料混合物;
(2)将原料混合物在1180~1240℃下预烧5~8小时,得到预烧粉;
(3)将预烧粉经造粒、压片、排胶后,在1300~1340℃下烧结3~5小时,得到Sm3+掺杂钨青铜发光铁电陶瓷材料。
4.根据权利要求3所述的Sm3+掺杂钨青铜发光铁电陶瓷材料的制备方法,其特征在于:在步骤(2)中,将原料混合物在1200℃下预烧6小时。
5.根据权利要求3所述的Sm3+掺杂钨青铜发光铁电陶瓷材料的制备方法,其特征在于:在步骤(3)中,将预烧粉经造粒、压片、排胶后,在1320℃下烧结4小时。
CN201710577173.3A 2017-07-14 2017-07-14 高透明性和发光热稳定性的Sm3+掺杂钨青铜发光铁电陶瓷材料及其制备方法 Active CN107337452B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710577173.3A CN107337452B (zh) 2017-07-14 2017-07-14 高透明性和发光热稳定性的Sm3+掺杂钨青铜发光铁电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710577173.3A CN107337452B (zh) 2017-07-14 2017-07-14 高透明性和发光热稳定性的Sm3+掺杂钨青铜发光铁电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107337452A true CN107337452A (zh) 2017-11-10
CN107337452B CN107337452B (zh) 2019-10-25

Family

ID=60218837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710577173.3A Active CN107337452B (zh) 2017-07-14 2017-07-14 高透明性和发光热稳定性的Sm3+掺杂钨青铜发光铁电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107337452B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114650975A (zh) * 2019-10-31 2022-06-21 利兹大学 陶瓷

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295047A (zh) * 2000-12-15 2001-05-16 上海联能科技有限公司 钨青铜结构偏铌酸铅高温陶瓷的制备工艺
CN101343182A (zh) * 2008-08-28 2009-01-14 陕西师范大学 掺杂的五元系低温烧结压电陶瓷材料及其制备方法
US20130022838A1 (en) * 2007-08-02 2013-01-24 Applied Materials, Inc. Method of reducing plasma arcing on surfaces of semiconductor processing apparatus components in a plasma processing chamber
CN103288452A (zh) * 2012-02-29 2013-09-11 Tdk株式会社 电介质陶瓷组合物以及电子元件
CN103351858A (zh) * 2013-06-14 2013-10-16 同济大学 一种稀土掺杂的发光铁电材料及制备方法
CN105541413A (zh) * 2016-02-03 2016-05-04 陕西师范大学 一种高d33无铅铌酸锶钙钠钨青铜型压铁电陶瓷材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295047A (zh) * 2000-12-15 2001-05-16 上海联能科技有限公司 钨青铜结构偏铌酸铅高温陶瓷的制备工艺
US20130022838A1 (en) * 2007-08-02 2013-01-24 Applied Materials, Inc. Method of reducing plasma arcing on surfaces of semiconductor processing apparatus components in a plasma processing chamber
CN101343182A (zh) * 2008-08-28 2009-01-14 陕西师范大学 掺杂的五元系低温烧结压电陶瓷材料及其制备方法
CN103288452A (zh) * 2012-02-29 2013-09-11 Tdk株式会社 电介质陶瓷组合物以及电子元件
CN103351858A (zh) * 2013-06-14 2013-10-16 同济大学 一种稀土掺杂的发光铁电材料及制备方法
CN105541413A (zh) * 2016-02-03 2016-05-04 陕西师范大学 一种高d33无铅铌酸锶钙钠钨青铜型压铁电陶瓷材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114650975A (zh) * 2019-10-31 2022-06-21 利兹大学 陶瓷

Also Published As

Publication number Publication date
CN107337452B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
CN109574656A (zh) 一种高储能钛酸铋钠-钛酸锶基介质材料及其制备方法
CN105198416B (zh) 一种低温烧结的高储能密度反铁电陶瓷材料及其制备方法
CN105819856B (zh) 铌酸钾钠基无铅透明铁电陶瓷材料及其制备方法
CN103787658B (zh) 无铅压电铌酸钾钠基光-电多功能材料及制备方法
CN109133915A (zh) 一种高储能钛酸钡基介质材料及其制备方法
CN105367053B (zh) 一种低损耗x9r型多层陶瓷电容器用介质材料及其制备方法
CN107244898A (zh) 一种钛酸锶钡掺杂的锆钛酸钡钙基无铅压电陶瓷材料及其制备方法
CN106986635A (zh) 一种中温烧结低损耗微波介质陶瓷材料及其制备方法
CN105732020A (zh) 一种巨介电、低损耗二氧化钛基复合陶瓷的制备方法
CN108467263A (zh) 一种稀土掺杂的钛酸铋钠基陶瓷及制备方法和同时调节压电性能和发光性能的电场调节方法
CN108585852B (zh) 一种镨掺杂铌铟镁酸铅-钛酸铅发光压电陶瓷、制备方法及其应用
CN101604566A (zh) 一种适合低浪涌电压电器使用的氧化锌压敏电阻材料及制备方法
CN103787653A (zh) 一种碳改性CaCu3Ti4O12高介电材料的制备方法
CN106938929A (zh) 室温高电卡效应的无铅弛豫铁电陶瓷的制备方法
CN109384465A (zh) 一种钐掺杂铌酸钾钠透明陶瓷的制备方法
CN106064942A (zh) 高居里温度无铅snkbt压电陶瓷及其制备方法
CN108863360A (zh) 一种铒掺杂铌酸钾钠-钛酸锶透明陶瓷的制备方法
CN109665839A (zh) 一种高储能密度plzt基反铁电陶瓷材料及其制备方法和应用
CN103981573B (zh) 提高钙钛矿结构铁电材料居里温度的方法
CN109650875B (zh) 一种巨介电钛酸铜钙复合陶瓷材料及其制备方法和应用
CN101486569B (zh) 低温烧结微波陶瓷材料及其制备方法
CN113511893B (zh) 一种bnt基三层结构的高储能密度陶瓷及其制备方法
CN107337452B (zh) 高透明性和发光热稳定性的Sm3+掺杂钨青铜发光铁电陶瓷材料及其制备方法
CN106588011A (zh) 高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷及其制备方法
CN110156459A (zh) 一种基于BiAlO3掺杂BaTiO3无铅压电陶瓷储能电容器的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant