CN107306118A - 功率放大模块 - Google Patents

功率放大模块 Download PDF

Info

Publication number
CN107306118A
CN107306118A CN201710013890.3A CN201710013890A CN107306118A CN 107306118 A CN107306118 A CN 107306118A CN 201710013890 A CN201710013890 A CN 201710013890A CN 107306118 A CN107306118 A CN 107306118A
Authority
CN
China
Prior art keywords
power amplifier
amplifier module
circuit
mode
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710013890.3A
Other languages
English (en)
Other versions
CN107306118B (zh
Inventor
小屋茂树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN107306118A publication Critical patent/CN107306118A/zh
Application granted granted Critical
Publication of CN107306118B publication Critical patent/CN107306118B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3205Modifications of amplifiers to reduce non-linear distortion in field-effect transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2176Class E amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/381An active variable resistor, e.g. controlled transistor, being coupled in the output circuit of an amplifier to control the output
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/387A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/391Indexing scheme relating to amplifiers the output circuit of an amplifying stage comprising an LC-network
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

本发明提供一种可根据动作模式来控制功率放大器的特性的功率放大模块。功率放大模块包括:放大器,其将放大输入信号后的放大信号输出;以及谐波终端电路,其被输入放大信号的谐波,根据谐波的频率来控制阻抗,功率放大模块可在电源电压根据规定时间中的放大信号的电压的平均值而变化的第一模式、或者电源电压根据输入信号的包络线的波形而变化的第二模式下进行动作,当在第一模式下进行动作时,控制谐波终端电路的阻抗,使得谐波中至少一个偶数次谐波短路,当在第二模式下进行动作时,控制谐波终端电路的阻抗,使得谐波中至少一个3次以上的奇数次谐波短路。

Description

功率放大模块
技术领域
本发明涉及一种功率放大模块。
背景技术
在便携式电话等移动通信设备中,为了放大向基站发送的射频(RF:RadioFrequency)信号的功率而使用功率放大模块(Power Amplifier Module)。在该功率放大模块中,需要提高功率附加效率。
例如,专利文献1中揭示了以下结构,即,根据功率放大器的输出功率,来调整在功率放大器的输出侧设置的匹配电路的特性,从而提高功率放大器的功率附加效率。
现有技术文献
专利文献
专利文献1:美国专利申请公开No.2010/0308933
发明内容
本发明所要解决的技术问题
使功率放大模块高效率化的动作模式中,存在平均功率跟踪(APT:Average PowerTracking)方式和包络跟踪(ET:Envelope Tracking)方式等各种各样的动作模式,功率放大器的要求规格根据该动作模式而不同。例如,APT方式中,根据规定时间中的输出电压的平均值来控制电源电压。因此,由于在该规定时间内电源电压不变动,所以要求功率放大器具有规定水平以上的线性。另一方面,ET方式中,根据输入信号的包络线来控制电源电压。因此,电源电压对输入信号的追随性能比APT方式好,不需要具有与APT方式同等水平的线性。
关于该功率放大器的特性,专利文献1所揭示的结构中,虽然控制基波所对应的阻抗,但未控制谐波所对应的阻抗,对于功率放大器的动作模式未进行控制。另一方面,若为各个动作模式设计专用的功率放大器,则存在设计成本增大、产品数和费用增加的问题。
本发明是鉴于以上技术问题而作出的,其目的在于提供一种可根据动作模式来控制功率放大器的特性的功率放大模块。
解决技术问题所采用的技术方案
本发明的一方面所涉及的功率放大模块包括:放大器,其将放大输入信号后的放大信号输出;以及谐波终端电路,其被输入放大信号的谐波,根据谐波的频率来控制阻抗,功率放大模块可在电源电压根据规定时间中的放大信号的电压的平均值而变化的第一模式、或者电源电压根据输入信号的包络线的波形而变化的第二模式下进行动作,当在第一模式下进行动作时,控制谐波终端电路的阻抗,使得谐波中至少一个偶数次谐波短路,当在第二模式下进行动作时,控制谐波终端电路的阻抗,使得谐波中至少一个三次以上的奇数次谐波短路。
发明效果
根据本发明,可根据动作模式来控制功率放大器的特性。由此,能够提供其特性适合动作模式的功率放大模块。
附图说明
图1是将作为本发明的一实施方式的功率放大模块100的结构示出的图。
图2A是示出当使放大器130以F级动作来进行动作时的放大器130的电压及电流的波形的图。
图2B是示出当使放大器130以逆F级动作来进行动作时的放大器130的电压及电流的波形的图。
图3是示出当使放大器130以F级动作或逆F级动作来进行动作时的邻道泄漏比(ACLR)及功率附加效率(PAE)的仿真结果的图表。
图4是将功率放大模块100的结构的一示例示出的图。
图5A是示出当使功率放大模块100以APT方式进行动作时的功率放大模块100的结构的一示例的图。
图5B是示出当使功率放大模块100以ET方式进行动作时的功率放大模块100的结构的一示例的图。
图6是将功率放大模块100中的端子配置的一示例的概略示出的图。
具体实施方式
以下,参照附图,对本发明的一实施方式进行说明。图1是将作为本发明的一实施方式的功率放大模块100的结构示出的图。功率放大模块100例如在便携式电话等移动通信设备中将输入的输入信号RFin放大,再输出放大信号RFout。输入信号RFin的频率例如为数GHz左右。
如图1所示,功率放大模块100包括电压生成电路110、电感器120、放大器130、谐波终端电路140、以及匹配电路150。
电压生成电路110生成规定电平的电源电压Vcc,再通过电感器120将电源电压Vcc提供给放大器130。为了提高功率放大模块100的功率附加效率,电压生成电路110根据功率放大模块110的动作模式来改变电源电压Vcc的电压值并输出。动作模式中,例如有根据规定时间中的放大信号RFout的电压的平均值来控制电源电压Vcc的平均功率跟踪(APT:Average Power Tracking)方式(第一模式)、或者根据输入信号RFin的包络线来控制电源电压Vcc的包络跟踪(ET:Envelope Tracking)方式(第二模式)。功率放大模块100可应用于任何这些动作模式。
放大器130是用于进行输入信号RFin的放大的电路,由放大用的晶体管构成。放大用的晶体管例如是场效应晶体管(MOSFET:Metal-oxide-semiconductor Field EffectTransistor)。作为放大用的晶体管,也可以使用异质结双极晶体管(HBT:HeterojunctionBipolar Transistor)等双极晶体管。
谐波终端电路140与放大器130的输出端子连接,对从放大器130输出的放大信号Fout所包含的谐波进行处理。谐波终端电路140根据从外部提供的控制信号Scont(第一控制信号),来调整输入阻抗,例如使得该谐波中规定的谐波短路而其他的谐波开路。具体而言,调整谐波终端电路140的输入阻抗,使得偶数次谐波被短路而奇数次谐波被开路、或者偶数次谐波被开路而奇数次谐波被短路。
匹配电路150根据控制信号Scont(第二控制信号)来使放大信号RFout的基波所对应的前级的放大器130的输出阻抗(例如,数Ω左右)、与后级的输入阻抗(例如,50Ω左右)匹配。
谐波终端电路140及匹配电路150根据控制信号Scont来控制从放大器130的输出端子观察到的输入阻抗Z。关于输入阻抗Z的具体控制方法,将在后文中描述。再者,谐波终端电路140及匹配电路150的顺序不限于此,也可以在匹配电路的后级具备谐波终端电路。或者也可以在匹配电路150中包括谐波终端电路140。
接着,对功率放大模块100的动作进行说明。功率放大模块100中的放大器130构成为进行满足APT方式或ET方式等动作模式相应的要求规格的动作。具体而言,能够使放大器130的动作成为F级动作或逆F级动作。关于F级动作及逆F级动作,参照图2A~图3进行说明。
图2A及图2B分别是示出当使放大器130以F级动作或逆F级动作来进行动作时的放大器130的电压(实线)及电流(虚线)的波形的图。例如,在放大器130由MOSFET构成的情况下,F级动作及逆F级动作中流过MOSFET的漏极的电流Id与漏极源级间电压Vds的波形都不重叠(参照图2A及图2B)。由此,放大器130的消费功率(=电流Id×电压Vds)理论上为0W。因此,F级动作及逆F级动作都可提高功率放大模块的功率附加效率。
另外,如图2A所示,在F级动作中,电流Id为半波整流波,电压Vds为方形波。相反地,如图2B所示,在逆F级动作中,电流Id为方形波,电压Vds为半波整流波。因此,关于放大器130所输出的谐波,通过控制输入阻抗使得偶数次谐波短路、三次以上的奇数次谐波开路,从而放大器130变为F级动作。另一方面,通过控制输入阻抗使得奇数次谐波短路、偶数次谐波开路,从而放大器130变为逆F级动作。
图3是示出当使放大器130以F级动作或逆F级动作来进行动作时的邻道泄漏比(ACLR:Adjacent Channel Leakage Ratio)及功率附加效率(PAE:Power AddedEfficientcy)的仿真结果的图表。两动作中基波所对应的阻抗相同,F级动作中使二次谐波短路,逆F级动作中使三次谐波短路。另外,该图表中的纵轴表示ACLR(dBc)及PAE(%),横轴表示放大器130的输出功率(dBm)。如图3所示,有关ACLR可知:在高输出功率时(例如,25dBm~30dBm),F级动作与逆F级动作相比,ACLR较低,输出信号的失真特性较好。另一方面,关于PAE可知,逆F级动作与F级动作相比,饱和效率较高。
在此,在APT方式中,由于根据规定时间中的放大信号RFout的电压的平均值来控制电源电压Vcc,所以在该规定时间内电源电压Vcc不变动。因此,在APT方式中,要求放大器具有规定水平以上的线性。所以,在APT方式中,例如,优选按照高输出功率时的线性优于逆F级动作的F级动作来使放大器130工作。另一方面,在ET方式中,由于电源电压Vcc根据输入信号RFin的包络线而逐次变动,所以当输入信号RFin为高功率时,电源电压Vcc瞬时上升,线性得以维持。因此,在ET方式中,例如,优选按照饱和效率较高的逆F级动作来使放大器130工作。即,优选对放大信号RFout的谐波进行处理使得放大器130在APT方式中变为F级动作、在ET方式中变为逆F级动作。
在本实施方式中,如上所述那样谐波终端电路140能够对谐波进行处理使得偶数次谐波短路而奇数次谐波开路、或偶数次谐波开路而奇数次谐波短路。因此,在APT方式中,通过使偶数次谐波短路而奇数次谐波开路,从而能够将放大器130控制为F级动作。另一方面,在ET方式中,通过使偶数次谐波开路而奇数次谐波短路,从而能够将放大器130控制为逆F级动作。接着,参照图4,对谐波终端电路140及匹配电路150的具体结构的一示例进行说明。
图4是将作为本发明的一实施方式的功率放大模块100的结构的一示例(功率放大模块100A)示出的图。功率放大模块100A是将图1所示的谐波终端电路140及匹配电路150的具体结构例示出的图。
谐波终端电路140A包括电容器200以及电感器210,从而构成LC串联谐振电路。具体而言,电容器200(第一电容器)的一端与放大器130的输出端子连接,另一端与电感器210的一端连接。电感器210(第一电感)的一端与电容器200的另一端连接,另一端接地。电容器200是电容可根据控制信号Scont而变化的结构。再者,电容器200及电感器210的连接顺序不限于此,也可以电感器与放大器130的输出端子连接、电容器接地。
若电容器200的电容为C、电感器210的电感为L,则谐波终端电路140A(LC串联谐振电路)中谐振频率f=1/2π√LC所对应的阻抗为最低。因此,通过调整电容C或电感L使得放大信号RFout的规定的谐波的频率所对应的阻抗变得较低(例如,实质为0),从而能够将该谐波控制为短路的状态。
具体而言,例如,当使功率放大模块100A按照APT方式进行动作时,使电容器200的电容C为较大的值(第一值)。由此,谐波终端电路140A的谐振频率f变低。因此,通过进行调整使得谐振频率f与放大信号RFout的偶数次谐波(例如,二次谐波)的频率大致同等、再使该偶数次谐波短路,从而能够将放大器130控制为F级动作。另一方面,当使功率放大模块100A按照ET方式进行动作时,使电容器200的电容C为较小的值(第二值)。由此,谐波终端电路140A的谐振频率f变高。因此,通过进行调整使得谐振频率f与放大信号RFout的奇数次谐波(例如,三次谐波)的频率大致同等、再使该奇数次谐波短路,从而能够将放大器130控制为逆F级动作。
再者,短路的谐波不限于二次谐波或三次谐波,只要是在APT方式的情况下使二次以上的偶数次谐波短路、在ET方式的情况下使三次以上的奇数次谐波短路的结构即可。
匹配电路150A包括电感器211以及电容器201,从而构成L型匹配电路。具体而言,电感器211(第二电感器)的一端与放大器130的输出端子连接,另一端与电容器201的一端连接。电容器201(第三电容器)的一端与电感器211的另一端连接,另一端接地。
在匹配电路150A中也与谐波终端电路140A同样地使电容器201的电容可根据控制信号Scont而变化。这是因为,由于基波所对应的输出阻抗也根据放大器130的动作的切换而变化,所以优选对匹配电路150A的阻抗也根据该动作来进行控制。再者,虽然在功率放大模块100A中关于匹配电路150A也与谐波终端电路140A同样地示出了阻抗可控的结构例,但也可以仅谐波终端电路140A的阻抗可进行控制。
另外,在谐波终端电路140A中,为了控制阻抗可以使电感可变来取代电容可变,还可以使电容及电感双方可变。但是,由于以下理由,优选电感尽量小、使电容可变。
第一,为了使谐波短路而需要使谐波终端电路140A的输入阻抗低于放大器130的输出阻抗,一般而言,移动通信设备中的放大器130的输出阻抗为比较低的值(例如,数Ω左右)。所以,为了将谐振频率附近的频带中的输入阻抗保持得低于输出阻抗,电感较小为佳。
第二,在LC串联谐振电路中,与由电容器引起的功率损耗相比,由电感器引起的功率损耗比较大。所以,为了抑制谐波终端电路140A中的功率损耗,电感较小为佳。
如上所述,图4所示的功率放大模块100A通过根据功率放大模块的动作模式来控制谐波终端电路140A的输入阻抗,从而能够切换放大器130的动作。由此,根据功率放大模块的动作模式来控制放大器130的特性,放大器130满足不同的要求规格地进行动作。因此,能够提供可根据动作模式来控制功率放大器的特性的功率放大模块。另外,功率放大模块100A通过控制匹配电路150A的输入阻抗,从而能够对应于放大信号RFout的基波、使放大器130的输出阻抗与后级的电路的输入阻抗匹配。因此,能够进一步提高功率放大模块100A的功率附加效率。
接着,参照图5A及图5B,对谐波终端电路140A及匹配电路150A的电容的控制方法的一示例进行说明。
图5A是示出当使作为本发明的一实施方式的功率放大模块100以APT方式进行动作时的功率放大模块100的结构例(功率放大模块100B)的图。如图5A所示,功率放大模块100B包括谐波终端电路140B及匹配电路150B来取代图4所示的谐波终端电路140A及匹配电路150A。
谐波终端电路140B中,由电容器300、301以及FET310构成图4所示的电容器200。具体而言,电容器300(第一电容器)、301(第二电容器)并联连接,连接在放大器130的输出端子与电感器210(第一电感器)之间。
FET310(第一开关电路)与电容器300、301的任一方的电容器(在图3A中为电容器301)串联连接。向FET310的栅极提供控制信号Scont,FET310根据控制信号Scont来切换导通及断开。由此,当FET310导通时,电容器301中存储电荷,电容器300、301的合成电容变大。另一方面,当FET310断开时,电容器301中不存储电荷,电容器300、301的合成电容变小。因此,谐波终端电路140B能够使合成电容可根据控制信号Scont而变化。
再者,在本实施方式中,为了使电容可变而使用FET310是因为,在考虑了向半导体内集成化的情况下,优选使用开关元件的结构。FET310仅是开关元件的一示例,也可以使用具有开关功能的其他元件来取代FET310。
匹配电路150B中,由电容器302(第三电容器)、303(第四电容器)以及FET311(第二开关电路)构成图4所示的电容器201。关于使匹配电路150B的合成电容可变的结构,由于与谐波终端电路140B同样,所以省略详细说明。
应用使FET310、311变为导通的电压,来作为提供给谐波终端电路140B及匹配电路150B的控制信号Scont。在此,功率放大模块100B由于按照APT方式来控制电源电压Vcc,所以电源电压Vcc的变动与ET方式相比较缓和。所以,例如能够连接电源电压端子与控制信号端子,将电源电压Vcc作为控制信号Scont来使用。由此,利用简易的结构来控制谐波终端电路140B及匹配电路150B的电容,如上所述那样使二次谐波短路,从而能够使放大器130为F级动作。另外,能够根据放大器130的动作来调整匹配电路150A的输入阻抗。
图5B是示出当使作为本发明的一实施方式的功率放大模块100以ET方式进行动作时的功率放大模块100的结构的一示例(功率放大模块100C)的图。
如图5B所示,功率放大模块100C与图5A所示的功率放大模块100B相比,应用使FET310、311变为断开的电压(例如,基准电位),来作为提供给谐波终端电路140B及匹配电路150B的控制信号Scont。
由此,电容器301、303中不存储电荷,谐波终端电路140B及匹配电路150B各自的合成电容变小。因此,通过如上所述那样使三次谐波短路,从而能够将放大器130控制为逆F级动作。另外,能够根据放大器130的动作来调整匹配电路150A的输入阻抗。
再者,在功率放大模块100B、100C中,虽然示出了向谐波终端电路140B及匹配电路150B都提供控制信号Scont的示例,但向谐波终端电路140B和匹配电路150B提供的控制信号也可以不同。另外,也可以为了实现图5A所示的动作与图5B所示的动作的切换而将切换电路内置在功率放大模块中。
图6是将作为本发明的一实施方式的功率放大模块100中的端子配置的一示例的概略示出的图。
集成电路10是安装有放大器130的集成电路。集成电路10在一侧面的边缘领域包括将电源电压端子T_Vcc及控制信号端子T_Scont包含在内的多个端子T。
电源电压端子T_Vcc(第一端子)是向功率放大模块100提供电源电压Vcc的端子。控制信号端子T_Scont(第二端子)是向功率放大模块100提供控制信号Scont的端子。电源电压端子T_Vcc与控制信号端子T_Scont被配置得比较近(例如,相邻)。由此,在连接电源电压端子T_Vcc与控制信号端子T_Scont、将电源电压Vcc作为控制信号Scont来应用的情况下,连接操作变得较容易。
以上,对本发明的示例性的实施方式进行了说明。功率放大模块100、100A、100B、100C包括可在APT方式及ET方式两方式中使用的功率放大器、以及可控制阻抗的谐波终端电路140。由此,能够使偶数次谐波或三次以上的奇数次谐波的任一方谐波短路。因此,能够根据功率放大模块的动作模式来切换放大器的动作,从而能够提供可根据动作模式来控制功率放大器的特性的功率放大模块。
另外,功率放大模块100A中,由包括电容器200和电感器210的LC串联谐振电路来构成谐波终端电路140A。由此,通过控制谐波终端电路140A的阻抗使得LC串联谐振电路的谐振频率变为放大信号RFout的谐波的频率,从而能够调整短路的谐波的频率。
另外,功率放大模块100B、100C中,作为谐波终端电路140B,包括并联连接的电容器300、301以及开关电路(FET310)。由此,能够使用FET310来控制谐波终端电路140B的合成电容。
另外,功率放大模块100B、100C中,作为用于控制谐波终端电路140B的电容的控制信号Scont,使用电源电压Vcc或基准电位。由此,能够利用简易的结构来切换放大器130的动作。
另外,功率放大模块100、100A、100B、100C包括可控制阻抗的匹配电路150。匹配电路150A能够由包括电容器201以及电感器211的L型匹配电路构成。由此,能够根据放大器130的动作来使放大信号RFout的基波所对应的放大器130的输出阻抗与后级的电路的输入阻抗匹配,从而能够进一步提高功率附加效率。
另外,功率放大模块100B、100C中,作为匹配电路150B,包括并联连接的电容器302、303以及开关电路(FET311)。由此,能够使用FET311来控制匹配电路150B的合成电容。
另外,功率放大模块100B、100C中,作为用于控制匹配电路150B的电容的控制信号Scont,使用电源电压Vcc或基准电位。由此,能够利用简易的结构来控制匹配电路150B的阻抗。
另外,集成电路10中,电源电压端子T_Vcc及控制信号端子T_Scont被配置得比较近(例如,相邻)。由此,能够通过较容易的连接操作来将电源电压Vcc作为控制信号Scont来应用。
以上说明的各实施方式,用于使本发明容易理解,而不用于限定解释本发明。在不脱离本发明的主旨的范围内可进行变更或改良,并且其等效物包含在本发明内。即,只要具备本发明的特征,本领域技术人员对各实施方式施加适当设计变更而得到的方案也包含于本发明的范围内。例如,各实施方式所具备的各要素及其配置、材料、条件、形状、大小等并不限定于示例的内容,可以进行适当变更。另外,只要技术上可行,各实施方式所具备的各要素能够进行组合,只要包含本发明的特征,组合了这些要素的方案也包含在本发明的范围内。
标号说明
100、100A、100B、100C 功率放大模块
110 电压生成电路
120、210、211 电感器
130 放大器
140、140A、140B 谐波终端电路
150、150A、150B 匹配电路
200、201、300、301、302、303 电容器
310、311 FET(场效应晶体管)
10 集成电路
T、T_Vcc、T_Scont 端子

Claims (8)

1.一种功率放大模块,其特征在于,包括:
放大器,其输出将输入信号放大后的放大信号;以及
谐波终端电路,其被输入所述放大信号的谐波,根据所述谐波的频率来控制阻抗,
所述功率放大模块能够在电源电压根据规定时间内所述放大信号的电压的平均值而变化的第一模式、或者所述电源电压根据所述输入信号的包络线的波形而变化的第二模式下进行动作,
当在所述第一模式下进行动作时,控制所述谐波终端电路的阻抗,使得所述谐波中至少一个偶数次谐波短路,当在所述第二模式下进行动作时,控制所述谐波终端电路的阻抗,使得所述谐波中至少一个三次以上的奇数次谐波短路。
2.如权利要求1所述的功率放大模块,其特征在于,
所述谐波终端电路是包括在所述放大器的输出端子与基准电位之间串联连接的第一电容器及第一电感器的LC串联谐振电路,
所述LC串联谐振电路通过根据第一或第二模式来调整所述第一电容器的电容或所述第一电感器的电感中的至少一方,从而进行控制使得所述LC串联谐振电路的谐振频率变得与所述偶数次谐波或所述奇数次谐波的频率大致相同。
3.如权利要求2所述的功率放大模块,其特征在于,
所述LC串联谐振电路还包括:
第二电容器,其与所述第一电容器并联连接;以及
第一开关电路,其与所述第一或第二电容器串联连接,由根据所述第一或第二模式而提供的第一控制信号来切换导通及断开,
所述功率放大模块当在所述第一模式下进行动作时,使所述第一开关电路导通,将所述LC串联谐振电路的电容控制为第一值,当在所述第二模式下进行动作时,使所述第一开关电路断开,将所述LC串联谐振电路的电容控制为比所述第一值小的第二值。
4.如权利要求3所述的功率放大模块,其特征在于,
所述功率放大模块当在所述第一模式下进行动作时,将所述电源电压作为所述第一控制信号,当在所述第二模式下进行动作时,将所述基准电位作为所述第一控制信号。
5.如权利要求1至4中的任一项所述的功率放大模块,其特征在于,
所述功率放大模块还包括在所述放大器与所述放大器的后级的电路之间设置的匹配电路,
所述匹配电路包括:
第二电感器,其一端被提供所述放大信号;以及
第三电容器,其一端与所述第二电感器的另一端连接,其另一端接地。
6.如权利要求5所述的功率放大模块,其特征在于,
所述匹配电路还包括:
第四电容器,其与所述第三电容器并联连接;以及
第二开关电路,其与所述第三或第四电容器串联连接,由根据所述第一或第二模式而提供的第二控制信号来切换导通及断开。
7.如权利要求6所述的功率放大模块,其特征在于,
所述功率放大模块当在所述第一模式下进行动作时,将所述电源电压作为所述第二控制信号,当在所述第二模式下进行动作时,将基准电位作为所述第二控制信号。
8.如权利要求3或4所述的功率放大模块,其特征在于,
所述功率放大模块还包括安装有所述放大器的集成电路,
所述集成电路还包括:
第一端子,其被提供所述电源电压;以及
第二端子,其与所述第一端子相邻地配置,被提供所述第一控制信号。
CN201710013890.3A 2016-04-21 2017-01-09 功率放大模块 Active CN107306118B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-085355 2016-04-21
JP2016085355A JP2017195536A (ja) 2016-04-21 2016-04-21 電力増幅モジュール

Publications (2)

Publication Number Publication Date
CN107306118A true CN107306118A (zh) 2017-10-31
CN107306118B CN107306118B (zh) 2021-03-26

Family

ID=60089816

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710013890.3A Active CN107306118B (zh) 2016-04-21 2017-01-09 功率放大模块

Country Status (3)

Country Link
US (2) US10014832B2 (zh)
JP (1) JP2017195536A (zh)
CN (1) CN107306118B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110875723A (zh) * 2018-09-04 2020-03-10 株式会社村田制作所 功率放大电路
CN111865229A (zh) * 2019-04-24 2020-10-30 株式会社村田制作所 功率放大电路

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019193115A (ja) 2018-04-25 2019-10-31 株式会社村田製作所 高周波増幅回路、高周波フロントエンド回路および通信装置
WO2021206176A1 (ja) * 2020-04-10 2021-10-14 株式会社村田製作所 電力増幅装置
CN111600554A (zh) * 2020-06-10 2020-08-28 河源广工大协同创新研究院 一种带宽可调式f类功率放大器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103731107A (zh) * 2012-10-15 2014-04-16 英特尔移动通信有限责任公司 用于控制功率放大器的运行的控制电路和方法
CN204119176U (zh) * 2014-10-24 2015-01-21 天津大学 一种高效率f类/逆f类功率放大器
US9083282B2 (en) * 2011-11-04 2015-07-14 Skyworks Solutions, Inc. Apparatus and methods for power amplifiers
US20160013767A1 (en) * 2014-07-14 2016-01-14 Skyworks Solutions, Inc. Mode linearization switch circuit
CN105471394A (zh) * 2014-09-25 2016-04-06 天工方案公司 支持双模包络和平均功率跟踪性能的可变负载功率放大器
CN105515538A (zh) * 2014-10-13 2016-04-20 英特尔公司 可切换双核功率放大器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8019292B2 (en) 2007-07-11 2011-09-13 Axiom Microdevices, Inc. Power amplifier amplitude modulator system and method
US8140030B2 (en) 2008-09-12 2012-03-20 Panasonic Corporation Adaptive impedance converter adaptively controls load impedance
US9143172B2 (en) 2009-06-03 2015-09-22 Qualcomm Incorporated Tunable matching circuits for power amplifiers
US9207692B2 (en) 2012-10-18 2015-12-08 Rf Micro Devices, Inc. Transitioning from envelope tracking to average power tracking

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9083282B2 (en) * 2011-11-04 2015-07-14 Skyworks Solutions, Inc. Apparatus and methods for power amplifiers
CN103731107A (zh) * 2012-10-15 2014-04-16 英特尔移动通信有限责任公司 用于控制功率放大器的运行的控制电路和方法
US20140103995A1 (en) * 2012-10-15 2014-04-17 Andreas Langer Control Circuit and Method for Controlling an Operation of a Power Amplifier
US20160013767A1 (en) * 2014-07-14 2016-01-14 Skyworks Solutions, Inc. Mode linearization switch circuit
CN105471394A (zh) * 2014-09-25 2016-04-06 天工方案公司 支持双模包络和平均功率跟踪性能的可变负载功率放大器
CN105515538A (zh) * 2014-10-13 2016-04-20 英特尔公司 可切换双核功率放大器
CN204119176U (zh) * 2014-10-24 2015-01-21 天津大学 一种高效率f类/逆f类功率放大器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANCANG WANG: "A class-F−1 GaN HEMT power amplifier optimized for envelope tracking with gain-efficiency trajectory analysis and comparison", 《IEEE XPLORE DIGITAL LIBRARY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110875723A (zh) * 2018-09-04 2020-03-10 株式会社村田制作所 功率放大电路
CN110875723B (zh) * 2018-09-04 2023-10-27 株式会社村田制作所 功率放大电路
CN111865229A (zh) * 2019-04-24 2020-10-30 株式会社村田制作所 功率放大电路
CN111865229B (zh) * 2019-04-24 2024-04-16 株式会社村田制作所 功率放大电路

Also Published As

Publication number Publication date
JP2017195536A (ja) 2017-10-26
US10523161B2 (en) 2019-12-31
US10014832B2 (en) 2018-07-03
CN107306118B (zh) 2021-03-26
US20180287571A1 (en) 2018-10-04
US20170310287A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
KR102638385B1 (ko) 위상 스위치 소자를 갖는 튜너블 매칭 네트워크
Fu et al. Improving power amplifier efficiency and linearity using a dynamically controlled tunable matching network
CN107306118A (zh) 功率放大模块
CN103312272B (zh) 多模式Doherty功率放大器
CN104779922B (zh) 用于优化射频功率放大器性能的高电压包络***
KR20110068264A (ko) E 급 전력 증폭기
CN110113036A (zh) 一种高线性低谐波的射频开关电路结构
TW201445875A (zh) 用於匹配無線頻率放大器中之阻抗的裝置
CN108023552B (zh) 一种用于微波无线电能传输装置的射频功率放大器***
CN106505901B (zh) 一种线性-谐振复合式超高频逆变器
Boutayeb et al. Output matching network design for broadband class B/J power amplifier
Calvillo-Cortes et al. A compact and power-scalable 70W GaN class-E power amplifier operating from 1.7 to 2.6 GHz
Mugisho et al. Analysis and design of a high-efficiency Class-E M power amplifier
Kim et al. A fully integrated CMOS RF power amplifier with tunable matching network for GSM/EDGE dual-mode application
Jeong et al. Optimized ultralow-power amplifier for OOK transmitter with shaped voltage drive
Mansour et al. Analysis and Design of a 5G Multi-Mode Power Amplifier using 130 nm CMOS technology
Liu et al. A class-E RF power amplifier with a novel matching network for high-efficiency dynamic load modulation
CN108923755B (zh) 一种带减压负载电路的小直流馈电电感e类功率放大器
Wang et al. Design of GaN HEMT class-E power amplifier for satellite communication
Thian et al. Power combining techniques into unbalanced loads for Class-E and inverse Class-E amplifiers
Xu et al. Design of broadband continuous mode MMIC power amplifiers with bandwidth improvement
Duperrier et al. A 71.9% power-added-efficiency inverse Class-FLDMOS
Chaudhary et al. A novel 2GHz highly efficiency improved class-E Power Amplifier for Base stations
Cao et al. Performance study of an inverse class E power amplifier with series tunable parallel resonant tank
CN108736845A (zh) 一种高效率并联型e逆f类功率放大器匹配电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant