CN107213869A - 改性活性炭纳米片及其分离柱的制备方法 - Google Patents

改性活性炭纳米片及其分离柱的制备方法 Download PDF

Info

Publication number
CN107213869A
CN107213869A CN201710557686.8A CN201710557686A CN107213869A CN 107213869 A CN107213869 A CN 107213869A CN 201710557686 A CN201710557686 A CN 201710557686A CN 107213869 A CN107213869 A CN 107213869A
Authority
CN
China
Prior art keywords
activated carbon
nanometer sheet
carbon nanometer
preparation
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710557686.8A
Other languages
English (en)
Other versions
CN107213869B (zh
Inventor
项生昌
张章静
李子银
叶应祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN201710557686.8A priority Critical patent/CN107213869B/zh
Publication of CN107213869A publication Critical patent/CN107213869A/zh
Application granted granted Critical
Publication of CN107213869B publication Critical patent/CN107213869B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

本发明属于气体分离技术领域,具体涉及采用一种改性活性炭纳米片有效分离烟道气中CO2的方法。主要是采用超声剥离的方法获得活性炭纳米片,之后再通过酸溶液氧化改性。最终通过穿透实验表明经80℃真空活化后的改性活性炭纳米片材料在室温下对CO2/N2混合气体(v:v=15:85,总流量为20mL/min)的分离容量达到了15.79cm3/g,分离选择性为4.37,可以作为一种有效分离烟道气中CO2的固体吸附剂材料。

Description

改性活性炭纳米片及其分离柱的制备方法
技术领域
本发明属于气体分离技术领域,具体涉及采用一种改性活性炭纳米片及其分离柱的制备方法。
背景技术
随着全球气候变暖越来越严重,CO2排放,特别是工业CO2排放已经成为全球关注的普遍问题。目前,应用有效分离技术可以减少发电厂中CO2排放,这占排放总量的40%。而从发电厂烟道气中分离捕获CO2,主要指从水饱和N2,少量O2和其他物质组成的混合物中分离出CO2,烟道气压力低和CO2分压小决定了这项工程的艰巨性。因此,CO2捕集分离技术的研发和产业化是目前世界各国关注的主要热点问题。
目前,CO2捕集分离技术主要是化学溶剂吸收法,其中最为常见的是是利用链烷醇胺水溶液吸附分离CO2,但是由于CO2和吸收剂之间具有强烈的相互作用使得需要花费更大的成本实现能源再生。因此,急切需要开发一种高效和经济的CO2吸附分离技术来替代传统的分离手段。值得注意的是,基于吸附的气体分离可以将超过多孔固体密度的平衡气体密度可逆地吸附到多孔材料上,而称为吸附剂的多孔材料的选择可能是设计和开发基于吸附的分离中最重要的决定。与多孔碳材料相比,大多数多孔固体吸附剂如沸石、金属有机框架材料和共价有机聚合物普遍存在CO2的选择吸附容量较小和操作范围较窄的缺点。因此,设计合成高CO2吸附能力、高分离选择性、易于再生和稳定的多孔碳材料是目前工作的重中之重。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种改性活性炭纳米片及其分离柱的制备方法。
本发明是通过以下技术方案实现的:
本发明提供一种改性活性炭纳米片的制备方法,其包括如下步骤:
S1:将活性炭分散在水和乙醇的混合溶剂中,在2~8℃下超声80~100min后,进行离心分离,收集固体部分用蒸馏水洗涤,得到活性炭纳米片材料;
S2:将所述活性炭纳米片材料分散于酸溶液中,在60~80℃下搅拌20~40min后,加入蒸馏水,搅拌5~15min,过滤,收集滤渣进行洗涤,调节pH值至5~7,干燥得到固体;
S3:向所述固体中通入水蒸气,在250~400℃下处理1~2h后,得到改性活性炭纳米片。
作为优选方案,所述活性炭、水和乙醇的重量比为1:(30~40):(15~20)。
作为优选方案,所述酸溶液的当量浓度为1~3N。
作为优选方案,所述活性炭纳米片和酸溶液的重量比为1:(80~90)。
作为优选方案,所述酸溶液为硝酸、硫酸、磷酸和盐酸中的一种。
作为优选方案,步骤S2中所述蒸馏水的加入量为活性炭纳米片重量的230~250倍。
一种分离烟道气中二氧化碳的分离柱的制备方法,其包括如下步骤:
将前述的改性活性炭纳米片在80℃下进行真空干燥后,在5μmHg条件下活化20~30h,以脱去水和溶剂;
装入不锈钢柱内,以石英棉对空隙进行填充,得到所述分离柱。
与现有技术相比,本发明具有如下的有益效果:
1、将活性炭材料剥离成活性炭纳米片后改性,增大与氧化剂之间的接触,使得改性更为彻底,同时采用水蒸气处理能够增加炭表面孔洞,从而进一步增大与CO2气体分子的接触面积;
2、直接利用稀酸溶液氧化活性炭纳米片表面,与强酸改性相比更容易形成易于介孔乃至微孔,有利于CO2的吸附分离,同时稀酸处理活性炭纳米片表面能够丰富其表面的含氧基团,有利于进一步增加材料对CO2的吸附量。前期强酸改性的活性炭材料对CO2的吸附量为69.2cm3/g,但令人惊喜的是后期换稀酸溶液改性之后的活性炭纳米片对CO2的吸附量增加到89.6cm3/g。
3、利用稀酸溶液氧化活性炭纳米片材料就可以达到之前利用硝酸钠和浓酸改性的效果,本发明实施方案步骤简单,容易操作,效果明显,具有很好的应用前景。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1是本发明中实施例1制得的活性炭纳米片的扫描电镜图;
图2是本发明中实施例1制得的活性炭纳米片改性前后的微孔孔径分布图;
图3是本发明中实施例1制得的活性炭纳米片改性前后的介孔及大孔孔径分布图;
图4是本发明中实施例1制得的活性炭纳米片改性前后的红外谱图;
图5是本发明中实施例1制得的改性的活性炭纳米片在296K和1标准大气压下对CO2和N2的等温吸附曲线;
图6是本发明中实施例1制得的改性的活性炭纳米片在296K下对CO2的吸附焓;
图7是本发明中实施例1制得的改性的活性炭纳米片对于C2H2/CO2(v:v=15:85,总流量为20mL/min)混合气体的柱分离穿透曲线(296K,1bar)。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
本发明利用Micromeritics ASAP 2020Accelerated Surface Area andPorosimetry吸附仪测定制备的活性炭纳米片在等温条件下对CO2和N2的饱和吸附量;并用柱分离穿透实验测定改性活性炭材料对CO2/N2混合气体的分离效果,并以此计算分离容量和分离选择性。
实施例1
S1:将3g活性炭分散在90g水和45g乙醇的混合溶剂中,在2℃下超声80min后,进行离心分离,收集固体部分用蒸馏水洗涤,得到活性炭纳米片材料;
S2:将所述0.6g活性炭纳米片材料分散于48g,1N的硝酸溶液中,在60℃下搅拌20min后,加入138g蒸馏水,搅拌5min,过滤,收集滤渣进行洗涤,调节pH值至5,干燥得到固体;
S3:向所述固体中通入水蒸气,在250℃下处理1h后,得到改性活性炭纳米片。
S4:将制得的改性活性炭纳米片放入80℃真空干燥箱,在5μmHg条件下活化20h,脱去水和溶剂后,得到本发明所述的一种有效分离烟道气中CO2的改性活性炭材料。
S5:将一定量的改性活性炭纳米片装入不锈钢柱,石英棉填充空隙空间。80℃下,真空泵原位活化改性活性炭纳米片的柱子20h。在活化之后使用He气以净化吸附剂,气流速度为20mL/min。然后关闭惰性气体的气流,同时将以20mL/min的流速将CO2/N2(15:85)的气体混合物通入柱中。使用Hiden质谱仪(HPR20)监测来自柱的流出物。
本实施例制备的活性炭纳米片的扫面电镜照片如图1所示,剥离后活性炭材料呈层片状均匀分布;活性炭纳米片改性前后的孔径变化情况如图2及图3所示,改性后尺寸向微孔转移且微孔数量明显增多,更有利于促进CO2与N2的分离;活性炭纳米片改性前后官能团变化情况如图4所示,经酸改性后表面含氧官能团增强,在1735cm-1出现明显的C=O振动峰;改性后的活性炭纳米片对于CO2和N2的吸附情况如图5所示,在296K和1bar下,改性活性炭材料对CO2和N2的吸附量为69.6和6.4cm3/g;改性后的活性炭纳米片对于CO2的吸附焓如图6所示,在296K和1bar下,改性活性炭材料对CO2的吸附焓为28.5;改性后的活性炭纳米片对于C2H2/CO2(v:v=15:85,总流量为20mL/min)混合气体的柱分离穿透曲线如图7所示,可以有效分离CO2/N2混合气体(v:v=15:85,总流量为20mL/min)。由图中的数据计算得改性活性炭纳米片对CO2气体的分离容量为12.34cm3/g,分离选择性为3.96。
实施例2
S1:将3g活性炭分散在100g水和50g乙醇的混合溶剂中,在5℃下超声90min后,进行离心分离,收集固体部分用蒸馏水洗涤,得到活性炭纳米片材料;
S2:将所述0.8g活性炭纳米片材料分散于68g,2N的盐酸溶液中,在65℃下搅拌30min后,加入200g蒸馏水,搅拌8min,过滤,收集滤渣进行洗涤,调节pH值至6,干燥得到固体;
S3:向所述固体中通入水蒸气,在300℃下处理1.5h后,得到改性活性炭纳米片。
S4:将制得的改性活性炭纳米片放入80℃真空干燥箱,在5μmHg条件下活化24h,脱去水和溶剂后,得到本发明所述的一种有效分离烟道气中CO2的改性活性炭材料。
S5:将一定量的改性活性炭纳米片装入不锈钢柱,石英棉填充空隙空间。80℃下,真空泵原位活化改性活性炭纳米片的柱子24h。在活化之后使用Ar气以净化吸附剂,气流速度为20mL/min。然后关闭惰性气体的气流,同时将以20mL/min的流速将CO2/N2(15:85)的气体混合物通入柱中。使用Hiden质谱仪(HPR20)监测来自柱的流出物。
本实施例制备的改性活性炭纳米片在296K和1bar下,对CO2和N2的吸附量为80.5和6.5cm3/g;对CO2的吸附焓为26.5。对CO2气体的分离容量为16.49cm3/g,分离选择性为4.21。
对比例1
S1:将所述1.0g活性炭分散于80g,3N的磷酸溶液中,在70℃下搅拌35min后,加入250g蒸馏水,搅拌12min,过滤,收集滤渣进行洗涤,调节pH值至7,干燥得到固体;
S2:向所述固体中通入水蒸气,在350℃下处理1.3h后,得到改性活性炭。
S3:将制得的改性活性炭放入80℃真空干燥箱,在5μmHg条件下活化28h,脱去水和溶剂后,得到本发明所述的一种有效分离烟道气中CO2的改性活性炭材料。
S4:将一定量的改性活性炭材料装入不锈钢柱,石英棉填充空隙空间。80℃下,真空泵原位活化改性活性炭纳米片的柱子28h。在活化之后使用He气以净化吸附剂,气流速度为20mL/min。然后关闭惰性气体的气流,同时将以20mL/min的流速将CO2/N2(15:85)的气体混合物通入柱中。使用Hiden质谱仪(HPR20)监测来自柱的流出物。
本对比例制备的改性活性炭材料在296K和1bar下,对CO2和N2的吸附量为68.4和4.5cm3/g;对CO2的吸附焓为22.7;对CO2气体的分离容量为8.97cm3/g,分离选择性为1.32。
对比例2
S1:将3g活性炭分散在112g水和54g乙醇的混合溶剂中,在5℃下超声90min后,进行离心分离,收集固体部分用蒸馏水洗涤,得到活性炭纳米片材料;
S2:将所述1.5g活性炭纳米片材料分散于128g浓硝酸溶液中,在75℃下搅拌30min后,加入350g蒸馏水,搅拌10min,过滤,收集滤渣进行洗涤,调节pH值至6,干燥得到固体;
S3:向所述固体中通入水蒸气,在300℃下处理2h后,得到改性活性炭纳米片。
S4:将制得的改性活性炭纳米片放入80℃真空干燥箱,在5μmHg条件下活化25h,脱去水和溶剂后,得到本发明所述的一种有效分离烟道气中CO2的改性活性炭材料。
S5:将一定量的改性活性炭纳米片装入不锈钢柱,石英棉填充空隙空间。80℃下,真空泵原位活化改性活性炭纳米片的柱子25h。在活化之后使用Xe气以净化吸附剂,气流速度为20mL/min。然后关闭惰性气体的气流,同时将以20mL/min的流速将CO2/N2(15:85)的气体混合物通入柱中。使用Hiden质谱仪(HPR20)监测来自柱的流出物。
本对比例制备的改性活性炭纳米片在296K和1bar下,对CO2和N2的吸附量为70.9和5.6cm3/g;对CO2的吸附焓为23.6;对CO2气体的分离容量为12.84cm3/g,分离选择性为2.75。
对比例3
S1:将3g活性炭分散在100g水和50g乙醇的混合溶剂中,在15℃下超声30min后,进行离心分离,收集固体部分用蒸馏水洗涤,得到活性炭纳米片材料;
S2:将所述1.5g活性炭纳米片材料分散于120g,1N稀硝酸溶液中,在70℃下搅拌30min后,加入360g蒸馏水,搅拌15min,过滤,收集滤渣进行洗涤,调节pH值至7,干燥得到固体;
S3:向所述固体中通入水蒸气,在350℃下处理1h后,得到改性活性炭纳米片。
S4:将制得的改性活性炭纳米片放入80℃真空干燥箱,在5μmHg条件下活化24h,脱去水和溶剂后,得到本发明所述的一种有效分离烟道气中CO2的改性活性炭材料。
S5:将一定量的改性活性炭纳米片装入不锈钢柱,石英棉填充空隙空间。80℃下,真空泵原位活化改性活性炭纳米片的柱子24h。在活化之后使用He气以净化吸附剂,气流速度为20mL/min。然后关闭惰性气体的气流,同时将以20mL/min的流速将CO2/N2(15:85)的气体混合物通入柱中。使用Hiden质谱仪(HPR20)监测来自柱的流出物。
本对比例制备的改性活性炭纳米片在296K和1bar下,对CO2和N2的吸附量为70.5和4.3cm3/g;对CO2的吸附焓为25.0;对CO2气体的分离容量为14.35cm3/g,分离选择性为3.16。
实施例6
S1:将3g活性炭分散在120g水和60g乙醇的混合溶剂中,在8℃下超声100min后,进行离心分离,收集固体部分用蒸馏水洗涤,得到活性炭纳米片材料;
S2:将所述1.2g活性炭纳米片材料分散于105g,3N的硫酸溶液中,在80℃下搅拌40min后,加入300g蒸馏水,搅拌15min,过滤,收集滤渣进行洗涤,调节pH值至7,干燥得到固体;
S3:向所述固体中通入水蒸气,在400℃下处理2h后,得到改性活性炭纳米片。
S4:将制得的改性活性炭纳米片放入80℃真空干燥箱,在5μmHg条件下活化30h,脱去水和溶剂后,得到本发明所述的一种有效分离烟道气中CO2的改性活性炭材料。
S5:将一定量的改性活性炭纳米片装入不锈钢柱,石英棉填充空隙空间。80℃下,真空泵原位活化改性活性炭纳米片的柱子30h。在活化之后使用Xe气以净化吸附剂,气流速度为20mL/min。然后关闭惰性气体的气流,同时将以20mL/min的流速将CO2/N2(15:85)的气体混合物通入柱中。使用Hiden质谱仪(HPR20)监测来自柱的流出物。
本实施例制备的改性活性炭纳米片在296K和1bar下,对CO2和N2的吸附量为85.2和6.9cm3/g;对CO2的吸附焓为25.2;对CO2气体的分离容量为15.53cm3/g,分离选择性为4.35。
通过实施例1~3和对比例1~3的对比可知,酸的浓度及活性炭的形貌对CO2及N2的吸附容量及分离选择性的影响较大。当使用稀酸溶剂氧化及活性炭呈纳米片状时,材料对CO2及N2表现出较高的吸附量和很好的分离效果。

Claims (9)

1.一种改性活性炭纳米片的制备方法,其特征在于,包括如下步骤:
S1:将活性炭分散在水和乙醇的混合溶剂中,在2~8℃下超声80~100min后,进行离心分离,收集固体部分用蒸馏水洗涤,得到活性炭纳米片材料;
S2:将所述活性炭纳米片材料分散于酸溶液中,在60~80℃下搅拌20~40min后,加入蒸馏水,搅拌5~15min,过滤,收集滤渣进行洗涤,调节pH值至5~7,干燥得到固体;
S3:向所述固体中通入水蒸气,在250~400℃下处理1~2h后,得到改性活性炭纳米片。
2.如权利要求1所述的改性活性炭纳米片的制备方法,其特征在于,所述活性炭、水和乙醇的重量比为1:(30~40):(15~20)。
3.如权利要求1所述的改性活性炭纳米片的制备方法,其特征在于,所述酸溶液的当量浓度为1~3N。
4.如权利要求3所述的改性活性炭纳米片的制备方法,其特征在于,所述活性炭纳米片和酸溶液的重量比为1:(80~90)。
5.如权利要求4所述的改性活性炭纳米片的制备方法,其特征在于,所述酸溶液为硝酸、硫酸、磷酸和盐酸中的一种。
6.如权利要求1所述的改性活性炭纳米片的制备方法,其特征在于,步骤S2中所述蒸馏水的加入量为活性炭纳米片重量的230~250倍。
7.一种分离烟道气中二氧化碳的分离柱的制备方法,其特征在于,包括如下步骤:
将权利要求1中制备的改性活性炭纳米片在80℃下进行真空干燥后,在5μmHg条件下活化20~30h,以脱去水和溶剂;
装入不锈钢柱内,以石英棉对空隙进行填充后,用惰性气体进行净化,得到所述分离柱。
8.如权利要求7所述的分离烟道气中二氧化碳的分离柱的制备方法,其特征在于,所述惰性气体的流速为20mL/min。
9.如权利要求7或8所述的分离烟道气中二氧化碳的分离柱的制备方法,其特征在于,所述惰性气体为He气、Ar气或Xe气。
CN201710557686.8A 2017-07-10 2017-07-10 改性活性炭纳米片及其分离柱的制备方法 Expired - Fee Related CN107213869B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710557686.8A CN107213869B (zh) 2017-07-10 2017-07-10 改性活性炭纳米片及其分离柱的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710557686.8A CN107213869B (zh) 2017-07-10 2017-07-10 改性活性炭纳米片及其分离柱的制备方法

Publications (2)

Publication Number Publication Date
CN107213869A true CN107213869A (zh) 2017-09-29
CN107213869B CN107213869B (zh) 2020-05-12

Family

ID=59952067

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710557686.8A Expired - Fee Related CN107213869B (zh) 2017-07-10 2017-07-10 改性活性炭纳米片及其分离柱的制备方法

Country Status (1)

Country Link
CN (1) CN107213869B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200011834A (ko) * 2018-07-25 2020-02-04 주식회사 에이시티 표면개질된 활성탄을 이용하는 축산용 탈취 촉매 및 탈취제
CN111333037A (zh) * 2020-04-15 2020-06-26 大连科利德光电子材料有限公司 一种制备高纯度硫化氢气体的***及方法
CN114713188A (zh) * 2022-03-04 2022-07-08 浙江工业大学 一种二氧化碳吸附材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105642228A (zh) * 2016-01-08 2016-06-08 桂林理工大学 一种用于吸附烟气中co2的活性炭的制备方法
CN106006630A (zh) * 2016-05-19 2016-10-12 青岛大学 一种活性炭材料的制备方法
CN106517181A (zh) * 2016-10-25 2017-03-22 武汉理工大学 一种高效吸附co2的生物质基活性炭的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105642228A (zh) * 2016-01-08 2016-06-08 桂林理工大学 一种用于吸附烟气中co2的活性炭的制备方法
CN106006630A (zh) * 2016-05-19 2016-10-12 青岛大学 一种活性炭材料的制备方法
CN106517181A (zh) * 2016-10-25 2017-03-22 武汉理工大学 一种高效吸附co2的生物质基活性炭的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
何东平等: "《油脂工厂设计手册》", 31 August 2012, 湖北科学技术出版社 *
张薄: ""煤基颗粒活性炭的制备及其在气体分离中的应用"", 《国家科技图书文献中心-博士论文》 *
郑福宝等: ""活性炭在超声条件下碱洗和改性对CO2的吸附研究"", 《福州大学学报(自然科学版)》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200011834A (ko) * 2018-07-25 2020-02-04 주식회사 에이시티 표면개질된 활성탄을 이용하는 축산용 탈취 촉매 및 탈취제
KR102242019B1 (ko) 2018-07-25 2021-04-19 주식회사 에이시티 표면개질된 활성탄을 이용하는 축산용 탈취제
CN111333037A (zh) * 2020-04-15 2020-06-26 大连科利德光电子材料有限公司 一种制备高纯度硫化氢气体的***及方法
CN111333037B (zh) * 2020-04-15 2022-11-11 大连科利德光电子材料有限公司 一种制备高纯度硫化氢气体的***及方法
CN114713188A (zh) * 2022-03-04 2022-07-08 浙江工业大学 一种二氧化碳吸附材料及其制备方法
CN114713188B (zh) * 2022-03-04 2024-04-30 浙江工业大学 一种二氧化碳吸附材料及其制备方法

Also Published As

Publication number Publication date
CN107213869B (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
Bagreev et al. Thermal regeneration of a spent activated carbon previously used as hydrogen sulfide adsorbent
Jafari et al. Adsorptive removal of toluene and carbon tetrachloride from gas phase using Zeolitic Imidazolate Framework-8: Effects of synthesis method, particle size, and pretreatment of the adsorbent
Deng et al. Activated carbons prepared from peanut shell and sunflower seed shell for high CO 2 adsorption
Zhang et al. Effects of properties of minerals adsorbents for the adsorption and desorption of volatile organic compounds (VOC)
CN107213869A (zh) 改性活性炭纳米片及其分离柱的制备方法
CN105797690A (zh) 一种提高对含水有机气体吸附的疏水性涂层活性炭制备和再生方法
CN104511273B (zh) 一种挥发性有机化合物吸附材料的制备方法
JP5643680B2 (ja) 有機溶剤の除去方法及び除去装置
CN106693893A (zh) 一种新型石墨烯‑分子筛复合气体净化材料及其制备方法
Bagreev et al. Study of regeneration of activated carbons used as H2S adsorbents in water treatment plants
WO2014056164A1 (zh) 一种Cu-BTC材料的再生方法
CN104014224A (zh) 一种从混合气中分离二氧化碳的方法
Rezaee et al. Adsorption properties and breakthrough model of formaldehyde on bone char
CN105617991B (zh) 一种H-TiO2@N-G/C双功能催化吸附材料及其制备方法和应用
CN103537260B (zh) 一种醋酸钠修饰的亲水性活性炭及其制备方法
CN107777687A (zh) 一种除氨活性炭的制备方法
CN104324691B (zh) 一种高co2吸附性能碳吸附剂的制备方法
CN114302769A (zh) 吸附全氟和多氟烷基化合物的活性炭
CN212141854U (zh) 一种低浓度有机废气处理一体塔
US20230372893A1 (en) Activated carbon for adsorbing neutral per- and polyfluoroalkyl compounds and analysis method for neutral per- and polyfluoroalkyl compounds in water sample
Menezes et al. Carbon dioxide and methane capture in metal-organic framework MIL-101 (Cr) at high pressure
RU2802727C1 (ru) Адсорбирующий SO2 материал, способ его получения и его применение, и способ удаления SO2 из дымового газа, содержащего SO2
JP7006239B2 (ja) 多孔質炭素材
JP3029807B2 (ja) 脱臭剤および脱臭器具
JPS6148977B2 (zh)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200512

Termination date: 20200710

CF01 Termination of patent right due to non-payment of annual fee