CN107313088A - 一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法 - Google Patents

一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法 Download PDF

Info

Publication number
CN107313088A
CN107313088A CN201710564045.5A CN201710564045A CN107313088A CN 107313088 A CN107313088 A CN 107313088A CN 201710564045 A CN201710564045 A CN 201710564045A CN 107313088 A CN107313088 A CN 107313088A
Authority
CN
China
Prior art keywords
anodic oxidation
functional coating
nanocrystalline
deposition
primary surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710564045.5A
Other languages
English (en)
Other versions
CN107313088B (zh
Inventor
周小卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Bairuixin Aluminum Technology Co ltd
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN201710564045.5A priority Critical patent/CN107313088B/zh
Publication of CN107313088A publication Critical patent/CN107313088A/zh
Application granted granted Critical
Publication of CN107313088B publication Critical patent/CN107313088B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1827Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
    • C23C18/1831Use of metal, e.g. activation, sensitisation with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明公开了一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法,所述方法包括依次对金属基体表面进行机械抛光、热碱液去油脂、阳极氧化、Pd2+‑Sn2+敏化活化、Ni‑P化学镀及脉冲电沉积纳米晶功能镀层。本发明所述方法利用化学镀Ni‑P薄膜作为过渡层,利于后续电沉积多种镀层,如:Ni、Cu,且非晶态的组织结构有助于细化后续镀层的晶粒尺寸;所述方法中低温的时效处理,有利于缓解Ni‑P薄膜的生长应力,避免了开裂的倾向;本发明所述方法适用于纯钛、铝或镁等多种活泼金属的表面改性;以化学镀Ni‑P薄膜作为过渡层来电沉积大厚度纳米晶镀层,采用划痕仪和截面观察的方法验证了界面结合力良好,可用于一般低载荷抗磨条件下的工程表面材料。

Description

一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的 方法
技术领域
本发明属于金属材料领域,涉及金属材料的表面改性,具体为一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法。
背景技术
由于具有比强度高、耐蚀性能优异和热稳定性高等优点,纯钛及其合金被广泛地应用到航空航天、3D打印材料、生物医学等领域。然而,实际使用过程中钛合金表面的耐磨性、可焊性等性能差,因而严重限制其应用范围。
为进一步提高纯钛及其合金应用范围,势必要对其表面进行改性增强。常见表面改性技术主要有:机械合金化、激光表面涂敷、搅拌摩擦焊、等离子双辉技术、物理化学气相沉积等。但目前的技术瓶颈是:钛金属化学活性大,即使被HF酸等酸溶液预处理后,裸露出来的新鲜Ti会自发地与空气中的O2反应,促使其表面钝化成一层致密的氧化膜,很难在其表面生长功能镀层,且由于该氧化膜的存在而导致钛基体与表面涂层之间的界面结合力很难得以保证。
鉴于此,需寻求一种简单易行的办法对钛金属进行表面改性,其目的是保持钛金属表面活性的同时提高表面功能镀层与钛基体的界面结合力。
发明内容
解决的技术问题:为了克服现有技术的缺陷,获得一种同时保持金属基表面活性及其表面功能镀层与基体的界面结合力,本发明通过阳极氧化的方法制备孔径适合的多孔金属基体,然后在其表面采用Pd2+-Sn2+敏化活化处理以还原出Pd原子,紧接着进行Ni-P化学镀,为后续电沉积纳米晶功能镀层作组织结构准备。
技术方案:一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法,所述方法包括依次对金属基体表面进行机械抛光、热碱液去油脂、阳极氧化、Pd2+-Sn2+敏化活化、Ni-P化学镀及脉冲电沉积纳米晶功能镀层。
优选的,所述方法的具体步骤如下:
第1步、机械抛光:先采用SiC水砂纸对金属基体进行粗磨,然后采用Al2O3抛光膏进行抛光,直至金相显微镜观察表面无划痕;
第2步、热碱液去油脂:将机械抛光后的金属基体置于超声发生器中,加入热碱液,处理温度为65~80℃,充分振荡后用去离子水洗净,干燥备用;
第3步、阳极氧化:在H2SO4体系的溶液中,采用直流稳压电源处理金属基体表面,电压100~120V,时间5~8min,溶液温度30℃,电流密度0.2A/dm2~0.4A/dm2
第4步、Pd2+-Sn2+敏化活化:将第3步制得的多孔金属基体置于干燥箱中干燥,依次进行敏化、活化处理,处理温度为45±5℃,时间为3~5min;
第5步、Ni-P化学镀:将第4步处理后的金属基体置于化学镀溶液中,在pH为9~10、温度为35℃条件下,利用敏化活化还原得到的Pd原子在金属基体表面催化生成活性点,生长Ni-P薄膜;
第6步、脉冲电沉积纳米晶功能镀层:以第5步生成的Ni-P薄膜作为过渡层,并将金属基体置于电解液中,电解温度为30℃,pH值3~4,双脉冲参数为:电流密度0.8~1.2A/dm2,脉冲频率1500Hz,通断比3:1,根据镀层厚度需求调整电镀时间。
优选的,所述金属基体为纯钛、铝或镁。
优选的,所述纳米晶功能镀层为Ni、Cu或其纳米晶复合镀层。
优选的,在脉冲电沉积纳米晶功能镀层之前进行时效退火处理,所述处理温度为400±25℃,时间为1.5~2h,空冷。
优选的,所述SiC水砂纸的规格为800#、1200#或1500#;所述Al2O3的粒径为5nm。
进一步的,所述热碱液的组成为:15wt.%NaOH,20wt.%Na2CO3,0.1g/L OP-10表面活性剂,其余为去离子水。
进一步的,第3步中H2SO4体系的组分为:375g/L H2SO4,62.5g/L HCl,3~5g/L H2O2添加剂。
进一步的,第4步中敏化液组分:30g/L SnCl2,40g/L HCl,其余为去离子水;活化液组分为:0.4g/L PdCl2,15g/L HCl,其余为去离子水。
进一步的,第5步中化学镀溶液的组分为:20g/L NiSO4·H2O,23g/L NaH2PO4·H2O,11.7g/L Na3C6H2O3·H2O,30g/L NH4Cl。
本发明所述方法的原理在于:采用阳极氧化技术,在钛基表面预制孔径150~300nm纳米孔,此孔起到打扎吸附和提高界面结合力作用;然后在含Sn-Pd敏化活化液中预先形核,还原出的Pd为后续化学镀Ni-P提供异质形核点,促使Ni-P合金持续生长;同时,采用双脉冲电沉积技术,以化学镀Ni-P为过渡层,在钛基表面电沉积生长纳米晶Ni功能镀层。
有益效果:(1)本发明所述方法利用化学镀Ni-P薄膜作为过渡层,利于后续电沉积多种镀层,如:Ni、Cu,且非晶态的组织结构有助于细化后续镀层的晶粒尺寸;(2)所述方法中低温的时效处理,有利于缓解Ni-P薄膜的生长应力,避免了开裂的倾向;(3)本发明所述方法适用于纯钛、铝或镁等多种活泼金属的表面改性;(4)以化学镀Ni-P薄膜作为过渡层来电沉积大厚度纳米晶镀层,采用划痕仪和截面观察的方法验证了界面结合力良好,可用于一般低载荷抗磨条件下的工程表面材料。
附图说明
图1是TA2纯钛基体(左)、阳极氧化膜(中)及化学镀Ni-P薄膜(右)的实物光学图;
图2是钛阳极氧化后表面多孔特征FE-SEM形貌图及孔径大小统计图;
其中(a)为钛阳极氧化后表面多孔特征FE-SEM形貌图;(b)为(a)的局部放大图;(c)为孔径大小统计图;
图3是经阳极氧化(a)、敏化-活化(b)、化学镀Ni-P薄膜(c)后试样表面FE-SEM形貌图;
图4是阳极氧化多孔钛纳米孔(a)及Ti/ATO界面(b)图;
图5是化学镀Ni-P薄膜的XRD图谱;
其中(a)为2θ为0~100°时的结果图,(b)为2θ为40~80°时的结果图。
具体实施方式
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。
实施例1
本实施例以TA2高纯钛片作为基材,商用轧制退火态的高纯钛切割成片状钛为基体,尺寸:5mm×2mm×0.5mm。
基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法,包括依次对高纯钛基体表面进行机械抛光、热碱液去油脂、阳极氧化、Pd2+-Sn2+敏化活化、Ni-P化学镀及脉冲电沉积纳米晶功能镀层。
所述方法的具体步骤如下:
第1步、机械抛光:依次采用800#、1200#和1500#的SiC水砂纸对纯钛基体进行粗磨,然后采用Al2O3抛光膏进行抛光,成镜面后,金相显微镜观察表面至无划痕;
第2步、热碱液去油脂:将机械抛光后的高纯钛基体置于超声发生器中,加入热碱液,处理温度为60℃,充分振荡后用去离子水洗净,干燥备用;
第3步、阳极氧化:在H2SO4体系的溶液中,采用直流稳压电源处理金属基体表面,电压120V,时间10min,溶液温度30℃,电流密度0.2A/dm2
第4步、Pd2+-Sn2+敏化活化:将第3步制得的多孔高纯钛基体置于干燥箱中干燥,依次进行敏化、活化处理,处理温度为45±5℃,时间为5min;
第5步、Ni-P化学镀:将第4步处理后的高纯钛基体置于化学镀溶液中,在pH为9、温度为35℃条件下,利用敏化活化还原得到的Pd原子在高纯钛基体表面催化生成活性点,生长Ni-P薄膜;
第6步、脉冲电沉积纳米晶功能镀层:以第5步生成的Ni-P薄膜作为过渡层,并将高纯钛基体置于电解液中,镀液温度设定为30℃,pH值4,脉冲参数为:电流密度1.0A/dm2,脉冲频率1500Hz,通断比3:1,根据镀层厚度需求调整电镀时间。
所述纳米晶功能镀层为Ni;所述电解液的组分为300g/L NiSO4·H2O,40g/LNiSO4·H2O,35g/L H3BO3,0.5g/L1.4-丁炔二醇。
所述热碱液的组成为:15wt.%NaOH,20wt.%Na2CO3,0.1g/L的OP-10表面活性剂,其余为去离子水。
第3步中H2SO4体系的组分为:375g/L H2SO4,62.5g/L HCl,3g/L H2O2
第4步中敏化液组分:30g/L SnCl2,40g/L HCl,其余为去离子水;活化液组分为:0.4g/L PdCl2,15g/L HCl,其余为去离子水。
第5步中化学镀溶液的组分为:20g/L NiSO4·H2O,23g/L NaH2PO4·H2O,11.7g/LNa3C6H2O3·H2O,30g/L NH4Cl。
如图1所示,与纯钛基体相比,经阳极氧化后钛表面颜色略显深色,化学镀Ni-P薄膜为银白色且表面无起皮等缺陷。
如图2所示,经阳极氧化处理后得到的多孔纯钛基体孔径约为200nm,如此大直径的纳米孔可满足纳米晶Ni沉积(Ni晶径80~100nm),具备共生长条件。
如图3所示,由图3a可知,在H2SO4体系溶液中经直流电压顺利得到纳米孔结构的阳极氧化膜,且孔径大小均一;图3b为Pd原子作为触发点钉扎在纳米孔附近,为后续Ni-P薄膜生长提供形核生长点;图3c为典型胞状特征的Ni-P薄膜,出现应力开裂缺陷,可经过后续工艺加以改进。
如图4所示,经过对比优化实验后,钛基体在H2SO4体系溶液中获得了径大小较为均一的纳米孔膜层,由图4a可知,造成不是严格点阵特征的纳米孔可能是由于钛基表面不平整,或组织织构不均一而导致。图4b为阳极氧化膜层的界面图,可知:膜层厚度大概为1μm,且与钛基体结合牢固,为后续化学镀和电沉积提供沉积模板。
如图5所示,在化学镀Ni-P薄膜过程中,Ni晶粒表现出了一定的择优生长趋势Ni(010)(002),同时2θ在45°附近出现馒头峰,说明有非晶态成分,这有利于后续生长镀层在结构上得到细化。
本实施例制备的在钛基阳极氧化膜表面化学镀Ni-P薄膜,晶粒结构致密,致密度高,可以此作为过渡层来持续电沉积功能纳米晶镀层,与基体结合力良好。因此,本发明所制备的多孔钛基表面的Ni-P薄膜及其后续大厚度电沉积纳米晶镀层作为功能和装饰薄膜材料在耐磨损和可焊性等方面得到广泛应用。
另外,本实施例所述方法还适用于A1,Mg等活泼金属表面,可根据不同的阳极氧化工艺和不同种类纳米晶复合镀层,在形状复杂的基体表面制备出均匀的功能镀层。此工艺所用的设备简易、操作简单、特备适合于工艺品和低载荷工具等端位表面。
实施例2
与实施例1的区别在于,在脉冲电沉积纳米晶功能镀层之前进行时效退火处理,所述处理温度为450℃,时间为1.5h,随炉空冷。
较实施例1相比,区别在于:对包括阳极氧化膜在内的Ni-P化学镀进行450℃×2.5h时效退火处理,其主要作用在于减少化学镀Ni-P合金的生长应力,减少镀层开裂倾向;同时生成的Ni3P等弥散相在钛基纳米孔内发生与Ti/TiO2原子扩散,可促使界面冶金结合。
用该方法在阳极氧化膜表面制备大厚度(可控)的纳米晶功能镀层,结构致密,性能优异,表面镀层与Ti基体界面结合力良好,可满足低载荷抗磨材料。本实施例所述方法还可运用于到Al、Mg等活泼金属的阳极氧化表面改性。

Claims (10)

1.一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法,其特征在于,所述方法包括依次对金属基体表面进行机械抛光、热碱液去油脂、阳极氧化、Pd2+-Sn2+敏化活化、Ni-P化学镀及脉冲电沉积纳米晶功能镀层。
2.根据权利要求1所述的一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法,其特征在于,所述方法的具体步骤如下:
第1步、机械抛光:先采用SiC水砂纸对金属基体进行粗磨,然后采用Al2O3抛光膏进行抛光,直至金相显微镜观察表面无划痕;
第2步、热碱液去油脂:将机械抛光后的金属基体置于超声发生器中,加入热碱液,处理温度为65~80℃,充分振荡后用去离子水洗净,干燥备用;
第3步、阳极氧化:在H2SO4体系的溶液中,采用直流稳压电源处理金属基体表面,电压100~120V,时间5~8min,溶液温度30℃,电流密度0.2A/dm2~0.4A/dm2
第4步、Pd2+-Sn2+敏化活化:将第3步制得的多孔金属基体置于干燥箱中干燥,依次进行敏化、活化处理,处理温度为45±5℃,时间为3~5min;
第5步、Ni-P化学镀:将第4步处理后的金属基体置于化学镀溶液中,在pH为9~10、温度为35℃条件下,利用敏化活化还原得到的Pd原子在金属基体表面催化生成活性点,生长Ni-P薄膜;
第6步、脉冲电沉积纳米晶功能镀层:以第5步生成的Ni-P薄膜作为过渡层,并将金属基体置于电解液中,电解温度为30℃,pH值3~4,双脉冲参数为:电流密度0.8~1.2A/dm2,脉冲频率1500Hz,通断比3:1,根据镀层厚度需求调整电镀时间。
3.根据权利要求1或2所述的一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法,其特征在于,所述金属基体为纯钛、铝或镁。
4.根据权利要求1或2所述的一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法,其特征在于,所述纳米晶功能镀层为Ni、Cu或其纳米晶复合镀层。
5.根据权利要求1或2所述的一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法,其特征在于,在脉冲电沉积纳米晶功能镀层之前进行时效退火处理,所述处理温度为400±25℃,时间为1.5~2h,空冷。
6.根据权利要求2所述的一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法,其特征在于,所述SiC水砂纸的规格为800#、1200#或1500#;所述Al2O3的粒径为5nm。
7.根据权利要求2所述的一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法,其特征在于,所述热碱液的组成为:15wt.%NaOH,20wt.%Na2CO3,0.1g/L OP-10表面活性剂,其余为去离子水。
8.根据权利要求2所述的一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法,其特征在于,第3步中H2SO4体系的组分为:375g/L H2SO4,62.5g/L HCl,3~5g/L H2O2添加剂。
9.根据权利要求2所述的一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法,其特征在于,第4步中敏化液组分:30g/L SnCl2,40g/L HCl,其余为去离子水;活化液组分为:0.4g/L PdCl2,15g/L HCl,其余为去离子水。
10.根据权利要求2所述的一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法,其特征在于,第5步中化学镀溶液的组分为:20g/L NiSO4·H2O,23g/L NaH2PO4·H2O,11.7g/L Na3C6H2O3·H2O,30g/L NH4Cl。
CN201710564045.5A 2017-07-12 2017-07-12 一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法 Active CN107313088B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710564045.5A CN107313088B (zh) 2017-07-12 2017-07-12 一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710564045.5A CN107313088B (zh) 2017-07-12 2017-07-12 一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法

Publications (2)

Publication Number Publication Date
CN107313088A true CN107313088A (zh) 2017-11-03
CN107313088B CN107313088B (zh) 2019-09-27

Family

ID=60177736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710564045.5A Active CN107313088B (zh) 2017-07-12 2017-07-12 一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法

Country Status (1)

Country Link
CN (1) CN107313088B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108154004A (zh) * 2017-12-26 2018-06-12 哈尔滨工业大学 基于过渡层对外延薄膜与衬底结合力评价的过渡层材料选择方法
CN111101162A (zh) * 2019-12-26 2020-05-05 江苏科技大学 一种利用交变超声频率调控纳米晶织构生长的方法
CN111378999A (zh) * 2020-05-12 2020-07-07 武汉风帆电化科技股份有限公司 铝合金表面实现阳极氧化膜和磷镍合金复合涂层的方法
CN114836800A (zh) * 2022-05-23 2022-08-02 江苏科技大学 一种Co-Ni-Zn三元纳米晶磁性合金的制备方法及其所得产品
CN115491551A (zh) * 2022-09-21 2022-12-20 苏州凯宥电子科技有限公司 一种铝合金铸件及其表面处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1900360A (zh) * 2006-07-14 2007-01-24 西南大学 镁合金表面功能梯度膜制备方法
CN101922010A (zh) * 2009-06-16 2010-12-22 比亚迪股份有限公司 一种铝合金表面处理方法
CN102534627A (zh) * 2010-12-13 2012-07-04 北京有色金属研究总院 一种SiC/Al复合材料表面的发黑处理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1900360A (zh) * 2006-07-14 2007-01-24 西南大学 镁合金表面功能梯度膜制备方法
CN101922010A (zh) * 2009-06-16 2010-12-22 比亚迪股份有限公司 一种铝合金表面处理方法
CN102534627A (zh) * 2010-12-13 2012-07-04 北京有色金属研究总院 一种SiC/Al复合材料表面的发黑处理方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108154004A (zh) * 2017-12-26 2018-06-12 哈尔滨工业大学 基于过渡层对外延薄膜与衬底结合力评价的过渡层材料选择方法
CN108154004B (zh) * 2017-12-26 2020-01-14 哈尔滨工业大学 基于过渡层对外延薄膜与衬底结合力评价的过渡层材料选择方法
CN111101162A (zh) * 2019-12-26 2020-05-05 江苏科技大学 一种利用交变超声频率调控纳米晶织构生长的方法
CN111101162B (zh) * 2019-12-26 2021-07-27 江苏科技大学 一种利用交变超声频率调控纳米晶织构生长的方法
CN111378999A (zh) * 2020-05-12 2020-07-07 武汉风帆电化科技股份有限公司 铝合金表面实现阳极氧化膜和磷镍合金复合涂层的方法
CN111378999B (zh) * 2020-05-12 2021-06-08 武汉风帆电化科技股份有限公司 铝合金表面实现阳极氧化膜和磷镍合金复合涂层的方法
CN114836800A (zh) * 2022-05-23 2022-08-02 江苏科技大学 一种Co-Ni-Zn三元纳米晶磁性合金的制备方法及其所得产品
CN114836800B (zh) * 2022-05-23 2023-09-22 江苏科技大学 一种Co-Ni-Zn三元纳米晶磁性合金的制备方法及其所得产品
CN115491551A (zh) * 2022-09-21 2022-12-20 苏州凯宥电子科技有限公司 一种铝合金铸件及其表面处理方法

Also Published As

Publication number Publication date
CN107313088B (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
CN107313088B (zh) 一种基于阳极氧化多孔金属基表面电沉积纳米晶功能镀层的方法
TWI564437B (zh) 非金屬塗覆物及其生產方法
CN109778250B (zh) 一种通过控制电沉积条件制备磁性金属纳米管的方法
Allahyarzadeh et al. Effect of pulse plating parameters on the structure and properties of electrodeposited NiMo films
Yang et al. Preparation of Ni-Co alloy foils by electrodeposition
CN105308220A (zh) 改善铝薄膜粘附的方法
Xing et al. Study on tunable fabrication of the ultra-black Ni–P film and its blacking mechanism
WO2008034471A1 (en) Method for the preparation of nanostructures and nanowires
Larson et al. Current research and potential applications for pulsed current electrodeposition–a review
CN100449038C (zh) 因瓦合金箔的制备方法
Lin et al. Electrodeposition of nickel-phosphorus alloy from sulfamate baths with improved current efficiency
Kang et al. A protocol for fast electroless Ni-P on Al alloy at medium-low temperature accelerated by hierarchically structured Cu immersion layer
CN107620105B (zh) 纳米尺度孔间距阳极氧化铝模板及其制备方法
Sherwin et al. A brief review on nickel and chromium coatings developed by electrochemical route
CN109468669A (zh) 一种在闭孔泡沫铝表面沉积Ni-Mo复合镀层的方法
TW201000643A (en) Aluminum alloy with micro-arc oxidation film on it's surface and method for making the same
Shanthi et al. Study of surface morphology in DC and pulse plating of silver alloy
CN110453263B (zh) 一种铝合金镜面阳极氧化方法
Zhao et al. Micro-arc oxidation coating formed on anodized aluminum surface under different pulse frequencies
Byoun et al. Characterization of Pulse Reverses Electroforming on Hard Gold Coating
CN109576766A (zh) 一种电泳-电沉积制备纳米TiO2增强Sn基微凸点的方法
Takaloo et al. A mechanism of nickel deposition on titanium substrate by high speed electroplating
CN104831337B (zh) 一种Zr颗粒改进的电沉积纳米复合镀层及其制备方法
Cetin et al. Nickel and Gold Coatings of Germanium and Kovar Substrates
CN104630850A (zh) 一种Co元素改进的电沉积纳米复合镀层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20171103

Assignee: Aviation High Quality Materials (Zhenjiang) Supplementary Manufacturing Co.,Ltd.

Assignor: JIANGSU University OF SCIENCE AND TECHNOLOGY

Contract record no.: X2020980007283

Denomination of invention: A method for electrodeposition of nanocrystalline functional coatings on porous metal substrate by anodic oxidation

Granted publication date: 20190927

License type: Common License

Record date: 20201029

EE01 Entry into force of recordation of patent licensing contract
EC01 Cancellation of recordation of patent licensing contract

Assignee: Aviation High Quality Materials (Zhenjiang) Supplementary Manufacturing Co.,Ltd.

Assignor: JIANGSU University OF SCIENCE AND TECHNOLOGY

Contract record no.: X2020980007283

Date of cancellation: 20201223

EC01 Cancellation of recordation of patent licensing contract
TR01 Transfer of patent right

Effective date of registration: 20230512

Address after: 212300 Building A4, Danyang High tech Innovation Park, South Third Ring Road, Yunyang Street, Danyang City, Zhenjiang City, Jiangsu Province

Patentee after: JIANGSU BAIRUIXIN ALUMINUM TECHNOLOGY Co.,Ltd.

Address before: 212003, No. 2, Mengxi Road, Zhenjiang, Jiangsu

Patentee before: JIANGSU University OF SCIENCE AND TECHNOLOGY

TR01 Transfer of patent right