CN107204947B - 一种ftn预均衡传输方法、发射机、接收机及*** - Google Patents

一种ftn预均衡传输方法、发射机、接收机及*** Download PDF

Info

Publication number
CN107204947B
CN107204947B CN201710476283.0A CN201710476283A CN107204947B CN 107204947 B CN107204947 B CN 107204947B CN 201710476283 A CN201710476283 A CN 201710476283A CN 107204947 B CN107204947 B CN 107204947B
Authority
CN
China
Prior art keywords
equalization
signal sequence
ftn
length
cyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710476283.0A
Other languages
English (en)
Other versions
CN107204947A (zh
Inventor
李明齐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Advanced Research Institute of CAS
Original Assignee
Shanghai Advanced Research Institute of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Advanced Research Institute of CAS filed Critical Shanghai Advanced Research Institute of CAS
Priority to CN201710476283.0A priority Critical patent/CN107204947B/zh
Publication of CN107204947A publication Critical patent/CN107204947A/zh
Application granted granted Critical
Publication of CN107204947B publication Critical patent/CN107204947B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本发明提供一种超奈奎斯特(FTN)预均衡传输方法、发射器、接收器及***,在发射端先将待传输的码元符号分块,并对每个符号块进行预均衡,以预先消除后续超奈奎斯特速率成形滤波造成的自符号间干扰(ISI)影响,接着对预均衡的符号块按超奈奎斯特速率成形滤波,然后通过循环叠加操作,形成可保持超过奈奎斯特速率且首尾循环的块符号,最后为符号块添加保护间隔,形成发送的基带符号。在接收端,仅需通过保护间隔消除由多径信道导致的ISI,而不需要考虑超奈奎斯特速率传输造成的自ISI影响,而从而达到降低接收端复杂度的效果。

Description

一种FTN预均衡传输方法、发射机、接收机及***
技术领域
本发明涉及通信技术领域,特别是涉及一种FTN预均衡传输方法、发射机、接收机及***。
背景技术
随着近几年无线设备的***式增长,尤其是具备传输高速多媒体流的智能设备的快速普及,无线数据业务量呈现出指数数增长的趋势。在频谱资源总量有限的现实困境下,寻找具有更高频谱效率的传输技术是面向未来的无线通信***设计中至关重要的一个环节。其中一种潜在的技术是超奈奎斯特传输(英文:Faster than Nyquist,简称:FTN),FTN允许在相同的带宽上以高于奈奎斯特速率的码率进行数据传输以提高频带利用率,因而引发了研究热潮。
奈奎斯特准则要求信号间相互正交以避免由码间干扰(英文:Intersymbolinterference,简称:ISI)引起的接收端判决正确率下降,然后保证服务质量的代价是牺牲了频谱效率。FTN通过引入自ISI传输非正交信号从而获得更高的数据传输速率,但FTN概念早在上世纪70年代由Mazo提出后,传统通信***设计仍旧遵从奈奎斯特第一准则的主要原因在于硬件电路无法实现接收端为消除ISI所需要的高复杂度算法。得益于半导体和集成电路技术的快速发展,硬件电路得以实现更高复杂度的算法,对于FTN的研究在近年重新成为热点。
目前,对于FTN传输技术的研究主要局限于简单的二进制调制。虽然FTN传输技术在非二进制以及高阶调制中验证了其优势,但是仿真假设信道为加性高斯白噪声信道,并没有考虑到信道衰落的影响,实用性仍然收到限制。基于谱效频分复用(英文:spectrallyefficient frequency division multiplexing,简称:SEFDM)的多载波FTN收发机设计,则存在峰均比过高的情况,会造成传输能量的浪费。此外,为了消除接收信号中存在的码间串扰,在检测检测算法方面,通过采用最大似然序列检测(英文:Maximum LikelihoodSequence Detection,简称:MLSD)算法可以获得最佳性能,但其过高的实现复杂度使得在实际中难以应用,若将接收符号视为卷积编码后的结果,则可用Viterbi算法或BCJR算法检测,但符号间间隔的缩短引起的状态数增加会极大的提高上述两种算法的复杂度。另外,由于ISI的引入,超奈奎斯特***在同步、信道估计、均衡等方面均会比奈奎斯特***增加实现复杂度。
综上所述,针对现有FTN传输技术在调制方式、适用信道模型以及ISI消除算法复杂度等方面存在的问题,如何降低适用于多径衰落信道的超奈奎斯特传输***的整体实现复杂度,是本领域技术人员亟需解决的技术问题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种FTN预均衡传输方法、发射器、接收器及***,用于解决现有技术中超奈奎斯特传输实现复杂度高的问题。
为实现上述目的及其他相关目的,根据本发明的第一方面,本发明实施例提供一种FTN预均衡传输方法,应用于FTN预均衡发射器,该方法包括:
将调制符号序列分割为多个符号数据块;
生成每个符号数据块所对应的预均衡系数;
根据所述预均衡系数,对相应的符号数据块进行预均衡,得到预均衡信号序列;
使用成形滤波器分别对所述预均衡信号序列进行超奈奎斯特成形滤波,得到滤波信号序列;
对所述滤波信号序列进行首尾循环叠加,得到循环信号序列;
在所述循环信号序列上增加保护间隔,得到输出信号序列,并向FTN预均衡接收器发出。
可选地,其特征在于,所述多个符号数据块的长度均相同。
可选地,所述生成预均衡系数,包括根据与所述类型对应的成形滤波器的离散冲击响应以及所述超奈奎斯特成形滤波位移量,通过循环自相关操作,生成所述预均衡系数;所述预均衡系数的长度以与所述符号数据块的长度相等。
可选地,所述预均衡包括频域均衡或时域均衡,对所述符号数据块进行频域均衡,包括计算符号数据块的离散傅里叶变换与预均衡系数的离散傅里叶变换的矢量除运算结果;对所述矢量除运算结果进行离散傅里叶逆变换,得到预均衡信号序列;
对所述符号数据块进行时域均衡,包括离线计算预均衡系数的离散傅里叶变换的倒数再取其离散傅里叶逆变换;对该逆变换输出结果和符号数据块进行循环卷积运算,得到预均衡信号序列。
可选地,所述成形滤波器的离散冲击响应的上采样率大于超奈奎斯特成形滤波位移量。
可选地,所述成形滤波器包括根升余弦滤波器、高斯滤波器和各向同性正交变换算法滤波器中的任意一种。
可选地,对所述滤波信号序列进行首尾循环叠加,得到循环信号序列,包括:
当0≤t≤P-NFTN-1时,将滤波信号序列中的第t数据符号与第t+Q数据符号相加,得到循环信号序列的第t数据符号;
当P-NFTN≤t≤Q-1,将滤波信号序列中的第t数据符号作为循环信号序列的第t数据符号;
其中,P为滤波信号序列的长度,Q为循环信号序列的长度,P>Q;NFTN为超奈奎斯特成形滤波位移量;t、P和Q均为自然数。
可选地,所述循环信号序列的长度等于所述符号数据块的长度与超奈奎斯特成形滤波位移量的乘积,且所述循环信号序列的长度大于或等于所述成形滤波器的离散冲击响应的长度。
可选地,在所述循环信号序列上增加保护间隔,得到输出信号序列,包括:
在所述循环信号序列的首部或尾部添加所述保护间隔,且所述保护间隔的长度大于或等于信道最大时延扩展长度。
可选地,当在所述循环信号序列的首部添加所述保护间隔时,将位于所述循环信号序列尾部的、与保护间隔的长度相对应的数据块符号复制并添加到循环信号序列的首部。
根据本发明的第二方面,本发明实施例提供一种FTN预均衡传输方法,应用于FTN预均衡接收器,该方法,包括以下步骤:
接收FTN预均衡发射器发送的输出信号序列,并去除所述输出信号序列中的保护间隔,得到输入信号序列;
对所述输入信号序列进行信道均衡操作,得到信道均衡输出信号序列;
对所述信道均衡输出信号序列进行循环匹配滤波,得到循环匹配信号序列。
可选地,接收FTN预均衡发射器发送的输出信号序列,并去除所述输出信号序列中的保护间隔,得到输入信号序列,包括:
获取FTN预均衡发射器发送的保护间隔配置信息,所述保护间隔配置信息至少携带有所述保护间隔的设置位置和长度;
根据所述保护间隔的设置位置和长度,去除所述所述输出信号序列中的保护间隔。
可选地,当所述均衡操作包括时域均衡操作或频域均衡操作时对所述输入信号序列进行信道均衡操作,得到信道均衡输出信号序列,包括:
当传输信号带宽大于或等于带宽阈值时,对所述输入信号序列进行频域均衡操作,得到信道均衡输出信号序列;或者,
当传输信号带宽小于带宽阈值时,对所述输入信号序列进行时域均衡操作,得到信道均衡输出信号序列。
可选地,对所述信道均衡输出信号序列进行循环匹配滤波,得到循环匹配信号序列,包括:
获取FTN预均衡发射器发送的成形滤波器配置信息,所述成形滤波器配置信息至少携带有FTN预均衡发射器所使用的成形滤波器的类型、超奈奎斯特成形滤波位移量和符号数据块的长度;
根据与所述类型对应的成形滤波器的离散冲击响应以及所述超奈奎斯特成形滤波位移量,对所述信道均衡输出信号序列进行循环匹配滤波,得到循环匹配信号序列;
所述循环匹配信号序列的长度与所述符号数据块的长度相等。
根据本发明的第三方面,本发明实施例提供一种FTN预均衡发射器,该发射器包括:
数据块分割模块,用于将调制符号序列分割为多个符号数据块;
预均衡系数生成模块,用于生成每个符号数据块所对应的预均衡系数;
预均衡模块,用于根据所述预均衡系数,对相应的符号数据块进行预均衡,得到预均衡信号序列;
成形滤波模块,用于使用成形滤波器对所述预均衡信号序列进行超奈奎斯特成形滤波,得到滤波信号序列;
循环成块模块,用于对所述滤波信号序列进行首尾循环叠加,得到循环信号序列;
保护间隔添加模块,用于在所述循环信号序列上增加保护间隔,得到输出信号序列,并向FTN预均衡接收器发出。
可选地,所述数据块分割模块所分割得到的所述多个符号数据块的长度均相同。
可选地,所述预均衡系数生成模块,用于根据与所述类型对应的成形滤波器的离散冲击响应以及所述超奈奎斯特成形滤波位移量,通过循环自相关操作,生成所述预均衡系数;所述预均衡系数的长度以与所述符号数据块的长度相等。
可选地,所述预均衡模块用于,
对所述符号数据块进行频域均衡,包括计算符号数据块的离散傅里叶变换与预均衡系数的离散傅里叶变换的矢量除运算结果;对所述矢量除运算结果进行离散傅里叶逆变换,得到预均衡信号序列;
对所述符号数据块进行时域均衡,包括离线计算预均衡系数的离散傅里叶变换的倒数再取其离散傅里叶逆变换;对该逆变换输出结果和符号数据块进行循环卷积运算,得到预均衡信号序列。
可选地,所述成形滤波器的上采样率大于超奈奎斯特成形滤波位移量。
可选地,所述成形滤波器包括根升余弦滤波器、高斯滤波器和各向同性正交变换算法滤波器中的任意一种。
可选地,所述循环成块模块用于,
当0≤t≤P-NFTN-1时,将滤波信号序列中的第t数据符号与第t+Q数据符号相加,得到循环信号序列的第t数据符号;
当P-NFTN≤t≤Q-1,将滤波信号序列中的第t数据符号作为循环信号序列的第t数据符号;
其中,P为滤波信号序列的长度,Q为循环信号序列的长度,P>Q;NFTN为超奈奎斯特成形滤波位移量;t、P和Q均为自然数。
可选地,所述循环信号序列的长度等于所述符号数据块的长度与超奈奎斯特成形滤波位移量的乘积,且所述循环信号序列的长度大于或等于所述成形滤波器的离散冲击响应的长度。
可选地,所述保护间隔添加模块用于,在所述循环信号序列的首部或尾部添加所述保护间隔,且所述保护间隔的长度大于或等于信道最大时延扩展长度。
可选地,所述保护间隔添加模块用于,当在所述循环信号序列的首部添加所述保护间隔时,将位于所述循环信号序列尾部的、与保护间隔的长度相对应的数据块符号复制并添加到循环信号序列的首部。
根据本发明的第四方面,本发明实施例提供一种FTN预均衡接收器,该接收器包括:
保护间隔去除模块,用于接收FTN预均衡发射器发送的输出信号序列,并去除所述输出信号序列中的保护间隔,得到输入信号序列;
信道均衡模块,用于对所述输入信号序列进行信道均衡操作,得到信道均衡输出信号序列;
循环匹配滤波模块,用于对所述信道均衡输出信号序列进行循环匹配滤波,得到循环匹配信号序列。
可选地,所述保护间隔去除模块用于,
获取FTN预均衡发射器发送的保护间隔配置信息,所述保护间隔配置信息至少携带有所述保护间隔的设置位置和长度;
根据所述保护间隔的设置位置和长度,去除所述所述输出信号序列中的保护间隔。
可选地,所述信道均衡模块用于,
当传输信号带宽大于或等于带宽阈值时,对所述输入信号序列进行频域均衡操作,得到信道均衡输出信号序列;或者,
当传输信号带宽小于带宽阈值时,对所述输入信号序列进行时域均衡操作,得到信道均衡输出信号序列
可选地,循环匹配滤波模块用于,
获取FTN预均衡发射器发送的成形滤波器配置信息,所述成形滤波器配置信息至少携带有FTN预均衡发射器所使用的成形滤波器的类型、超奈奎斯特成形滤波位移量和符号数据块的长度;
根据与所述类型对应的成形滤波器的离散冲击响应以及所述超奈奎斯特成形滤波位移量,对所述信道均衡输出信号序列进行循环匹配滤波,得到循环匹配信号序列;
所述循环匹配信号序列的长度与所述符号数据块的长度相等。
根据本发明的第五方面,本发明提供一种FTN预均衡传输***,该传输***包括上述实施例所描述的FTN预均衡发射器,以及上述实施例所描述的FTN预均衡接收器。
如上所述,本发明的超奈奎斯特率块的传输方法、发射器、接收器及***,具有以下有益效果:在发射端先将待传输的码元符号分块,并对每个符号块进行预均衡,以预先消除后续超奈奎斯特速率成形滤波造成的自ISI影响,接着对预均衡的符号块按超奈奎斯特速率成形滤波,然后通过循环叠加操作,形成可保持超过奈奎斯特速率且首尾循环的块符号,最后为符号块添加保护间隔,形成发送的基带符号。在接收端,仅需通过保护间隔消除由多径信道导致的ISI,而不需要考虑超奈奎斯特速率传输造成的自ISI影响,而从而达到降低接收端复杂度的效果。
附图说明
图1显示为本发明实施例提供的一种发射器侧FTN预均衡传输方法的流程示意图。
图2显示为本发明实施例提供的一种循环叠加方法的流程示意图。
图3显示为本发明实施例提供的一种接收器侧FTN预均衡传输方法的流程示意图。
图4显示为本发明实施例提供的一种去除保护间隔方法的流程示意图。
图5显示为本发明实施例提供的一种信道均衡方法的流程示意图。
图6显示为本发明实施例提供的一种循环匹配滤波方法的流程示意图。
图7显示为本发明实施例提供的一种FTN预均衡发射器的结构示意图。
图8显示为本发明实施例提供的一种FTN预均衡接收器的结构示意图。
图9显示为本发明实施例提供的一种FTN传输***的结构示意图。
图10显示为本发明实施例提供的一种频率效率结果示意图。
图11显示为本发明实施例提供的一种接收重构信噪比结果示意图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1至图11。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
参见图1,为本发明实施例提供的一种发射器侧FTN预均衡传输方法的流程示意图,如图1所示,本发明实施例示出了FTN预均衡发射器实施该传输方法的过程:
步骤S101:将调制符号序列分割为多个符号数据块。
一示例性实施例中,所述调制符号序列可以表示为{x(n),n=0,1,2....}。在本发明实施例中将所述调制符号序列分隔为多个符号数据块,每个符号数据块的长度可以均相等为D,这样,多个符号数据块能够构成符号数据块序列。一个符号数据块可以示例性的表示为{a(d),d=0,1,2....D-1}。由于发射机对每个符号数据块的操作时相同而且是独立的,因此将以一个符号数据块的处理过程为例对后续步骤进行详细描述。
当然,需要说明的是,所述符号数据块的长度也可以不相同,可以在FTN预均衡接收器和FTN预均衡发射器之间预先设定符号数据块的分割规则,或者,在FTN预均衡接收器与FTN预均衡发射器通信过程中,FTN预均衡发射器可以把符号数据块的分割规则发送到FTN预均衡接收器,从而使得FTN预均衡接收器与FTN预均衡发射器具有统一的符号数据块。
步骤S102:生成每个符号数据块所对应的预均衡系数。
所述预均衡系数{cf(d),d=0,...,D-1}用于自符号间干扰预均衡,所述预均衡系数可以根据成形滤波器的离散冲击响应以及超奈奎斯特成形滤波位移量,通过循环自相关操作,生成,具体公式如下所示:
Figure BDA0001328334570000071
Figure BDA0001328334570000081
其中,cf(d)为预均衡系数,fp(t)为成形滤波器的离散冲击响应,L为成形滤波器的离散冲击响应fp(t)的长度,Q为预设的输出信号序列的长度,NFTN为超奈奎斯特成形滤波位移量,()*表示取共轭运算,(())Q表示取模Q运算。所述预均衡系数的长度与所述符号数据块的长度D相等。
步骤S103:根据所述预均衡系数,对相应的符号数据块进行预均衡,得到预均衡信号序列。
根据步骤S102得到预均衡系数{cf(d),d=0,...,D-1},对符号数据块{a(d),d=0,1,2....D-1}进行预均衡,得到预均衡信号序列{q(d),d=0,1,2,...,D-1},其中,所述预均衡可以包括时域均衡或频域均衡。
当对所述符号数据块进行频域均衡时,所述频域均衡包括计算符号数据块的离散傅里叶变换与预均衡系数的离散傅里叶变换的矢量除运算结果;对所述矢量除运算结果进行离散傅里叶逆变换,得到预均衡信号序列。
所述均衡输出信号序列{q(d),d=0,1,2,...D-1}可以通过以下公式计算得到:
q(d)=IDFTD{DFTD{a(d)}·/DFTD{cf(d)}},
其中,q(d)为均衡输出信号序列,a(d)为符号数据块,cf(d)为预均衡系数,DFTD{}为D点的离散傅里叶变换运算,IDFTD{}为D点的离散傅里叶逆变换运算,./为矢量除运算。
当对所述符号数据块进行时域均衡时,所述时域均衡包括离线计算预均衡系数的离散傅里叶变换的倒数再取其离散傅里叶逆变换;对该逆变换输出结果和符号数据块进行循环卷积运算,得到预均衡信号序列。
在预均衡为时域均衡的情况下,所述均衡输出信号序列{q(d),d=0,1,2,…D-1}可以通过以下公式计算得到:
Figure BDA0001328334570000082
其中,
Figure BDA0001328334570000083
为循环卷积运算,q(d)为均衡输出信号序列,a(d)为符号数据块,cf(d)为预均衡系数,DFTD{}为D点的离散傅里叶变换运算,IDFTD{}为D点的离散傅里叶逆变换运算,./为矢量除运算。
而且,需要说明的是,所述均衡输出信号序列q(d)的长度与所述符号数据块的长度D相同。
步骤S104:使用成形滤波器分别对所述预均衡信号序列进行超奈奎斯特成形滤波,得到滤波信号序列。
对步骤S103得到的均衡输出信号序列{q(d),d=0,1,2....D-1}进行超奈奎斯特成形滤波,得到滤波信号序列{g(t),t=0,1,2....P-1}。
在本发明实施中,所述成形滤波器可以采用实数或复数滤波器,优先选用根升余弦滤波器、高斯滤波器和各向同性正交变换算法(英文:Isotropic orthogonal transformalgorithm,简称:IOTA)滤波器中的任意一种。
在具体实施时,对均衡输出信号序列{q(d),d=0,1,2....D-1}进行超奈奎斯特成形滤波,输出滤波信号序列为{g(t),t=0,1,2....P-1},而且g(t)可以使用如下公式表示:
Figure BDA0001328334570000091
其中,D为符号数据块的长度,fp(t)为成形滤波器的离散冲击响应,NFTN为超奈奎斯特成形滤波位移量,P为输出滤波信号序列的长度。
为了进行超奈奎斯特率传输,在一示例性实施例中,所述成形滤波器的离散冲击响应fp(t)的上采样率N大于超奈奎斯特成形滤波位移量NFTN,即N>NFTN。其中,所述超奈奎斯特成形滤波位移量NFTN可以预设为16、17、18、19等,而所述上采样率N可以设置为20等,当然上述上采样率N以及超奈奎斯特成形滤波位移量NFTN的设置仅是一示例性实施例,在具体实施时可以设置为任意其他数值,在本发明实施例中不做限定。
而且,所述输出滤波信号序列的长度P,与符号数据块的长度D、超奈奎斯特成形滤波位移量NFTN以及所述成形滤波器的离散冲击响应fp(t)的长度L,具有如下关系:
P=D×NFTN+L
步骤S105:对所述滤波信号序列进行首尾循环叠加,得到循环信号序列。
继续对步骤S104得到的滤波信号序列{g(t),t=0,1,2....P-1}进行收尾循环叠加操作,从而得到循环信号序列,所述循环信号序列表示为{b(t),t=0,1,2....Q-1},其中Q为所述循环信号序列的长度。
参见图2,为本发明实施例提供的一种循环叠加方法的流程示意图,如图2所示,该方法包括以下步骤:
步骤S1051:当0≤t≤P-NFTN-1时,将滤波信号序列中的第t数据符号与第t+Q数据符号相加,得到循环信号序列的第t数据符号。
步骤S1052:当P-NFTN≤t≤Q-1时,将滤波信号序列中的第t数据符号作为循环信号序列的第t数据符号;其中,P为滤波信号序列的长度,Q为循环信号序列的长度,P>Q;NFTN为超奈奎斯特成形滤波位移量;t、P和Q均为自然数。
这样,生成循环信号序列的具体公式可以表示如下:
Figure BDA0001328334570000101
而且,在本发明实施例中,所述循环信号序列的长度Q等于所述符号数据块的长度D与超奈奎斯特成形滤波位移量NFTN的乘积,且所述循环信号序列的长度Q大于或等于所述成形滤波器的离散冲击响应的长度L。具体地,Q=D×NFTN且L≤Q<P。
步骤S106:在所述循环信号序列上增加保护间隔,得到输出信号序列,并向FTN预均衡接收器发出。
为了减少信道间干扰,在一示例性实施例中,可以在所述循环信号序列b(t)的首部或尾部添加保护间隔;而且,优选地所述保护间隔的长度大于或等于信道最大时延扩展长度。
具体实施例时,可以通过循环前缀的方式在所述循环信号序列的首部增加所述保护间隔:将位于所述循环信号序列尾部的、与保护间隔的长度相对应的数据块符号复制并添加到循环信号序列的首部,从而形成待循环前缀的输出信号序列。
通过增加所述保护间隔,所述循环信号序列{b(t),t=0,1,2....Q-1}变换成完整的输出信号序列{s(t),t=0,1,2....Q+C-1},其中C为保护间隔的长度。
生成的输出信号序列向FTN预均衡接收器发出,或者以广播的形式向周围环境发出,以使FTN预均衡接收器能够接收到所述输出信号序列。当然,需要说明的是,在具体实施时,所述输出信号序列的发出过程还可能包括信道编码、数字调制、射频变频以及发射等步骤,在本发明实施中不再赘述。
参见图3,为本发明实施例提供的一种接收器侧FTN预均衡传输方法的流程示意图,如图3所示,本发明实施例示出了FTN预均衡接收器实施该传输方法的过程:
步骤S201:接收FTN预均衡发射器发送的输出信号序列,并去除所述输出信号序列中的保护间隔,得到输入信号序列。
首先需要说明的是,以数字通信***为例,接收机在接收信号时可能还需要进行射频变频、同步、信道估计以及数字解调等步骤,在本发明实施中不再赘述。本发明实施例将以接收到FTN预均衡发射器发出的输出信号序列{r(t),t=0,1,...,Q+C-1}为例,对FTN预均衡发射器侧实施超奈奎斯特率块的传输方法进行详细描述;其中Q为输出信号序列的长度,C为保护间隔的长度。
FTN预均衡接收器按照FTN预均衡发射器保护间隔添加规则,将数据块中的C个作为保护间隔的采样值舍去,从而形成长度为Q的输入信号序列{y(t),t=0,1,2,...,Q-1}。
在第一种实施情况下,可以预设保护间隔的添加规则,所述添加规则规定保护间隔的添加位置以及保护间隔的长度等参数;这样,FTN预均衡发射器能够按照预设的添加规则增加保护间隔,向FTN预均衡接收器发出输出信号序列,FTN预均衡接收器根据预设的添加规则,将FTN预均衡发射器增加的保护间隔去除,从而得到输入信号序列。
在第二种实施情况下,由于FTN预均衡发射器可能需要变动保护间隔的添加规则,为了提高保护间隔去除的灵活性和效率,参见图4,为本发明实施例提供的一种去除保护间隔方法的流程示意图,如图4所示,该方法包括:
步骤S2011:获取FTN预均衡发射器发送的保护间隔配置信息,所述保护间隔配置信息至少携带有所述保护间隔的设置位置和长度。
在FTN预均衡发射器发出所述输出信号序列的同时,还可以发出保护间隔配置信息;其中,所述保护间隔配置信息可以集成在所述输出信号序列中的字段内,或者以独立字段的形式向FTN预均衡接收器发出实施保护间隔配置信息,在本发明实施例中不做限定。而且,所述保护间隔配置信息携带有FTN预均衡发射器增加的保护间隔的设置位置和保护间隔的长度。进一步,FTN预均衡接收器获取FTN预均衡发射器发送的保护间隔配置信息。
步骤S2012:根据所述保护间隔的设置位置和长度,去除所述所述输出信号序列中的保护间隔。
FTN预均衡接收器根据从保护间隔配置信息中获取到的保护间隔的设置位置和长度,从所述输出信号序列中的设置位置开始,去除所述长度对应的输出信号序列中的数据符号,从而得到去除保护间隔后的输入信号序列。
步骤S202:对所述输入信号序列进行信道均衡操作,得到信道均衡输出信号序列。
根据步骤S201得到的输入信号序列{y(t),t=0,1,2,...,Q-1},对所述输入信号序列{y(t),t=0,1,2,...,Q-1}进行信道均衡操作,从而得到信道均衡输出信号序列{e(t),t=0,1,2,...,Q-1}。其中,所述信道均衡操作可以包括时域均衡操作或频域均衡操作。
由于在不同实施条件下可能需要进行不同的信道均衡操作,为了提高信道均衡操作的效率,参见图5,为本发明实施例提供的一种信道均衡方法的流程示意图,如图5所示,该方法包括:
步骤S2021:当传输信号带宽大于或等于带宽阈值时,所述输入信号序列进行频域均衡操作,得到信道均衡输出信号序列。
所述带宽阈值可以为预设的带宽阈值,当传输信号的带宽大于或等于所述带宽阈值时,表示当前的信号传输场景为宽带;同样,当传输信号的带宽小于所述带宽阈值时,表示当前的信号传输场景为窄带。
对于宽带的情况,所述信道均衡可以为频域均衡;进一步,对所述输入信号序列{y(t),t=0,1,2,...,Q-1}进行频域均衡操作,得到信道均衡输出信号序列;所述频域均衡操作的过程在本发明实施例中不再赘述。
步骤S2022:当传输信号带宽小于带宽阈值时,对所述输入信号序列进行时域均衡操作,得到信道均衡输出信号序列。
当传输信号带宽小于带宽阈值时,表示当前的信号传输场景为窄带;对于窄带的情况,所述信道均衡可以为时域均衡;进一步,对所述输入信号序列{y(t),t=0,1,2,...,Q-1}进行时域均衡操作,得到信道均衡输出信号序列;所述时域均衡操作的过程在本发明实施例中不再赘述。
这样,本发明实施例能够根据宽带和窄带场景,选择不同的信道衡操作策略,从而有效提高信道均衡计算效率。
步骤S203:对所述信道均衡输出信号序列进行循环匹配滤波,得到循环匹配信号序列。
对步骤S202得到信道均衡输出信号序列{e(t),t=0,1,2,...,Q-1}进行循环匹配滤波,得到循环匹配信号序列o(d)。
在第一种实施情况下,所述FTN预均衡发射器和FTN预均衡接收器可以预设相同的成形滤波器以及符号数据块的长度等参数信息;这样,FTN预均衡发射器能够根据预设的成形滤波器和符号数据块的长度等参数信息,生成并发出输出信号序列;进一步,FTN预均衡接收器根据预设的成型滤波器和符号数据块的长度等参数信息,对接收到的输出信号序列经过上述步骤后,在本步骤中执行循环匹配滤波,得到循环匹配信号序列。
在第二种实施情况下,由于FTN预均衡发射器可能需要变换使用不同的成形滤波器以及配置不同的符号数据块的长度等参数,为了提高循环匹配滤波的灵活性和效率,参见图6,为本发明实施例提供的一种循环匹配滤波方法的流程示意图,如图6所示,该方法包括:
步骤S2031:获取FTN预均衡发射器发送的成形滤波器配置信息,所述成形滤波器配置信息至少携带有FTN预均衡发射器所使用的成形滤波器的类型、超奈奎斯特成形滤波位移量和符号数据块的长度。
FTN预均衡发射器在发出输出信号序列的同时,可以在所述输出信号序列的字段中携带所述成形滤波器配置信息,或者,FTN预均衡发射器可以发出独立的成形滤波器配置信息,在本发明实施例中不做限定。FTN预均衡接收器接收所述成形滤波器配置信息,而且,所述成形滤波配置信息至少携带有FTN预均衡发射器所使用的成形滤波器的类型、超奈奎斯特成形滤波位移量和符号数据块的长度。
步骤S2032:根据与所述类型对应的成形滤波器的离散冲击响应以及所述超奈奎斯特成形滤波位移量,对所述信道均衡输出信号序列进行循环匹配滤波,得到循环匹配信号序列;其中,所述循环匹配信号序列的长度均与所述符号数据块的长度相等。
FTN预均衡接收器进一步选择所述类型对应的成形滤波器,并对所述信道均衡输出信号序列进行循环匹配滤波,得到循环匹配信号序列。
所述循环匹配信号序列o(d)可以通过以下公式计算得到:
Figure BDA0001328334570000131
Figure BDA0001328334570000132
其中,fp(t)为成形滤波器的离散冲击响应,L为成形滤波器的离散冲击响应fp(t)的长度,Q为循环匹配信号序列的长度,NFTN为超奈奎斯特成形滤波位移量,()*表示共轭运算,(())Q表示取模Q运算。
生成的所述循环匹配信号序列可以表示为{o(d),d=0,1,2,...,D-1},其中,所述循环匹配信号序列的长度与符号数据块的长度D相同。
与本发明实施例提供的FTN预均衡传输方法实施例相对应,本发明实施例还提供FTN传输装置实施例。
参见图7,为本发明实施例提供的一种FTN预均衡发射器的结构示意图,如图7所示,该发射器包括:
数据块分割模块11,用于将调制符号序列分割为多个符号数据块;
预均衡系数生成模块12,用于生成每个符号数据块所对应的预均衡系数;
预均衡模块13,用于根据所述预均衡系数,对相应的符号数据块进行预均衡,得到预均衡信号序列;
成形滤波模块14,用于使用成形滤波器对所述预均衡信号序列进行超奈奎斯特成形滤波,得到滤波信号序列;
循环成块模块15,用于对所述滤波信号序列进行首尾循环叠加,得到循环信号序列;
保护间隔添加模块16,用于在所述循环信号序列上增加保护间隔,得到输出信号序列,并向FTN预均衡接收器发出。
在具体实施时,所述数据块分割模块11所分割得到的所述多个符号数据块的长度均相同。
可选地,所述预均衡模块13用于,对所述符号数据块进行频域均衡,包括计算符号数据块的离散傅里叶变换与预均衡系数的离散傅里叶变换矢量除运算结果;对所述矢量除运算结果进行离散傅里叶逆变换,得到预均衡信号序列;对所述符号数据块进行时域均衡,包括计算预均衡系数的离散傅里叶变换结果;对符号数据块和均衡系数的离散傅里叶变换进行循环卷积运算,得到预均衡信号序列。
可选地,所述成形滤波器的上采样率大于超奈奎斯特成形滤波位移量。
可选地,所述成形滤波器包括根升余弦滤波器、高斯滤波器和各向同性正交变换算法(IOTA)滤波器中的任意一种。
可选地,所述循环成块模块用于,
当0≤t≤P-NFTN-1时,将滤波信号序列中的第t数据符号与第t+Q数据符号相加,得到循环信号序列的第t数据符号;
当P-NFTN≤t≤Q-1,将滤波信号序列中的第t数据符号作为循环信号序列的第t数据符号;
其中,P为滤波信号序列的长度,Q为循环信号序列的长度,P>Q;NFTN为超奈奎斯特成形滤波位移量;t、P和Q均为自然数。
可选地,所述循环信号序列的长度等于所述符号数据块的长度与超奈奎斯特成形滤波位移量的乘积,且所述循环信号序列的长度大于或等于所述成形滤波器的响应长度。
可选地,所述保护间隔添加模块16用于,在所述循环信号序列的首部或尾部添加所述保护间隔,且所述保护间隔的长度大于或等于信道最大时延扩展长度。
可选地,所述保护间隔添加模块16用于,当在所述循环信号序列的首部添加所述保护间隔时,将位于所述循环信号序列尾部的、与保护间隔的长度相对应的数据块符号复制并添加到循环信号序列的首部。
参见图8,为本发明实施例提供的一种FTN预均衡接收器的结构示意图,如图8所示,该接收器包括:
保护间隔去除模块21,用于接收FTN预均衡发射器发送的输出信号序列,并去除所述输出信号序列中的保护间隔,得到输入信号序列;
信道均衡模块22,用于对所述输入信号序列进行均衡操作,得到信道均衡输出信号序列;
循环匹配滤波模块23,用于对所述信道均衡输出信号序列进行循环匹配滤波,得到循环匹配信号序列。
可选地,所述保护间隔去除模块21用于,获取FTN预均衡发射器发送的保护间隔配置信息,所述保护间隔配置信息至少携带有所述保护间隔的设置位置和长度;根据所述保护间隔的设置位置和长度,去除所述所述输出信号序列中的保护间隔。
可选地,所述信道均衡模块22用于,当传输信号带宽大于或等于带宽阈值时,对所
述输入信号序列进行频域均衡操作,得到信道均衡输出信号序列;或者,
当传输信号带宽小于带宽阈值时,对所述输入信号序列进行时域均衡操作,得到信道均衡输出信号序列可选地,循环匹配滤波模块23用于,获取FTN预均衡发射器发送的成形滤波器配置信息,所述成形滤波器配置信息至少携带有FTN预均衡发射器所使用的成形滤波器的类型、超奈奎斯特成形滤波位移量和符号数据块的长度;
根据与所述类型对应的成形滤波器的离散冲击响应以及所述超奈奎斯特成形滤波位移量,对所述信道均衡输出信号序列进行循环匹配滤波,得到循环匹配信号序列;
其中,所述循环匹配信号序列的长度均与所述符号数据块的长度相等。
参见图9,为本发明实施例提供的一种FTN预均衡传输***的结构示意图,如图9所示,该传输***包括上述实施例所描述的FTN预均衡发射器31,以及上述实施例所描述的FTN预均衡接收器32。
为了说明本发明实施例所提供的一种超奈奎斯特率块的传输方法、发射器、接收器及***的效果,本发明实施例进行了***仿真,具体的***仿真参数设置如下表一所示:
表一:
Figure BDA0001328334570000151
Figure BDA0001328334570000161
参见图10,为本发明实施例提供的一种频率效率结果示意图。图10示出了通过不同的***参数配置可获得不同的频谱效率。由图可见,奈奎斯特***的时间压缩率为1,当采用QPSK调制时,其频谱效率为2bps/Hz;而FTN-PEQBT***的时间压缩率分别设为0.8、0.85、0.9和0.95时,同样调制方式下,频谱效率为2.5、2.35、2.22和2.11bps/Hz,频谱效率比前者提高25%~5.5%。
参见图11,为本发明实施例提供的一种接收重构信噪比结果示意图。图11示出了通过不同的***参数配置可获得不同的接收重构信噪比。由图可见,奈奎斯特***的时间压缩率为1,接收重构信噪比与AWGN信道信噪比完全相同;而对于FTN-PEQBT***的时间压缩率为0.8~0.95时,接收重构信噪比逐渐提高,即接收重构信噪随***频谱效率的降低而提高。
因此,本发明提出的超奈奎斯特***可获得与传统超奈奎斯特***相同的频谱效率,并与传统奈奎斯特***相比有明显提升。
综上所述,本发明提供的一种FTN预均衡传输方法、发射器、接收器及***,在发射端先将待传输的码元符号分块,并对每个符号块进行预均衡,以预先消除后续超奈奎斯特速率成形滤波造成的自ISI影响,接着对预均衡的符号块按超奈奎斯特速率成形滤波,然后通过循环叠加操作,形成可保持超过奈奎斯特速率且首尾循环的块符号,最后为符号块添加保护间隔,形成发送的基带符号。在接收端,仅需通过保护间隔消除由多径信道导致的ISI,而不需要考虑超奈奎斯特速率传输造成的自ISI影响,而从而达到降低接收端复杂度的效果。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (29)

1.一种FTN预均衡传输方法,应用于FTN预均衡发射器,其特征在于,所述传输方法包括以下步骤:
将调制符号序列分割为多个符号数据块;
生成每个符号数据块所对应的预均衡系数;
根据所述预均衡系数,对相应的符号数据块进行预均衡,得到预均衡信号序列;
使用成形滤波器分别对所述预均衡信号序列进行超奈奎斯特成形滤波,得到滤波信号序列;
对所述滤波信号序列进行首尾循环叠加,得到循环信号序列;
在所述循环信号序列上增加保护间隔,得到输出信号序列,并向FTN预均衡接收器发出。
2.根据权利要求1所述的FTN预均衡传输方法,其特征在于,所述多个符号数据块的长度均相同。
3.根据权利要求1所述的FTN预均衡传输方法,其特征在于,所述生成预均衡系数,包括根据成形滤波器的离散冲击响应以及超奈奎斯特成形滤波位移量,通过循环自相关操作,生成所述预均衡系数;
所述预均衡系数的长度与所述符号数据块的长度相等。
4.根据权利要求1所述的FTN预均衡传输方法,其特征在于,所述预均衡包括频域均衡或时域均衡,
对所述符号数据块进行频域均衡,包括计算符号数据块的离散傅里叶变换与预均衡系数的离散傅里叶变换的矢量除运算结果;对所述矢量除运算结果进行离散傅里叶逆变换,得到预均衡信号序列;
对所述符号数据块进行时域均衡,包括离线计算预均衡系数的离散傅里叶变换的倒数再取其离散傅里叶逆变换;对该逆变换输出结果和符号数据块进行循环卷积运算,得到预均衡信号序列。
5.根据权利要求1所述的FTN预均衡传输方法,其特征在于,所述成形滤波器的离散冲击响应的上采样率大于超奈奎斯特成形滤波位移量。
6.根据权利要求1所述的FTN预均衡传输方法,其特征在于,所述成形滤波器包括根升余弦滤波器、高斯滤波器和各向同性正交变换算法滤波器中的任意一种。
7.根据权利要求1所述的FTN预均衡传输方法,其特征在于,对所述滤波信号序列进行首尾循环叠加,得到循环信号序列,包括:
当0≤t≤P-NFTN-1时,将滤波信号序列中的第t数据符号与第t+Q数据符号相加,得到循环信号序列的第t数据符号;
当P-NFTN≤t≤Q-1,将滤波信号序列中的第t数据符号作为循环信号序列的第t数据符号;
其中,P为滤波信号序列的长度,Q为循环信号序列的长度,P>Q;NFTN为超奈奎斯特成形滤波位移量;t、P和Q均为自然数。
8.根据权利要求7所述的FTN预均衡传输方法,其特征在于,所述循环信号序列的长度等于所述符号数据块的长度与超奈奎斯特成形滤波位移量的乘积,且所述循环信号序列的长度大于或等于所述成形滤波器的离散冲击响应的长度。
9.根据权利要求1所述的FTN预均衡传输方法,其特征在于,在所述循环信号序列上增加保护间隔,得到输出信号序列,包括:
在所述循环信号序列的首部或尾部添加所述保护间隔,且所述保护间隔的长度大于或等于信道最大时延扩展长度。
10.根据权利要求9所述的FTN预均衡传输方法,其特征在于,当在所述循环信号序列的首部添加所述保护间隔时,将位于所述循环信号序列尾部的、与保护间隔的长度相对应的数据块符号复制并添加到循环信号序列的首部。
11.一种FTN预均衡传输方法,应用于FTN预均衡接收器,其特征在于,包括以下步骤:
接收FTN预均衡发射器发送的输出信号序列,并去除所述输出信号序列中的保护间隔,得到输入信号序列;
对所述输入信号序列进行信道均衡操作,得到信道均衡输出信号序列;
对所述信道均衡输出信号序列进行循环匹配滤波,得到循环匹配信号序列。
12.根据权利要求11所述的FTN预均衡传输方法,其特征在于,接收发射器发送的输出信号序列,并去除所述输出信号序列中的保护间隔,得到输入信号序列,包括:
获取FTN预均衡发射器发送的保护间隔配置信息,所述保护间隔配置信息至少携带有所述保护间隔的设置位置和长度;
根据所述保护间隔的设置位置和长度,去除所述输出信号序列中的保护间隔。
13.根据权利要求11所述的FTN预均衡传输方法,其特征在于,当所述均衡操作包括时域均衡操作或频域均衡操作时对所述输入信号序列进行信道均衡操作,得到信道均衡输出信号序列,包括:
当传输信号带宽大于或等于带宽阈值时,对所述输入信号序列进行频域均衡操作,得到信道均衡输出信号序列;或者,
当传输信号带宽小于带宽阈值时,对所述输入信号序列进行时域均衡操作,得到信道均衡输出信号序列。
14.根据权利要求11所述的FTN预均衡传输方法,其特征在于,对所述信道均衡输出信号序列进行循环匹配滤波,得到循环匹配信号序列,包括:
获取FTN预均衡发射器发送的成形滤波器配置信息,所述成形滤波器配置信息至少携带有FTN预均衡发射器所使用的成形滤波器的类型、超奈奎斯特成形滤波位移量和符号数据块的长度;
根据与所述类型对应的成形滤波器的离散冲击响应以及所述超奈奎斯特成形滤波位移量,对所述信道均衡输出信号序列进行循环匹配滤波,得到循环匹配信号序列;
所述循环匹配信号序列的长度与所述符号数据块的长度相等。
15.一种FTN预均衡发射器,其特征在于,包括:
数据块分割模块,用于将调制符号序列分割为多个符号数据块;
预均衡系数生成模块,用于生成每个符号数据块所对应的预均衡系数;
预均衡模块,用于根据所述预均衡系数,对相应的符号数据块进行预均衡,得到预均衡信号序列;
成形滤波模块,用于使用成形滤波器对所述预均衡信号序列进行超奈奎斯特成形滤波,得到滤波信号序列;
循环成块模块,用于对所述滤波信号序列进行首尾循环叠加,得到循环信号序列;
保护间隔添加模块,用于在所述循环信号序列上增加保护间隔,得到输出信号序列,并向FTN预均衡接收器发出。
16.根据权利要求15所述的FTN预均衡发射器,其特征在于,所述数据块分割模块所分割得到的所述多个符号数据块的长度均相同。
17.根据权利要求15所述的FTN预均衡发射器,其特征在于,所述预均衡系数生成模块,用于根据成形滤波器的离散冲击响应以及超奈奎斯特成形滤波位移量,通过循环自相关操作,生成所述预均衡系数;
所述预均衡系数的长度与所述符号数据块的长度相等。
18.根据权利要求17所述的FTN预均衡发射器,其特征在于,所述预均衡模块用于,
对所述符号数据块进行频域均衡,包括计算符号数据块的离散傅里叶变换与预均衡系数的离散傅里叶变换的矢量除运算结果;对所述矢量除运算结果进行离散傅里叶逆变换,得到预均衡信号序列;
对所述符号数据块进行时域均衡,包括离线计算预均衡系数的离散傅里叶变换的倒数再取其离散傅里叶逆变换;对该逆变换输出结果和符号数据块进行循环卷积运算,得到预均衡信号序列。
19.根据权利要求15所述的FTN预均衡发射器,其特征在于,所述成形滤波器的上采样率大于超奈奎斯特成形滤波位移量。
20.根据权利要求15所述的FTN预均衡发射器,其特征在于,所述成形滤波器包括根升余弦滤波器、高斯滤波器和各向同性正交变换算法滤波器中的任意一种。
21.根据权利要求15所述的FTN预均衡发射器,其特征在于,所述循环成块模块用于,
当0≤t≤P-NFTN-1时,将滤波信号序列中的第t数据符号与第t+Q数据符号相加,得到循环信号序列的第t数据符号;
当P-NFTN≤t≤Q-1,将滤波信号序列中的第t数据符号作为循环信号序列的第t数据符号;
其中,P为滤波信号序列的长度,Q为循环信号序列的长度,P>Q;NFTN为超奈奎斯特成形滤波位移量;t、P和Q均为自然数。
22.根据权利要求21所述的FTN预均衡发射器,其特征在于,所述循环信号序列的长度等于所述符号数据块的长度与超奈奎斯特成形滤波位移量的乘积,且所述循环信号序列的长度大于或等于所述成形滤波器的离散冲击响应的长度。
23.根据权利要求15所述的FTN预均衡发射器,其特征在于,所述保护间隔添加模块用于,在所述循环信号序列的首部或尾部添加所述保护间隔,且所述保护间隔的长度大于或等于信道最大时延扩展长度。
24.根据权利要求23所述的FTN预均衡发射器,其特征在于,所述保护间隔添加模块用于,当在所述循环信号序列的首部添加所述保护间隔时,将位于所述循环信号序列尾部的、与保护间隔的长度相对应的数据块符号复制并添加到循环信号序列的首部。
25.一种FTN预均衡接收器,其特征在于,包括:
保护间隔去除模块,用于接收FTN预均衡发射器发送的输出信号序列,并去除所述输出信号序列中的保护间隔,得到输入信号序列;
信道均衡模块,用于对所述输入信号序列进行信道均衡操作,得到信道均衡输出信号序列;
循环匹配滤波模块,用于对所述信道均衡输出信号序列进行循环匹配滤波,得到循环匹配信号序列。
26.根据权利要求25所述的FTN预均衡接收器,其特征在于,所述保护间隔去除模块用于,
获取FTN预均衡发射器发送的保护间隔配置信息,所述保护间隔配置信息至少携带有所述保护间隔的设置位置和长度;
根据所述保护间隔的设置位置和长度,去除所述输出信号序列中的保护间隔。
27.根据权利要求25所述的FTN预均衡接收器,其特征在于,所述信道均衡模块用于,
当传输信号带宽大于或等于带宽阈值时,对所述输入信号序列进行频域均衡操作,得到信道均衡输出信号序列;或者,
当传输信号带宽小于带宽阈值时,对所述输入信号序列进行时域均衡操作,得到信道均衡输出信号序列。
28.根据权利要求25所述的FTN预均衡接收器,其特征在于,循环匹配滤波模块用于,
获取FTN预均衡发射器发送的成形滤波器配置信息,所述成形滤波器配置信息至少携带有FTN预均衡发射器所使用的成形滤波器的类型、超奈奎斯特成形滤波位移量和符号数据块的长度;
根据与所述类型对应的成形滤波器的离散冲击响应以及所述超奈奎斯特成形滤波位移量,对所述信道均衡输出信号序列进行循环匹配滤波,得到循环匹配信号序列;
所述循环匹配信号序列的长度均与所述符号数据块的长度相等。
29.一种FTN预均衡传输***,其特征在于,包括如权利要求15至24任一项所述的FTN预均衡传输发射器,以及如权利要求25至28任一项所述的FTN预均衡传输接收器。
CN201710476283.0A 2017-06-21 2017-06-21 一种ftn预均衡传输方法、发射机、接收机及*** Active CN107204947B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710476283.0A CN107204947B (zh) 2017-06-21 2017-06-21 一种ftn预均衡传输方法、发射机、接收机及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710476283.0A CN107204947B (zh) 2017-06-21 2017-06-21 一种ftn预均衡传输方法、发射机、接收机及***

Publications (2)

Publication Number Publication Date
CN107204947A CN107204947A (zh) 2017-09-26
CN107204947B true CN107204947B (zh) 2020-05-15

Family

ID=59907138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710476283.0A Active CN107204947B (zh) 2017-06-21 2017-06-21 一种ftn预均衡传输方法、发射机、接收机及***

Country Status (1)

Country Link
CN (1) CN107204947B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023851B (zh) * 2017-11-30 2020-04-14 武汉邮电科学研究院 基于超奈奎斯特滤波的同步信号发送与接收装置及方法
CN108173790B (zh) * 2017-12-08 2020-01-07 武汉邮电科学研究院 一种超奈奎斯特信号的传输方法
US20220173949A1 (en) * 2019-05-10 2022-06-02 Ntt Docomo, Inc. Terminal and transmission method
CN110430152B (zh) * 2019-09-04 2021-08-24 中国科学院上海高等研究院 时频压缩多载波发射方法、接收方法、发射器及接收器
CN112532549B (zh) * 2019-09-18 2023-10-03 深圳市中兴微电子技术有限公司 一种信号补偿方法及装置
CN110995636B (zh) * 2019-10-08 2022-09-23 中国科学院上海高等研究院 多载波***的传输装置、方法、终端、介质、***
CN111327551B (zh) * 2020-03-10 2022-07-15 中国科学院上海高等研究院 数据与导频频域复用的超奈奎斯特传输方法及传输装置
CN111431607B (zh) * 2020-04-14 2023-01-31 兰州理工大学 一种wo-ftn传输***中的分块矩阵干扰消除方法
CN113098601B (zh) * 2021-04-13 2022-05-24 兰州理工大学 一种深度学习预均衡-超奈奎斯特速率大气光传输方法
CN116668246B (zh) * 2023-06-26 2024-02-09 安徽大学 一种无需循环前缀的超奈奎斯特***频域均衡方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1941755A (zh) * 2005-09-30 2007-04-04 中国科学院上海微***与信息技术研究所 基于多子带滤波器组的发射、接收装置及其方法
CN101090386A (zh) * 2007-07-05 2007-12-19 中国科学院上海微***与信息技术研究所 一种基于滤波器组的分块传输***频域解调装置及其方法
CN105634545A (zh) * 2015-12-24 2016-06-01 中国人民解放军理工大学 一种超奈奎斯特通信***中基于矩阵分解的干扰消除方法
CN106332095A (zh) * 2016-11-07 2017-01-11 海南大学 基于级联频域均衡的超奈奎斯特传输方法
CN106878206A (zh) * 2015-12-11 2017-06-20 富士通株式会社 测量滤波特性的方法及其装置、预均衡器、通信设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9716602B2 (en) * 2013-07-08 2017-07-25 Hughes Network Systems, Llc System and method for iterative compensation for linear and nonlinear interference in system employing FTN symbol transmission rates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1941755A (zh) * 2005-09-30 2007-04-04 中国科学院上海微***与信息技术研究所 基于多子带滤波器组的发射、接收装置及其方法
CN101090386A (zh) * 2007-07-05 2007-12-19 中国科学院上海微***与信息技术研究所 一种基于滤波器组的分块传输***频域解调装置及其方法
CN106878206A (zh) * 2015-12-11 2017-06-20 富士通株式会社 测量滤波特性的方法及其装置、预均衡器、通信设备
CN105634545A (zh) * 2015-12-24 2016-06-01 中国人民解放军理工大学 一种超奈奎斯特通信***中基于矩阵分解的干扰消除方法
CN106332095A (zh) * 2016-11-07 2017-01-11 海南大学 基于级联频域均衡的超奈奎斯特传输方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FTN传输技术研究现状和发展;段昊;《军事通信技术》;20150331;第36卷(第1期);第77页到第82页 *
FTN***中的预编码及第复杂度接收技术;聂晟昱;《军事通信技术》;20150331;第36卷(第1期);第83页到第89页 *

Also Published As

Publication number Publication date
CN107204947A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
CN107204947B (zh) 一种ftn预均衡传输方法、发射机、接收机及***
CN106941465B (zh) 超奈奎斯特率块的传输方法、发射机、接收机及***
Galli et al. Advanced signal processing for PLCs: Wavelet-OFDM
CN107483378B (zh) 基于dft的ftn块传输方法、发射机、接收机及***
Isam et al. Characterizing the intercarrier interference of non-orthogonal spectrally efficient FDM system
Gelgor et al. The design and performance of SEFDM with the Sinc-to-RRC modification of subcarriers spectrums
Baltar et al. Multicarrier systems: a comparison between filter bank based and cyclic prefix based OFDM
CN108900461B (zh) 一种基于大规模mimo的无线通信***宽带信号设计方法
Ramavath et al. Theoretical analysis of power spectral density of CP-based FBMC signals
KR100656384B1 (ko) 가상 부반송파를 가진 ofdm 통신 시스템에서선형예측을 이용한 채널 추정 방법 및 장치
Khan et al. DWMT transceiver equalization using overlap FDE for downlink ADSL
Gusmao et al. A reduced-CP approach to SC/FDE block transmission for broadband wireless communications
Lin et al. A new transceiver system for the OFDM/OQAM modulation with cyclic prefix
Baltar et al. EM based per-subcarrier ML channel estimation for filter bank multicarrier systems
Baltar et al. Enhancing spectral efficiency in advanced multicarrier techniques: A challenge
Jose et al. Peak to average power ratio reduction and inter symbol interference cancellation of FBMC-OQAM signals
JP2019501582A (ja) 高次qam信号を復調するための方法およびシステム
Sharma Peak-to-average power ratio reduction techniques for OFDM signals
Yli-Kaakinen et al. Multicarrier waveform processing for HF communications
Frank et al. Low complexity equalization with and without decision feedback and its application to IFDMA
KR20000063968A (ko) 부분응답신호-직교주파수분할다중화 방식 및 장치
Tsai et al. Adaptive raised-cosine channel interpolation for pilot-aided OFDM systems
Gupta et al. Bit Error Rate Performance in OFDM System Using MMSE MLSE Equalizer Over Rayleigh Fading Channel Through The BPSK, QPSK, 4− QAM & 16− QAM Modulation Technique
Kumar et al. Improved PTS Technique Based on Sub-Block Weighting Method of PAPR Reduction in OFDM Signals
Ahmed et al. Semi-adaptive channel estimation technique for LTE systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant