CN107255448B - 光栅莫尔条纹细分方法 - Google Patents

光栅莫尔条纹细分方法 Download PDF

Info

Publication number
CN107255448B
CN107255448B CN201710402058.2A CN201710402058A CN107255448B CN 107255448 B CN107255448 B CN 107255448B CN 201710402058 A CN201710402058 A CN 201710402058A CN 107255448 B CN107255448 B CN 107255448B
Authority
CN
China
Prior art keywords
signal
signals
moire fringe
subdivision
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710402058.2A
Other languages
English (en)
Other versions
CN107255448A (zh
Inventor
刘红忠
史永胜
尹磊
雷彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Qin Ningmai Super Electronic Technology Co Ltd
Original Assignee
Changzhou Qin Ningmai Super Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Qin Ningmai Super Electronic Technology Co Ltd filed Critical Changzhou Qin Ningmai Super Electronic Technology Co Ltd
Priority to CN201710402058.2A priority Critical patent/CN107255448B/zh
Publication of CN107255448A publication Critical patent/CN107255448A/zh
Application granted granted Critical
Publication of CN107255448B publication Critical patent/CN107255448B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种光栅莫尔条纹细分方法,包括以下步骤:a.信号的预线性化:对原始的正、余弦莫尔条纹信号进行预线性化处理,将高度非线性的正、余弦信号转换为近似三角波信号,b.实时补偿信号的构造:对近似三角波信号进行补偿,得到信号幅值与光栅位移呈线性关系的三角波信号;c.辨向、细分及位移计算。通过上述方式,本发明光栅莫尔条纹细分方法,能够实现对光栅位移的线性计算和高倍细分,并使细分算法对原始信号缺陷不敏感,减小细分误差。

Description

光栅莫尔条纹细分方法
技术领域
本发明涉及信号处理领域,特别是涉及一种光栅莫尔条纹细分方法。
背景技术
近年来光栅位移传感器在位移监测中得到了广泛的应用,成为了以莫尔条纹为理论的测量技术的最典型代表。光栅位移传感器必须包含一对光栅副,其中一块光栅尺作测量基准用,该尺称为标尺光栅(或称主光栅),另一块光栅尺则称为指示光栅。当两块光栅面对面叠合,就会产生莫尔条纹,当两光栅沿垂直于栅线方向作相对运动时,莫尔条纹便沿着与栅线方向相同的方向相应地移动。利用光电元件将变化的光强转化为变化的电信号,并经过电子元器件的滤波整形和运算处理,便可以得到相应的位移值。一般情况下,为了实现辨向和进一步的细分,必须把经过光电元件转换的莫尔条纹信号,处理成两路相位差约为90°的正弦电压信号。
目前,国内外长光栅栅距大多为 4μm以上,在实际应用中,仅依靠光栅栅距本身的分辨率,通常不能达到精密测量的要求。也就是说,必须采用莫尔条纹的细分技术来提高光栅测量***的分辨率。
然而,传统细分方法如反正切细分方法,由于正切函数的非线性,通常需要制作查找表来对信号进行细分。在高倍细分情况下,制作查找表耗时耗力,且占用处理***内存。而且,实际信号中往往不是理想信号,非理想信号会带来非线性细分误差,非线性误差通常是很难进行补偿的,传统的反正切细分法等对非理想信号都十分敏感。
发明内容
本发明主要解决的技术问题是提供一种光栅莫尔条纹细分方法,能够实现对光栅位移的线性计算和高倍细分,并使细分算法对原始信号缺陷不敏感,减小细分误差。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种光栅莫尔条纹细分方法,包括以下步骤:
a.信号的预线性化:对原始的正、余弦莫尔条纹信号进行预线性化处理,将高度非线性的正、余弦信号转换为近似三角波信号,光栅位移传感器将莫尔条纹信号转换为到两路相位差为90°的正弦电压信号,对正弦信号进行线性化处理,得到近似三角波信号
b.实时补偿信号的构造:对近似三角波信号进行补偿,得到信号幅值与光栅位移呈线性关系的三角波信号,利用原始正弦电压信号VS(x) 和VC(x)构建实时补偿信号,对进行补偿后,得到信号幅值与光栅位移呈线性关系的三角波信号
c.辨向、细分及位移计算:引入辅助控制信号Bit(x):
,其中:,i=S,C分别代表原始正、余弦莫尔条纹信号,辅助控制信号将三角波信号转换为带有辨向信息的输出信号为锯齿波信号,通过对下降沿、上升沿的计数,可得大周期计数,对于小周期计数,则用以下公式计算:,最终可得位移为:,其中, 为正向计数脉冲个数,为反向计数脉冲个数。
在本发明一个较佳实施例中,所述步骤a中正弦电压信号,在理想情况下可以表示为:,在实际信号中通常有各种失真,可以用以下数学形式表示:,p 代表莫尔条纹信号周期,幅值A代表理想信号的幅值,ΔA、 ΔB、ΔΦ分别代表信号幅值、直流分量、相位相对理想值的偏移量,β代表正余弦信号的幅值波动,ΔT代表三次谐波的系数。
在本发明一个较佳实施例中,所述步骤c中对于构造的三角波信号,其与理想三角波Trig(x)的偏差:,其中,由偏差引起的位移计算误差定义为该细分方法的理论误差:为计算的位移,x 为实际位移。
本发明的有益效果是:本发明光栅莫尔条纹细分方法,能够实现对光栅位移的线性计算和高倍细分,并使细分算法对原始信号缺陷不敏感,减小细分误差。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为原理图;
图2为信号预线性化结果V1(x)及其与理想三角波Trig(x)的偏差;
图3为补偿过后,三角波信号V2(x)及其与理想三角波Trig(x)的偏差;
图4为最终输出信号V2R(x)波形,辨向及整周期计数原理;
图5为该细分方法的理论细分误差;
图6为在非理想信号输入时,该细分方法与传统反正切方法细分误差的比较。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1,本发明光栅莫尔条纹细分方法用到如下装置:增量式光栅线位移传感器(1)栅距为20μm,信号预处理电路板,A/D转换器和数字信号处理器。
(1)信号的预线性化:
通过A/D转换器,将光栅尺输出的正、余弦电压信号转换为数字信号,如图一,在Labview或FPGA等数字信号处理器中,对信号进行预线性化,得到近似三角波信号
及其与理想三角波的偏差,如图二所示。
(2)实时补偿信号的构造:
如图一所示,利用原始正弦电压信号构建实时补偿信号
进行补偿后,得到信号幅值与光栅位移呈线性关系的三角波信号
与理想三角波的偏差如图三所示。
(3)辨向、细分及位移计算:
如图一所示,为了实现辨向,利用原始光栅信号构建辅助控制信号
其中: ,i=S,C分别代表原始正、余弦莫尔条纹信号。
辅助控制信号将三角波信号转换为带有辨向信息的输出信号
为锯齿波信号,正斜率代表正向运动,负斜率代表反向运动;通过对下降沿、上升沿的计数,可得整周期计数;对于小周期计数,则用以下公式计算:
最终可得位移为:
其中, 为正向计数脉冲个数,为反向计数脉冲个数。
波形及计数辨向原理如图四所示。
图五为该细分方法的理论细分误差,所用光栅距为20μm,
光栅信号在理想情况下可以表示为:。在实际信号中通常有各种失真,可以用以下数学形式表示:
其中,p 代表莫尔条纹信号周期,幅值A代表理想信号的幅值,ΔA、 ΔB、ΔΦ分别代表信号幅值、直流分量、相位相对理想值的偏移量,β代表正余弦信号的幅值波动,ΔT代表三次谐波的系数。这些非理想信号参数会造成细分误差,图六所示为该细分方法与传统反正切方法细分误差的比较,横坐标是以偏离量与理想值的百分比来表示的,可以明显看出本发明细分方法由于反正切细分方法。
区别于现有技术,本发明光栅莫尔条纹细分方法,能够实现对光栅位移的线性计算和高倍细分,并使细分算法对原始信号缺陷不敏感,减小细分误差。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (3)

1.一种光栅莫尔条纹细分方法,其特征在于,包括以下步骤:
a.信号的预线性化:对原始的正、余弦莫尔条纹信号进行预线性化处理,将高度非线性的正、余弦信号转换为近似三角波信号,光栅位移传感器将莫尔条纹信号转换为到两路相位差为90°的正弦电压信号,对正弦信号进行线性化处理,得到近似三角波信号
b.实时补偿信号的构造:对近似三角波信号进行补偿,得到信号幅值与光栅位移呈线性关系的三角波信号,利用原始正弦电压信号,构建实时补偿信号,对进行补偿后,得到信号幅值与光栅位移呈线性关系的三角波信号
c.辨向、细分及位移计算:引入辅助控制信号Bit(x):
,其中:,i=S,C分别代表原始正、余弦莫尔条纹信号,辅助控制信号将三角波信号转换为带有辨向信息的输出信号为锯齿波信号,通过对下降沿、上升沿的计数,可得大周期计数,对于小周期计数,则用以下公式计算:,最终可得位移为:,其中, 为正向计数脉冲个数,为反向计数脉冲个数。
2.根据权利要求1所述的光栅莫尔条纹细分方法,其特征在于,所述步骤a中正弦电压信号,在理想情况下可以表示为:,在实际信号中通常有各种失真,可以用以下数学形式表示:,p 代表莫尔条纹信号周期,幅值A代表理想信号的幅值,ΔA、 ΔB、ΔΦ分别代表信号幅值、直流分量、相位相对理想值的偏移量,β代表正余弦信号的幅值波动,ΔT代表三次谐波的系数。
3.根据权利要求1所述的光栅莫尔条纹细分方法,其特征在于,所述步骤c中对于构造的三角波信号,其与理想三角波Trig(x)的偏差:,其中,由偏差引起的位移计算误差定义为该细分方法的理论误差:为计算的位移,x 为实际位移。
CN201710402058.2A 2017-06-01 2017-06-01 光栅莫尔条纹细分方法 Active CN107255448B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710402058.2A CN107255448B (zh) 2017-06-01 2017-06-01 光栅莫尔条纹细分方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710402058.2A CN107255448B (zh) 2017-06-01 2017-06-01 光栅莫尔条纹细分方法

Publications (2)

Publication Number Publication Date
CN107255448A CN107255448A (zh) 2017-10-17
CN107255448B true CN107255448B (zh) 2019-09-27

Family

ID=60027771

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710402058.2A Active CN107255448B (zh) 2017-06-01 2017-06-01 光栅莫尔条纹细分方法

Country Status (1)

Country Link
CN (1) CN107255448B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107957274A (zh) * 2017-12-08 2018-04-24 长春理工大学 多编码器故障诊断遥测***及其监测方法
CN108444393B (zh) * 2018-04-04 2020-04-03 合肥工业大学 一种双a/d跨尺度光栅位移测量装置及方法
CN110500960B (zh) * 2019-07-02 2021-02-12 广东工业大学 一种光栅信号补偿方法及补偿***
CN111412940B (zh) * 2020-05-08 2021-11-23 长春晟博光学技术开发有限公司 一种直线位移传感器细分芯片自动调试***及调试方法
CN112556734B (zh) * 2020-11-30 2021-09-28 中国科学院长春光学精密机械与物理研究所 光电编码器莫尔条纹细分方法
CN113587963B (zh) * 2021-07-06 2024-04-19 吉林建筑大学 一种莫尔条纹信号的细分方法
CN114688978B (zh) * 2022-04-14 2023-01-24 中国科学院长春光学精密机械与物理研究所 正弦波细分方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85106313A (zh) * 1985-08-21 1987-02-18 中国科学院高能物理所 一种光栅莫尔条纹光电讯号的细分方法
US4785181A (en) * 1985-12-04 1988-11-15 Futaba Denshi Kogyo Kabushiki Kaisha Measuring device for determining extent and direction of relative movement between two objects having modulation section
CN102679888A (zh) * 2012-06-01 2012-09-19 沈阳工业大学 基于少量空间点的莫尔条纹高倍细分方法及设备
CN103604373A (zh) * 2013-11-20 2014-02-26 沈阳工业大学 光栅莫尔条纹小波细分方法及光栅位移测量装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85106313A (zh) * 1985-08-21 1987-02-18 中国科学院高能物理所 一种光栅莫尔条纹光电讯号的细分方法
US4785181A (en) * 1985-12-04 1988-11-15 Futaba Denshi Kogyo Kabushiki Kaisha Measuring device for determining extent and direction of relative movement between two objects having modulation section
CN102679888A (zh) * 2012-06-01 2012-09-19 沈阳工业大学 基于少量空间点的莫尔条纹高倍细分方法及设备
CN103604373A (zh) * 2013-11-20 2014-02-26 沈阳工业大学 光栅莫尔条纹小波细分方法及光栅位移测量装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
光栅莫尔条纹信号的细分与辩向新技术;崔骥等;《光学技术》;20000731;第26卷(第4期);第294-296页 *
高精度光电编码器莫尔条纹信号质量分析方法;左洋等;《红外与激光工程》;20150131;第44卷(第1期);第260-265页 *

Also Published As

Publication number Publication date
CN107255448A (zh) 2017-10-17

Similar Documents

Publication Publication Date Title
CN107255448B (zh) 光栅莫尔条纹细分方法
CN107607037B (zh) 一种基于反正切跨区间制表法的磁电编码器标定方法
CN102168996B (zh) 光电式编码器
CN102253358A (zh) 一种应用校正***校正电能表的方法及校正***
US8089275B2 (en) Sensor arrangement, integrated chip component with the sensor arrangement, and measurement method
KR20080012823A (ko) 인코더 신호의 위상 보정 회로
DE3711062A1 (de) Kapazitive absolute positionsmessvorrichtung
CN108151653A (zh) 一种光栅莫尔条纹信号误差检测和修正方法
Ye et al. Precise and robust position estimation for optical incremental encoders using a linearization technique
CN106248117B (zh) 定光栅和光电编码器
JP2012013650A (ja) アブソリュートエンコーダ
CN104991118A (zh) 一种高分辨异频信号频率测量***和测量方法
KR101156573B1 (ko) 면적변화형 정전용량 센서 및 이 센서의 자가 보정 및 신호 선형화 방법
CN113916265A (zh) 用于永磁同步直线电机的霍尔位置传感信号的处理方法
JPS61189415A (ja) 高精度高分解能絶対位置スケール
US10890432B2 (en) Digital displacement sensor and displacement measuring method thereof
JP2767936B2 (ja) リニアエンコーダの誤差補正方法
CN108037731B (zh) 一种相位积分运算变换的频差干涉信号高分辨细分***
CN206989977U (zh) 莫尔条纹式光栅信号的细分及辨向预处理电路
CN111368584A (zh) 一种可自校正的正余弦编码器高分辨率位置信息拼接方法
WO2005053146A2 (en) Method and system for enhanced resolution, automatically- calibrated position sensor
JP2010014646A (ja) 計測装置
JP2015078863A (ja) エンコーダの内挿方法および内挿装置
KR20210046463A (ko) 리니어 엔코더 장치
CN103308084A (zh) 一种用于增量式位移测量装置的光电接收传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant