CN107170802B - 一种短路阳极soi ligbt - Google Patents

一种短路阳极soi ligbt Download PDF

Info

Publication number
CN107170802B
CN107170802B CN201710439235.4A CN201710439235A CN107170802B CN 107170802 B CN107170802 B CN 107170802B CN 201710439235 A CN201710439235 A CN 201710439235A CN 107170802 B CN107170802 B CN 107170802B
Authority
CN
China
Prior art keywords
region
anode
type island
type
island region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710439235.4A
Other languages
English (en)
Other versions
CN107170802A (zh
Inventor
罗小蓉
赵哲言
邓高强
黄琳华
孙涛
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201710439235.4A priority Critical patent/CN107170802B/zh
Publication of CN107170802A publication Critical patent/CN107170802A/zh
Application granted granted Critical
Publication of CN107170802B publication Critical patent/CN107170802B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7394Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET on an insulating layer or substrate, e.g. thin film device or device isolated from the bulk substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明属于功率半导体技术领域,涉及一种具有交替NP耐压缓冲层结构的短路阳极SOI LIGBT。本发明与传统的短路阳极LIGBT相比,无高浓度的场截止层,而在阳极区域引入交替分布的N型岛区和P型岛区。在正向阻断时,P型岛区完全耗尽,不全耗尽的N型岛区将起到场截止的作用。器件处于单极模式导通时,受到P型岛区电子势垒阻挡,漂移区内电子电流流经N型岛区,以及岛区与阳极结构之间的高阻漂移区,最后被N+阳极收集。本发明的有益效果为,相比于传统LIGBT,具有更快的关断速度和和损耗;相比于传统的具有连续场截止层的短路阳极LIGBT,本发明在更小的纵向元胞尺寸下消除了电压折回现象。

Description

一种短路阳极SOI LIGBT
技术领域
本发明属于功率半导体技术领域,涉及一种短路阳极SOI LIGBT(LateralInsulated Gate Bipolar Transistor,横向绝缘栅双极型晶体管)。
背景技术
IGBT具有场效应晶体管高速开关及电压驱动的特性,同时具备双极晶体管低饱和电压的特性及易实现较大电流的能力。横向IGBT(LIGBT)易于集成在功率集成电路中,尤其是SOI基LIGBT可完全消除体硅LIGBT衬底空穴电子对注入,且采用介质隔离的SOI技术易实现器件的完全电气隔离,促使SOI LIGBT广泛应用于电力电子、工业自动化、航空航天等高新技术产业。
IGBT在关态时,阳极区的电子势垒迫使存储在漂移区的载流子通过复合消失,使得IGBT的关断速度减慢。而短路阳极技术是在阳极端引入N型阳极区,存储在漂移区内的大量电子可通过其快速抽取,电流拖尾时间减小,关断速度加快,从而小其关断损耗,进而也获得导通压降和关断损耗的良好折衷。但短路阳极结构的引入,使得器件处于单极模式时,流经漂移区的电流均为电子电流,电子电流由N型集电区收集,形成MOSFET导通模式。而当器件集电极和发射极之间电压增大至使得集电区PN结(P型集电区与N型场截止区构成的PN结)开启时,大量空穴开始注入漂移区发生电导调制效应,器件的正向导通电压大幅降低,形成IGBT导通模式。由于MOSFET模式到IGBT模式的转换带来的电导调制作用,给器件带来电压折回效应,影响器件电流分布的均匀性。本发明提出一种新型的短路阳极结构,可在小元胞尺寸下消除电压折回效应,同时获得低导通压降和低关断损耗。
发明内容
本发明的目的,就是针对上述问题,提出一种具有交替NP耐压缓冲层结构的短路阳极SOI LIGBT。
本发明的技术方案是:
一种短路阳极SOI LIGBT,包括自下而上依次层叠设置的P衬底1、埋氧层2和顶部半导体层;沿器件横向方向,所述的顶部半导体层从器件一侧到另一侧依次具有阴极结构、P阱区4、N漂移区3和阳极结构;所述阴极结构包括P+体接触区6和N+阴极区5,所述P+体接触区6的底部与埋氧层2接触,所述N+阴极区5位于P阱区4上层,且N+阴极区5与P+体接触区6和P阱区4接触,P+体接触区6与P阱区4接触;P+体接触区6和N+阴极区5的共同引出端为阴极;所述P阱区4与N漂移区3接触;在所述N+阴极区5与N漂移区3之间的P阱区4上表面具有栅极结构;所述栅极结构包括栅介质7和覆盖在栅介质7之上的栅多晶硅8,栅多晶硅8的引出端为栅电极;所述阳极结构包括沿器件纵向方向交替排列的P+阳极区9和N+阳极区10,所述P+阳极区9和N+阳极区10与N漂移区3和埋氧层2接触,所述P+阳极区9和N+阳极区10的共同引出端为阳极;
其特征在于,还包括N型岛区11和P型岛区12,所述N型岛区11和P型岛区12位于P+阳极区9和N+阳极区10靠近阴极结构的一侧,沿器件纵向方向,所述N型岛区11和P型岛区12交替排列,且N型岛区11和P型岛区12的底部与埋氧层2接触。
上述方案中,所述器件横向方向与器件纵向方向位于同一水平面且相互垂直,与器件垂直方向构成三维直角坐标系,与图1中对应的是,器件横向方向对应X轴,器件垂直方向对应Y轴,器件纵向方向对应Z轴。
进一步的,所述N型岛区11和P型岛区12与P+阳极区9和N+阳极区10在横向上被N漂移区3间隔。
进一步的,所述N型岛区11和P型岛区12在横向上与P+阳极区9或N+阳极区10相接触。
进一步的,所述阳极结构中的P型岛区12沿器件纵向方向上的宽度相等。
进一步的,所述P型岛区12沿器件纵向方向上的宽度不相等,且其纵向间距在越靠近N+阳极区10处越大。
本发明的有益效果为,相比于传统LIGBT,具有更快的关断速度和和损耗;相比于传统的具有连续场截止层的短路阳极LIGBT,本发明在更小的纵向元胞尺寸下消除了电压折回现象,且易与功率集成电路的高低压器件工艺兼容,制作成本低。
附图说明
图1为本发明提出的实施例1元胞结构示意图;
图2为本发明提出的实施例2元胞结构示意图;
图3为本发明提出的实施例3元胞结构示意图;
图4为本发明提出的实施例4元胞结构示意图。
具体实施方式
下面结合附图和实施例,详细描述本发明的技术方案:
实施例1
如图1所示,本例的结构包括自下而上依次层叠设置的P衬底1、埋氧层2和顶部半导体层;沿器件横向方向,所述的顶部半导体层从器件一侧到另一侧依次具有阴极结构、P阱区4、N漂移区3和阳极结构;所述阴极结构包括P+体接触区6和N+阴极区5,所述P+体接触区6的底部与埋氧层2接触,所述N+阴极区5位于P阱区4上层,且N+阴极区5与P+体接触区6和P阱区4接触,P+体接触区6与P阱区4接触;P+体接触区6和N+阴极区5的共同引出端为阴极;所述P阱区4与N漂移区3接触;在所述N+阴极区5与N漂移区3之间的P阱区4上表面具有栅极结构;所述栅极结构包括栅介质7和覆盖在栅介质7之上的栅多晶硅8,栅多晶硅8的引出端为栅电极;所述阳极结构包括沿器件纵向方向交替排列的P+阳极区9和N+阳极区10,所述P+阳极区9和N+阳极区10与N漂移区3和埋氧层2接触,所述P+阳极区9和N+阳极区10的共同引出端为阳极;还包括N型岛区11和P型岛区12,所述N型岛区11和P型岛区12位于P+阳极区9和N+阳极区10靠近阴极结构的一侧,沿器件纵向方向,所述N型岛区11和P型岛区12交替排列,且N型岛区11和P型岛区12的底部与埋氧层2接触;本例中P型岛区12沿器件纵向方向上的宽度相等。
本例的工作原理为:
本例所示的器件无高浓度的场截止层,而在阳极区域引入交替分布的N型岛区和P型岛区,NP交替结构不仅起到场截止的作用,而且使电子电流路径的重新分配,增加了阳极分布电阻,使器件在较小电流下进入双极模式,有效抑制电压折回现象。
实施例2
如图2所示,本例与实施例1的结构相比,区别在于本例中P型岛区12沿器件纵向方向上的宽度不相等,可在更小的纵向元胞尺寸下消除snapback效应。
实施例3
如图3所示,本例与实施例1的结构相比,区别在于本例中N型岛区11和P型岛区12与P+阳极区9和N+阳极区10是相互接触的。
实施例4
如图4所示,本例与实施例2的结构相比,区别在于本例中N型岛区11和P型岛区12与P+阳极区9和N+阳极区10是相互接触的且P型岛区12沿器件纵向方向上的宽度不相等。与实施例3相比,本例可在更小的纵向元胞尺寸下消除snapback效应。

Claims (4)

1.一种具有交替NP耐压缓冲层结构的短路阳极SOILIGBT,包括自下而上依次层叠设置的P衬底(1)、埋氧层(2)和顶部半导体层;所述的顶部半导体层具有N漂移区(3),N漂移区(3)一侧有P阱区(4),另一侧为阳极结构;N+阴极区(5)和P+体接触区(6)位于所述P阱区(4)的上表面,所述N+阴极区(5)位于靠近阳极结构一侧,所述N+阴极区(5)和P+体接触区(6)相互接触且共同引出端为阴极;所述的N+阴极区(5)和N漂移区(3)之间的P阱区(4)上表面为栅极结构;所述栅极结构包括栅介质层(7)和覆盖在栅介质层(7)之上的栅多晶硅(8),栅多晶硅(8)的引出端为栅电极;所述阳极结构包括沿器件纵向交替排列的P+阳极区(9)和N+阳极区(10),所述P+阳极区(9)和N+阳极区(10)位于埋氧层(2)上层,所述P+阳极区(9)和N+阳极区(10)的共同引出端为阳极;
其特征在于,所述阳极结构还包括N型岛区(11)和P型岛区(12),所述N型岛区(11)和P型岛区(12)位于P+阳极区(9)和N+阳极区(10)靠近阴极结构的一侧,所述N型岛区(11)和P型岛区(12)沿器件纵向交替排列,且N型岛区(11)和P型岛区(12)的底部与埋氧层(2)接触;所述N型岛区(11)和P型岛区(12)在横向上与P+阳极区(9)或N+阳极区(10)相接触。
2.根据权利要求1所述的一种具有交替NP耐压缓冲层结构的短路阳极SOILIGBT,其特征在于,所述N型岛区(11)和P型岛区(12)与P+阳极区(9)和N+阳极区(10)之间为N漂移区(3)。
3.根据权利要求1所述的一种具有交替NP耐压缓冲层结构的短路阳极SOILIGBT,其特征在于,所述阳极结构中的P型岛区(12)沿器件纵向方向上的宽度均相等。
4.根据权利要求1所述的一种具有交替NP耐压缓冲层结构的短路阳极SOILIGBT,其特征在于,所述阳极结构中的P型岛区(12)沿器件纵向方向上的宽度不相等,且其纵向间距越靠近N+阳极区(10)处越大。
CN201710439235.4A 2017-06-07 2017-06-07 一种短路阳极soi ligbt Active CN107170802B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710439235.4A CN107170802B (zh) 2017-06-07 2017-06-07 一种短路阳极soi ligbt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710439235.4A CN107170802B (zh) 2017-06-07 2017-06-07 一种短路阳极soi ligbt

Publications (2)

Publication Number Publication Date
CN107170802A CN107170802A (zh) 2017-09-15
CN107170802B true CN107170802B (zh) 2020-01-17

Family

ID=59826051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710439235.4A Active CN107170802B (zh) 2017-06-07 2017-06-07 一种短路阳极soi ligbt

Country Status (1)

Country Link
CN (1) CN107170802B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444590B (zh) * 2019-09-05 2021-01-22 电子科技大学 一种超结ligbt功率器件
CN111326576B (zh) * 2020-02-14 2023-03-14 重庆邮电大学 一种具有纵向分离阳极的sa-ligbt器件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355003A (en) * 1992-08-05 1994-10-11 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having stable breakdown voltage in wiring area

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425579B (zh) * 2013-08-28 2017-09-29 无锡华润上华半导体有限公司 绝缘体上硅反向导通横向绝缘栅双极晶体管及其制备方法
CN105552109B (zh) * 2015-12-15 2018-04-13 电子科技大学 一种短路阳极横向绝缘栅双极型晶体管
CN106206679B (zh) * 2016-08-31 2019-08-23 电子科技大学 一种逆导型igbt

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355003A (en) * 1992-08-05 1994-10-11 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having stable breakdown voltage in wiring area

Also Published As

Publication number Publication date
CN107170802A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
CN107293579B (zh) 一种具有低导通压降的超结igbt
CN102832216B (zh) 包括绝缘栅双极晶体管和二极管的半导体设备
CN108389900B (zh) 一种槽栅短路阳极soi ligbt
US12021118B2 (en) Semiconductor device
CN110797403B (zh) 一种rc-igbt半导体装置
JP5865618B2 (ja) 半導体装置
CN108321195B (zh) 一种具有阳极夹断槽的短路阳极soi ligbt
CN104995738A (zh) 半导体装置
US8653606B2 (en) Semiconductor device and power conversion device using same
CN110993687B (zh) 一种超结逆导型栅控双极型器件
CN108122963B (zh) 一种电势控制快速横向绝缘栅双极型晶体管
CN107808899A (zh) 具有混合导电模式的横向功率器件及其制备方法
CN109888007B (zh) 具有二极管钳位载流子存储层的soi ligbt器件
CN110571264B (zh) 一种具有多通道电流栓的sa-ligbt器件
CN111834449B (zh) 一种具有背面双mos结构的快速关断rc-igbt器件
CN112038401A (zh) 一种绝缘栅双极性晶体管结构及其制备方法
CN110473917B (zh) 一种横向igbt及其制作方法
CN107170802B (zh) 一种短路阳极soi ligbt
CN106252399A (zh) 一种逆导型igbt
CN110504305B (zh) 一种具有自偏置pmos钳位载流子存储层的SOI-LIGBT器件
CN114823863B (zh) 一种具有阳极槽的低功耗横向功率器件
CN108122962B (zh) 一种绝缘栅双极型晶体管
CN106486475A (zh) 半导体装置
CN103887332A (zh) 一种新型功率半导体器件
CN110610986B (zh) 一种利用结终端集成横向续流二极管的rc-igbt器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant