CN107140977B - 钡掺杂铬酸镧包覆钇稳定氧化锆负温度系数热敏复合陶瓷材料的制备方法 - Google Patents

钡掺杂铬酸镧包覆钇稳定氧化锆负温度系数热敏复合陶瓷材料的制备方法 Download PDF

Info

Publication number
CN107140977B
CN107140977B CN201710350950.0A CN201710350950A CN107140977B CN 107140977 B CN107140977 B CN 107140977B CN 201710350950 A CN201710350950 A CN 201710350950A CN 107140977 B CN107140977 B CN 107140977B
Authority
CN
China
Prior art keywords
stabilized zirconia
barium
powder
pressure
doped lanthanum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710350950.0A
Other languages
English (en)
Other versions
CN107140977A (zh
Inventor
张惠敏
陈明星
刘婷
姜辉
常爱民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Technical Institute of Physics and Chemistry of CAS
Original Assignee
Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Technical Institute of Physics and Chemistry of CAS filed Critical Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority to CN201710350950.0A priority Critical patent/CN107140977B/zh
Publication of CN107140977A publication Critical patent/CN107140977A/zh
Application granted granted Critical
Publication of CN107140977B publication Critical patent/CN107140977B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/42Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on chromites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种钡掺杂铬酸镧包覆钇稳定氧化锆负温度系数热敏复合陶瓷材料的制备方法,该方法内部核是具有高电阻值的高阻相钇稳定氧化锆(YSZ)材料,外部壳是具有低电阻率和低热敏常数的低阻相LaBaCrO材料,核和壳分别通过以氧氯化锆的八水化合物、硝酸钇的六水化合物、氨水;三氧化二镧、三氧化二铬和碳酸钡为原料,经过研磨、煅烧、研磨、复合压块成型、冷等静压成型、高温烧结,即可得到LaBaCrO‑YSZ包覆结构的热敏陶瓷,其材料常数B‑75℃/‑50℃的范围为(1700‑3500)×(1±2%)K,温度‑50℃电阻值的范围为(15‑3132)×(1±2%)Ω。采用本发明制备的钡掺杂的铬酸镧包覆氧化钇稳定氧化锆热敏陶瓷材料具有负温度系数特性,电性能稳定,一致性较好,适合制造中低温下宽温区环境中的热敏电阻器。

Description

钡掺杂铬酸镧包覆钇稳定氧化锆负温度系数热敏复合陶瓷材 料的制备方法
技术领域
本发明涉及一种钡掺杂铬酸镧包覆钇稳定氧化锆负温度系数复合材料的制备方法,该热敏陶瓷材料在-196-50℃温度范围内具有明显的负温度系数特性,是一种适用于制造中低温下宽温区热敏电阻器的新型陶瓷材料,该包覆结构具有在较宽范围内调节热敏电阻阻值的特征,属于半导体传感器领域。
背景技术
敏感材料与元器件是国家确定的电子信息产业的三大支柱之一,现已被认为是最具有发展前途的电子技术产品,发展敏感器件对提升我国电子工业在国际上地位有举足轻重的作用。热敏电阻具有可靠性好、灵敏度高、价格低廉等特点,已被广泛应用于日常生活用电器和工业设备的温度传感与控制。NTC热敏电阻主要的应用包括:抑制浪涌电流、温度补偿、温度测量与控制。为满足航空工业和日常生活的测量宽温区应用需求,宽温区热敏电阻材料已成为NTC热敏电阻领域新的发展趋势和研究热点。
LaCrO3具有很高的熔点(2400℃),并具有耐化学腐蚀等优良特点,已被广泛用于耐火材料,加热材料及燃料电池等领域。通过Ba2+离子的掺杂,调节LaCrO3的电阻率ρ及其热敏常数B,可获得具有低ρ和低B的陶瓷材料;YSZ具有化学性质稳定、耐腐蚀、高阻值等特征。
本发明首次通过将低阻相的LaBaCrO材料包覆高阻相的钇稳定氧化锆(YSZ),获得LaBaCrO-YSZ复合相热敏材料体系,可在较宽范围内调节材料的电阻值且对材料的B值影响较小,获得的复合热敏电阻材料体系适用于制造中低温下宽温区环境应用的热敏电阻。
发明内容
本发明的目的在于,提供一种钡掺杂铬酸镧包覆钇稳定氧化锆负温度系数热敏复合陶瓷材料的制备方法,该方法内部核是具有高电阻值的高阻相钇稳定氧化锆(YSZ)材料,外部壳是具有低电阻率和低热敏常数的低阻相LaBaCrO材料,核和壳分别通过以氧氯化锆的八水化合物、硝酸钇的六水化合物、氨水;三氧化二镧、三氧化二铬和碳酸钡为原料,经过研磨、煅烧、研磨、复合压块成型、冷等静压成型、高温烧结,即可得到LaBaCrO-YSZ包覆结构的热敏陶瓷,其材料常数B-75℃/-50℃的范围为(1700-3500)×(1±2%)K,温度-50℃电阻值的范围为(15-3132)×(1±2%)Ω。采用本发明制备的钡掺杂的铬酸镧包覆氧化钇稳定氧化锆热敏陶瓷电阻具有负温度系数特性,材料体系电性能稳定,一致性较好,适合制造用于中低温下宽温区环境中使用的热敏电阻器。
本发明所述的一种钡掺杂铬酸镧包覆钇稳定氧化锆负温度系数热敏复合陶瓷材料的制备方法,该方法中涉及的材料结构由内核钇稳定氧化锆(1)和外壳LaBaCrO(2)组成,具体操作按下列步骤进行:
a、将原料La2O3、BaCO3和Cr2O3,按摩尔比La:Ba:Cr=30-50:1-30:40-50准确称量,置于玛瑙研钵研磨5-8h,得到混合均匀的粉体材料;
b、将步骤a中得到的粉体材料于温度1200-1400℃煅烧5-8h,再次研磨6-10h,得到钡掺杂的铬酸镧粉体(2);
c、将原料ZrOCl2·8H2O和Y(NO3)3·6H2O按摩尔比Zr:Y=84-96:4-16准确称量,分别加入去离子水中配置成0.2-0.5mol/L的溶液,备用;
d、准确量取浓氨水,再将浓氨水溶于去离子水中,配置成10-12mol/L的溶液,备用;
e、将步骤c中所得到的两种溶液混合,然后逐滴滴入步骤d配置的氨水中,边滴边搅拌,至白色絮状物完全析出,进行洗涤、过滤,并于温度70-80℃烘干,得到粉体;
f、将步骤e中得到的粉体于温度600-900℃煅烧4-6h,再次研磨6-10h,得到钇稳定氧化锆的粉体;
g、将步骤f得到的粉体材料以3-6Kg/cm2的压力进行压块成型,保压1min,得到直径为2-15mm的核钇稳定氧化锆(1)圆片生坯;
h、将步骤g得到的核钇稳定氧化锆(1)生坯置于步骤b中得到的铬酸镧粉体(2)中,以30-60Kg/cm2的压力进行压块成型,保压1-3min,得到直径为5-20mm的圆片生坯,将成型的块体材料进行冷等静压,在压强为200-400MPa下保压1-4min,后将块体材料于温度1400-1700℃烧结4-7h,即可得钡掺杂铬酸镧包覆钇稳定氧化锆热敏陶瓷材料;
i、将步骤h得到的热敏陶瓷材料正反两面涂覆银浆电极,于温度850℃下烧渗2h,即得到钡掺杂铬酸镧包覆钇稳定氧化锆的负温度系数热敏复合陶瓷材料。
本发明所述的钡掺杂铬酸镧包覆钇稳定氧化锆负温度系数热敏复合陶瓷材料的制备方法,该方法内部核钇稳定氧化锆(YSZ)的制备采用共沉淀法,外部壳LaBaCrO的制备采用氧化物固相法。钇稳定氧化锆(YSZ)粉体制备是分别将ZrOCl2·8H2O和Y(NO3)3·6H2O水解为0.2-0.5mol/L等摩尔浓度的溶液,然后将两种溶液混合,在以摩尔浓度10-12mol/L的氨水为沉淀剂,使混合溶液的白色絮状物沉淀完全,在进行洗涤、烘干和煅烧即可得到YSZ粉体;LaBaCrO粉体制备以La2O3、Cr2O3和BaCO3为原料,进行混合、研磨、煅烧、再研磨即得到LaBaCrO粉体。将YSZ粉体进行压块成型,然后包覆LaBaCrO粉体再一次进行压块成型,再将复合成型的块体进行冷等静压成型,得到生坯,最后对生坯进行高温烧结。在涂覆银浆电极即获得电阻圆片,该陶瓷电阻属于复合陶瓷的一种表现形式。其材料常数B-75℃/-50℃范围为(1700-3500)×(1±2%)K,温度-50℃电阻值范围为(15-3132)×(1±2%)Ω。采用本发明制备的钡掺杂的铬酸镧包覆钇稳定氧化锆热敏复合陶瓷材料,呈现高阻、低B的负温度系数特性,该陶瓷电阻的电性能稳定,一致性较好,适用于中低温下的宽温区的测量,为负温度系数热敏陶瓷材料的制备提供了一种新颖的制备方法。
本发明利用一种物理包覆的形式进行了LaBaCrO-YSZ热敏陶瓷,其创新点主要有以下两方面。
(1)首次将物理包覆形式应用于NTC热敏陶瓷材料研究中,以高阻相的钇稳定氧化锆(YSZ)为核,低阻低B的LaBaCrO为壳,实现了电阻值在较宽范围的调节。
(2)本发明的热敏陶瓷具有化学性质和电学性质稳定、耐腐蚀等特性,并且可以应用于测量液氮至50℃的宽温区。
附图说明
图1为本发明的复合陶瓷结构示意图;
图2为本发明的X射线衍射图谱,其中(a)钇稳定氧化锆(YSZ);(b)LaBaCrO;(c)复合陶瓷材料LaBaCrO-YSZ;
图3为本发明的复合陶瓷材料接界处扫描电镜图。
具体实施方式
实施例1
a、将原料La2O3、BaCO3和Cr2O3,按摩尔比La:Ba:Cr=30:30:40计算出所需原料的质量并准确称量,置于玛瑙研钵研磨8h,得到混合均匀的粉体材料;
b、将步骤a中得到的粉体材料于温度1400℃煅烧5h,再次研磨6h即得到钡掺杂的铬酸镧粉体LaBaCrO 2;
c、将原料ZrOCl2·8H2O和Y(NO3)3·6H2O按摩尔比Zr:Y=84:16计算出所需原料的质量并准确称量,分别加入去离子水中配置成0.5mol/L的溶液,备用;
d、准确量取浓氨水,再将浓氨水溶于去离子水中,配置成12mol/L的溶液,备用;
e、将c中所得到的两种溶液混合,然后逐滴滴入步骤d配置的氨水溶液,边滴边搅拌,至白色絮状物完全析出,进行洗涤、过滤,并于温度70℃烘干,得到粉体;
f、将步骤e中得到的粉体于温度600℃煅烧6h,再次研磨6h即得到钇稳定氧化锆的粉体;
g、将步骤f得到的粉体材料以3Kg/cm2的压力进行压块成型,保压1min,得到直径为2mm的钇稳定氧化锆1圆片生坯;
h、将步骤g得到的钇稳定氧化锆1生坯置于步骤b中得到的钡掺杂铬酸镧的粉体LaBaCrO2中,以30Kg/cm2的压力进行压块成型,保压1min,得到直径为5mm的圆片生坯,将成型的块体材料进行冷等静压,在压强为200MPa下保压4min,后将块体材料于温度1400℃烧结7h,即可得钡掺杂铬酸镧包覆钇稳定氧化锆热敏陶瓷材料;
i、将步骤h得到的热敏陶瓷材料正反两面涂覆银浆电极,于温度850℃下烧渗2h,即得到钡掺杂铬酸镧包覆钇稳定氧化锆的负温度系数热敏复合陶瓷材料。
通过该方法获得的热敏电阻材料在温度为-50℃下电阻为15.0×(1±2%)Ω,材料常数为B-75℃/-50℃=1700×(1±2%)K。
实施例2
a、将原料La2O3、BaCO3和Cr2O3,按摩尔比La:Ba:Cr=37:20:43计算出所需原料的质量并准确称量,置于玛瑙研钵研磨7h,得到混合均匀的粉体材料;
b、将步骤a中得到的粉体于温度1350℃煅烧6h,再次研磨7h即得到钡掺杂的铬酸镧粉体LaBaCrO 2;
c、将原料ZrOCl2·8H2O和Y(NO3)3·6H2O按摩尔比Zr:Y=88:12计算出所需原料的质量并准确称量,分别加入去离子水中配置成0.4mol/L的溶液,备用;
d、准确量取浓氨水,再将浓氨水溶于去离子水中,配置成11mol/L的溶液,备用;
e、将c中所得到的两种溶液混合,然后逐滴滴入步骤d配置的氨水,边滴边搅拌,至白色絮状物完全析出,进行洗涤、过滤,并于温度75℃烘干,得到粉体;
f、将步骤e中得到的粉体于温度700℃煅烧5h,再次研磨7h即得到钇稳定氧化锆的粉体;
g、将步骤f得到的粉体材料以4Kg/cm2的压力进行压块成型,保压1min,得到直径为5mm的钇稳定氧化锆1圆片生坯;
h、将步骤g得到的钇稳定氧化锆1生坯置于步骤b中得到的钡掺杂铬酸镧的粉体LaBaCrO2中,以40Kg/cm2的压力进行压块成型,保压2.5min,得到直径为10mm的圆片生坯,将成型的块体材料进行冷等静压,在压强为270MPa下保压3min,后将块体材料于温度1500℃烧结6h,即可得钡掺杂铬酸镧包覆钇稳定氧化锆热敏陶瓷材料;
i、将步骤h得到的热敏陶瓷材料正反两面涂覆银浆电极,于温度850℃下烧渗2h,即得到钡掺杂铬酸镧包覆钇稳定氧化锆的负温度系数热敏复合陶瓷材料。
通过该方法获得的热敏电阻材料在温度为-50℃下电阻为245.0×(1±2%)Ω,材料常数为B-75℃/-50℃=2010×(1±2%)K。
实施例3
a、将原料La2O3、BaCO3和Cr2O3,按摩尔比La:Ba:Cr=42:12:46计算出所需原料的质量并准确称量,置于玛瑙研钵研磨6h,得到混合均匀的粉体材料;
b、将步骤a中得到的粉体于温度1300℃煅烧7h,再次研磨8.5h即得到钡掺杂的铬酸镧粉体LaBaCrO 2;
c、将原料ZrOCl2·8H2O和Y(NO3)3·6H2O按摩尔比Zr:Y=92:8计算出所需原料的质量,分别加入去离子水中配置成0.3mol/L的溶液,备用;
d、准确量取浓氨水,再将浓氨水溶于去离子水中,配置成11mol/L的溶液,备用;
e、将c中所得到的两种溶液混合,然后逐滴滴入步骤d配置的氨水,边滴边搅拌,至白色絮状物完全析出,进行洗涤、过滤,并于温度80℃烘干,得到粉体;
f、将步骤e中得到的粉体于温度800℃煅烧4.5h,再次研磨8.5h即得到钇稳定氧化锆的粉体;
g、将步骤f得到的粉体材料以5Kg/cm2的压力进行压块成型,保压1min,得到直径为10mm的钇稳定氧化锆1圆片生坯;
h、将步骤g得到的钇稳定氧化锆1生坯置于步骤b中得到的钡掺杂铬酸镧的粉体LaBaCrO2中,以50Kg/cm2的压力进行压块成型,保压2.5min,得到直径为15mm的圆片生坯,将成型的块体材料进行冷等静压,在压强为320MPa下保压2min,后将块体材料于1600℃烧结5h,即可得钡掺杂铬酸镧包覆钇稳定氧化锆热敏陶瓷材料;
i、将步骤h得到的热敏陶瓷材料正反两面涂覆银浆电极,于温度850℃下烧渗2h,即得到钡掺杂铬酸镧包覆钇稳定氧化锆的负温度系数热敏复合陶瓷材料。
通过该方法获得的热敏电阻材料在温度为-50℃下电阻为1968.0×(1±2%)Ω,材料常数为B-75℃/-50℃=2860×(1±2%)K。
实施例4
a、将原料La2O3、BaCO3和Cr2O3,按摩尔比La:Cr=49:1:50计算出所需原料的质量并准确称量,置于玛瑙研钵研磨5h,得到混合均匀的粉体材料;
b、将步骤a中得到的粉体于温度1200℃煅烧8h,再次研磨10h即得到钡掺杂的铬酸镧粉体LaBaCrO 2;
c、将原料ZrOCl2·8H2O和Y(NO3)3·6H2O按摩尔比Zr:Y=96:4计算出所需原料的质量,分别加入去离子水中配置成0.2mol/L的溶液,备用;
d、准确量取浓氨水,再将浓氨水溶于去离子水中,配置成10mol/L的溶液,备用;
e、将c中所得到的两种溶液混合,然后逐滴滴入步骤d配置的氨水中,边滴边搅拌,至白色絮状物完全析出,进行洗涤、过滤,并于温度80℃烘干,得到粉体;
f、将步骤e中得到的粉体于温度900℃煅烧4h,再次研磨10h即得到钇稳定氧化锆的粉体;
g、将步骤f得到的粉体材料以6Kg/cm2的压力进行压块成型,保压1min,得到直径为15mm的钇稳定氧化锆1圆片生坯;
h、将步骤g得到的钇稳定氧化锆1生坯置于步骤b中得到的钡掺杂铬酸镧的粉体LaBaCrO2中,以60Kg/cm2的压力进行压块成型,保压3min,得到直径为20mm的圆片生坯,将成型的块体材料进行冷等静压,在压强为400MPa下保压1min,后将块体材料于1700℃烧结4h,即可得铬酸镧包覆钇稳定氧化锆热敏陶瓷材料;
i、将步骤h得到的热敏陶瓷材料正反两面涂覆银浆电极,于温度850℃下烧渗2h,即得到铬酸镧包覆钇稳定氧化锆的负温度系数热敏复合陶瓷材料。
通过该方法获得的热敏电阻材料在温度为-50℃下电阻为3132.0×(1±2%)Ω,材料常数为B-75℃/-50℃=3500×(1±2%)K。

Claims (1)

1.一种钡掺杂铬酸镧包覆钇稳定氧化锆负温度系数热敏复合陶瓷材料的制备方法,其特征在于该方法中涉及的材料结构由内核钇稳定氧化锆(1)和外壳钡掺杂铬酸镧(2)组成,具体操作按下列步骤进行:
a、将原料La2O3、BaCO3和Cr2O3,按摩尔比La:Ba:Cr =30-50:1-30:40-50准确称量,置于玛瑙研钵研磨5-8h,得到混合均匀的粉体材料;
b、将步骤a中得到的粉体材料于温度1200-1400℃煅烧5-8h,再次研磨6-10h,得到钡掺杂的铬酸镧粉体(2);
c、将原料ZrOCl2·8H2O和Y(NO3)3·6H2O按摩尔比Zr:Y=84-96:4-16准确称量,分别加入去离子水中配置成0.2-0.5mol/L的溶液,备用;
d、准确量取浓氨水,再将浓氨水溶于去离子水中,配置成10-12mol/L的溶液,备用;
e、将步骤c中所得到的两种溶液混合,然后逐滴滴入步骤d配置的氨水中,边滴边搅拌,至白色絮状物完全析出,进行洗涤、过滤,并于温度70-80℃烘干,得到粉体;
f、将步骤e中得到的粉体于温度600-900℃煅烧4-6h,再次研磨6-10h,得到钇稳定氧化锆的粉体;
g、将步骤f得到的粉体材料以3-6Kg/cm2的压力进行压块成型,保压1min,得到直径为2-15mm的钇稳定氧化锆(1)圆片生坯;
h、将步骤g得到的钇稳定氧化锆(1)生坯置于步骤b中得到的铬酸镧粉体(2)中,以30-60Kg/cm2的压力进行压块成型,保压1-3min,得到直径为5-20mm的圆片生坯,将成型的块体材料进行冷等静压,在压强为200-400MPa下保压1-4min,后将块体材料于温度1400-1700℃烧结4-7h,即可得钡掺杂铬酸镧包覆钇稳定氧化锆热敏陶瓷材料;
i、将步骤h得到的热敏陶瓷材料正反两面涂覆银浆电极,于温度850℃下烧渗2h,即得到钡掺杂铬酸镧包覆钇稳定氧化锆的负温度系数热敏复合陶瓷材料。
CN201710350950.0A 2017-05-18 2017-05-18 钡掺杂铬酸镧包覆钇稳定氧化锆负温度系数热敏复合陶瓷材料的制备方法 Active CN107140977B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710350950.0A CN107140977B (zh) 2017-05-18 2017-05-18 钡掺杂铬酸镧包覆钇稳定氧化锆负温度系数热敏复合陶瓷材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710350950.0A CN107140977B (zh) 2017-05-18 2017-05-18 钡掺杂铬酸镧包覆钇稳定氧化锆负温度系数热敏复合陶瓷材料的制备方法

Publications (2)

Publication Number Publication Date
CN107140977A CN107140977A (zh) 2017-09-08
CN107140977B true CN107140977B (zh) 2019-12-31

Family

ID=59777201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710350950.0A Active CN107140977B (zh) 2017-05-18 2017-05-18 钡掺杂铬酸镧包覆钇稳定氧化锆负温度系数热敏复合陶瓷材料的制备方法

Country Status (1)

Country Link
CN (1) CN107140977B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108917972A (zh) * 2018-08-06 2018-11-30 深圳市晟达机械设计有限公司 一种超薄型温度传感器
CN112289483B (zh) * 2020-09-28 2022-02-25 西安宏星电子浆料科技股份有限公司 一种大功率电路用钨浆料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251757A (ja) * 2009-04-13 2010-11-04 Korea Inst Of Mach & Materials 高密度及びナノ結晶粒スピネル系負温度係数サーミスタ厚膜及びその製造方法
CN101882490A (zh) * 2010-03-25 2010-11-10 中国科学院新疆理化技术研究所 一种稀土氧化物掺杂负温度系数热敏电阻材料
CN105753474A (zh) * 2016-03-31 2016-07-13 中国科学院新疆理化技术研究所 一种锶掺杂铬酸镧热敏电阻材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251757A (ja) * 2009-04-13 2010-11-04 Korea Inst Of Mach & Materials 高密度及びナノ結晶粒スピネル系負温度係数サーミスタ厚膜及びその製造方法
CN101882490A (zh) * 2010-03-25 2010-11-10 中国科学院新疆理化技术研究所 一种稀土氧化物掺杂负温度系数热敏电阻材料
CN105753474A (zh) * 2016-03-31 2016-07-13 中国科学院新疆理化技术研究所 一种锶掺杂铬酸镧热敏电阻材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
(LaMn0.8Al0.2O3)1-x(Al2O3)x(0.05≤x≤0.2) NTC 热敏陶瓷材料制备及电性能研究;赵丽君等;《无机材料学报》;20141231;第29卷(第1期);85-90 *

Also Published As

Publication number Publication date
CN107140977A (zh) 2017-09-08

Similar Documents

Publication Publication Date Title
Dikmen et al. Hydrothermal preparation and electrochemical properties of Gd3+ and Bi3+, Sm3+, La3+, and Nd3+ codoped ceria-based electrolytes for intermediate temperature-solid oxide fuel cell
CN107056273A (zh) 一种双层负温度系数热敏电阻及其制备方法
CN107324799B (zh) 一种类钙钛矿型高温热敏电阻材料及其制备方法
US20210155548A1 (en) Preparation and application of a low-b high-resistance high-temperature thermistor material with wide temperature range
JPH1154137A (ja) 固体電解質型燃料電池
CN107140977B (zh) 钡掺杂铬酸镧包覆钇稳定氧化锆负温度系数热敏复合陶瓷材料的制备方法
CN108439982A (zh) 一种轴向复合负温度系数热敏陶瓷材料及其制备方法
CN108585794A (zh) 一种铬锰共占位钙钛矿型负温度系数热敏陶瓷材料
CN105753474A (zh) 一种锶掺杂铬酸镧热敏电阻材料
CN110550947A (zh) 一种钇和锆共掺杂的宽温区高温热敏电阻材料及其制备方法
CN102775154B (zh) 一种负温度系数陶瓷热敏电阻的制造方法
Mæland et al. Sintering of 4YSZ (ZrO2+ 4 mol% Y2O3) nanoceramics for solid oxide fuel cells (SOFCs), their structure and ionic conductivity
CN102964119B (zh) 一种可低温烧结BiFeO3基高性能负温度系数热敏陶瓷材料及其制备方法
CN104557040B (zh) 一种高温热敏电阻材料及其制备方法
Hayashi et al. Measurement of thermal expansion coefficient of LaCrO3
CN112876238B (zh) 一种锡酸盐体系负温度系数热敏电阻材料及其制备方法
CN104987059B (zh) 一种基于氧化铜的新型ntc热敏电阻材料
CN109456059A (zh) 一种锰酸镧与氧化钇双层结构的负温度系数热敏复合陶瓷材料的制备方法
CN114773034B (zh) 一种高稳定负温度系数热敏陶瓷材料的制备方法
CN108585854B (zh) 一种铁掺杂钙钛矿型负温度系数热敏陶瓷材料及其制备
CN108863350B (zh) 一种钛酸铋基钙钛矿相热敏陶瓷复合材料及其制备方法和用途
US20210317003A1 (en) Preparation method and application of Yb3+-doped high temperature thermistor materials
CN113004039B (zh) 一种钨青铜型高温热敏电阻材料及其制备方法
Mo et al. A limiting current oxygen sensor based on (La0. 4Ce0. 6O2-δ) 0.96 (FeO1. 5) 0.04 as dense diffusion barrier
CN113979728A (zh) 一种双钙钛矿型与氧化钇复合的负温度系数热敏电阻材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant