CN107099668A - 一种碱性含锑溶液深度脱除铜、铅的方法 - Google Patents

一种碱性含锑溶液深度脱除铜、铅的方法 Download PDF

Info

Publication number
CN107099668A
CN107099668A CN201710376107.XA CN201710376107A CN107099668A CN 107099668 A CN107099668 A CN 107099668A CN 201710376107 A CN201710376107 A CN 201710376107A CN 107099668 A CN107099668 A CN 107099668A
Authority
CN
China
Prior art keywords
lead
antimony
containing solution
copper
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710376107.XA
Other languages
English (en)
Other versions
CN107099668B (zh
Inventor
杨兴文
涂相林
祝志兵
邹志武
钟志燕
罗标
赵云峰
刘海华
罗钊荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Copper Corp
Jiangxi Copper Co Ltd
Original Assignee
Jiangxi Copper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Copper Co Ltd filed Critical Jiangxi Copper Co Ltd
Priority to CN201710376107.XA priority Critical patent/CN107099668B/zh
Publication of CN107099668A publication Critical patent/CN107099668A/zh
Application granted granted Critical
Publication of CN107099668B publication Critical patent/CN107099668B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/02Obtaining antimony
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种碱性含锑溶液深度脱除铜、铅的方法,包括以下步骤:1)将复合硅酸盐作为添加剂加入碱性含锑溶液中进行反应;2)反应后固液分离,得到铜、铅集渣和处理后液,所述处理后液即为脱除铜、铅后的含锑溶液。本发明采用CaSiO3·MgSiO3复合物,在一定的工艺条件下能够很好地去除溶液中的铜、铅元素,且添加CO2通入工艺作为优选工艺,后续CO2气体去除复合物中脱出的Mg2+、Ca2+,不会引入新的杂质元素,最终获得的锑纯度高。

Description

一种碱性含锑溶液深度脱除铜、铅的方法
技术领域
本发明属于有色金属冶炼技术领域,特别涉及一种碱性含锑溶液深度脱除铜、铅的方法。
背景技术
金属锑由于其性质的特点除用于电镀外,很少单独使用,多以其他金属为基体配成各种各样的合金。19世纪初,锑作为铅的增硬剂用于制造榴***。20世纪以来用含锑的铅做蓄电池栅板、铅板及接头零件,使锑的用量大增,并随着现代交通事业的发展而发展。1939年美国人发明的巴比特耐磨铅锑合金,用于做轴承的轴瓦,又称轴承合金,在应用过程中不断发展。现在已有锡基、铅基、锌基和铝锑镁的巴氏合金用于各种不同用途。此外,纯度大于99.9994%的锑,用于制造远红外装置、金属间化合物半导体(如BSb、AlSb、ZnSb、GaSb、InSb、CdSb等)还可作为掺杂剂。
锑的冶炼方法包括:火法炼锑、还原熔炼和火法精炼、电解精炼、沉淀熔炼、氧化锑矿石熔炼、复杂锑铅矿石熔炼和湿法冶金提炼法等,在上述几种方法中,能简便应用于处理低品位复杂含锑物料,且成本低、收率高的方法为湿法冶金提炼法。湿法冶金提炼法是一种利用酸浸、碱浸等湿法冶金手段富集、提取低品位含锑物料锑元素的方法。
但应用碱浸方法时,在后期锑的浸出过程中,浸出液往往具有较高的碱度,导致部分铜、铅元素进入至浸出液中,并伴随进入最终锑产品中,影响产品的品质。
发明内容
为解决现有技术的缺点和不足,本发明提供了一种碱性含锑溶液深度脱除铜、铅的方法,采用此方法能够深度去除碱浸湿法提炼含锑溶液中的铜、铅元素。
为实现上述目的,本发明采用的技术方案为:一种碱性含锑溶液深度脱除铜、铅的方法,其特征在于,包括以下步骤:
1)将复合硅酸盐作为添加剂加入含锑浸出液中进行反应;
2)反应后固液分离,得到铜、铅集渣和处理后液,所述处理后液即为脱除铜、铅后的含锑溶液。
进一步地,所述碱性含锑溶液深度脱除铜、铅的方法,其步骤具体为:
1)将复合硅酸盐作为添加剂加入碱性含锑溶液中进行反应,添加剂的加入质量与溶液体积比为5~50g/L,反应温度为30~95℃、反应时间≥1小时,反应后固液分离,得到铜、铅集渣和处理后液,所述处理后液即为脱除铜、铅后的含锑溶液;
2)向处理后液中通入CO2气体,其中二氧化碳的流量保证在1~5L/min,通入CO2的量与溶液体积比为14~70g/L,通气完毕后过滤,获得含锑溶液进入后续工序。
作为优选地,所述碱性含锑溶液中OH-离子的浓度≥100g/L。
作为优选地,所述添加剂的加入质量与溶液体积比为30~40g/L,反应温度为70~95℃。
作为优选地,所述复合硅酸盐加入含锑浸出液之前,先浸泡在质量分数为5%~15%的氯化钡溶液中5min以上,浸泡后将复合硅酸盐在90~150℃温度下烘干,然后在400~550℃下煅烧1~2h,煅烧后取出空冷。
进一步地,所述复合硅酸盐为CaSiO3·MgSiO3复合物。
进一步地,所述CaSiO3·MgSiO3复合物的制备步骤为:
a.将SiO2粉末、CaO粉末和MgO粉末按质量比2~3:2:1的配比均匀混合,混合后将混合粉末进行球磨,其中混料:球的质量比为1~2:2,球磨时间为5~10h,转速为400~500r/min;
b.将球磨后的混料过筛,所述筛网≥1000目;
c.将过筛后的粉末进行煅烧,所述煅烧温度为1200~1400℃,煅烧时间为3~4h,煅烧完成后将混料取出空冷至室温;
d.将煅烧后的料进行球磨碎料,其中混料:球的质量比为1~2:2,球磨时间为10~20min,转速为400~500r/min,球磨后既得所述CaSiO3·MgSiO3复合物。
本发明的有益效果是:
1.含锑溶液中的铜、铅元素在后续处理过程中会伴随锑元素进入最终锑产品,造成后续锑产品中铜、铅含量超标,达不到标准值。在较高的碱度下(利用碱浸法从含锑物料中浸出所得的含锑浸出液均具有高碱度值),铜、铅元素以铜酸根、铅酸根等形式存在,本发明采用CaSiO3·MgSiO3复合物,在一定的工艺条件下能够很好地去溶液中的铜、铅元素,保证了后续锑产品的品质和合格率。
2.本发明采用CO2的气体去除复合物中脱出的Mg2+、Ca2+,不会引入新的杂质元素,后续浸出获得的锑纯度高。
3.本发明工艺简单,对设备很场所的要求低,易于普及推广。通过优化CaSiO3·MgSiO3复合物的制备工艺参数,使得获得的复合物除铜、铅效果最佳。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本发明的流程图。
具体实施方式
下面结合实施例对本发明做进一步说明,应该理解的是,这些实施例仅用于例证的目的,绝不限制本发明的保护范围。
如图1所示,本发明公开了一种碱性含锑溶液深度脱除铜、铅的方法,包括以下步骤:
1)将复合硅酸盐作为添加剂加入含锑浸出液中进行反应;
2)反应后固液分离,得到铜、铅集渣和处理后液,所述处理后液即为脱除铜、铅后的含锑溶液。
实施例1
一种碱性含锑溶液深度脱除铜、铅的方法,其步骤具体为:
1)将CaSiO3·MgSiO3复合硅酸盐作为添加剂加入碱性含锑溶液中进行反应,添加剂的加入质量与溶液体积比为5g/L,反应温度为30℃、反应时间1小时,反应后固液分离,得到铜、铅集渣和处理后液,所述处理后液即为脱除铜、铅后的含锑溶液;
2)向处理后液中通入CO2气体去除溶液中存在的Mg2+、Ca2+,其中二氧化碳的流量保证在1~5L/min,通入CO2的量与溶液体积比为14g/L,通气完毕后过滤,获得含锑溶液进入后续工序。
采用火焰原子吸收分光光度法测定处理完后溶液的铜、铅、镁和钙元素的含量,其结果如表1所示。
上述CaSiO3·MgSiO3复合硅酸盐的制备步骤为:
a.将SiO2粉末、CaO粉末和MgO粉末按质量比2:2:1的配比均匀混合,混合后将混合粉末进行球磨,其中混料:球的质量比为1:2,球磨时间为5h,转速为400r/min;
b.将球磨后的混料过筛,所述筛网为1000目;
c.将过筛后的粉末进行煅烧,所述煅烧温度为1200℃,煅烧时间为3h,煅烧完成后将混料取出空冷至室温;
d.将煅烧后的料进行球磨碎料,其中混料:球的质量比为1:2,球磨时间为10min,转速为450r/min,球磨后既得所述CaSiO3·MgSiO3复合物。
实施例2
一种碱性含锑溶液深度脱除铜、铅的方法,其步骤具体为:
1)将CaSiO3·MgSiO3复合硅酸盐作为添加剂加入碱性含锑溶液中进行反应,添加剂的加入质量与溶液体积比为10g/L,反应温度为40℃、反应时间为1小时,反应后固液分离,得到铜、铅集渣和处理后液,所述处理后液即为脱除铜、铅后的含锑溶液;
2)向处理后液中通入CO2气体去除溶液中存在的Mg2+、Ca2+,其中二氧化碳的流量保证在1~5L/min,通入CO2的量与溶液体积比为30g/L,通气完毕后过滤,获得含锑溶液进入后续工序。
采用火焰原子吸收分光光度法测定处理完后溶液的铜、铅、镁和钙元素的含量,其结果如表1所示。
上述CaSiO3·MgSiO3复合硅酸盐的制备步骤为:
a.将SiO2粉末、CaO粉末和MgO粉末按质量比2:2:1的配比均匀混合,混合后将混合粉末进行球磨,其中混料:球的质量比为1:2,球磨时间为6h,转速为450r/min;
b.将球磨后的混料过筛,所述筛网1000目;
c.将过筛后的粉末进行煅烧,所述煅烧温度为1200℃,煅烧时间为3h,煅烧完成后将混料取出空冷至室温;
d.将煅烧后的料进行球磨碎料,其中混料:球的质量比为1:2,球磨时间为10min,转速为450r/min,球磨后既得所述CaSiO3·MgSiO3复合物。
实施例3
一种碱性含锑溶液深度脱除铜、铅的方法,其步骤具体为:
1)将CaSiO3·MgSiO3复合硅酸盐作为添加剂加入碱性含锑溶液中进行反应,添加剂的加入质量与溶液体积比为20g/L,反应温度为60℃、反应时间为1小时,反应后固液分离,得到铜、铅集渣和处理后液,所述处理后液即为脱除铜、铅后的含锑溶液;
2)向处理后液中通入CO2气体去除溶液中存在的Mg2+、Ca2+,其中二氧化碳的流量保证在1~5L/min,通入CO2的量与溶液体积比为30g/L,通气完毕后过滤,获得含锑溶液进入后续工序。
采用火焰原子吸收分光光度法测定处理完后溶液的铜、铅、镁和钙元素的含量,其结果如表1所示。
上述CaSiO3·MgSiO3复合硅酸盐的制备步骤为:
a.将SiO2粉末、CaO粉末和MgO粉末按质量比2.5:2:1的配比均匀混合,混合后将混合粉末进行球磨,其中混料:球的质量比为2:2,球磨时间为6h,转速为450r/min;
b.将球磨后的混料过筛,所述筛网为1000目;
c.将过筛后的粉末进行煅烧,所述煅烧温度为1300℃,煅烧时间为3h,煅烧完成后将混料取出空冷至室温;
d.将煅烧后的料进行球磨碎料,其中混料:球的质量比为2:2,球磨时间为15min,转速为450r/min,球磨后既得所述CaSiO3·MgSiO3复合物。
实施例4
一种碱性含锑溶液深度脱除铜、铅的方法,其步骤具体为:
1)将CaSiO3·MgSiO3复合硅酸盐作为添加剂加入碱性含锑溶液中进行反应,添加剂的加入质量与溶液体积比为30g/L,反应温度为70℃、反应时间为1小时,反应后固液分离,得到铜、铅集渣和处理后液,所述处理后液即为脱除铜、铅后的含锑溶液;
2)向处理后液中通入CO2气体去除溶液中存在的Mg2+、Ca2+,其中二氧化碳的流量保证在1~5L/min,通入CO2的量与溶液体积比为60g/L,通气完毕后过滤,获得含锑溶液进入后续工序。
采用火焰原子吸收分光光度法测定处理完后溶液的铜、铅、镁和钙元素的含量,其结果如表1所示。
上述CaSiO3·MgSiO3复合硅酸盐的制备步骤为:
a.将SiO2粉末、CaO粉末和MgO粉末按质量比3:2:1的配比均匀混合,混合后将混合粉末进行球磨,其中混料:球的质量比为2:2,球磨时间为6h,转速为450r/min;
b.将球磨后的混料过筛,所述筛网为1000目;
c.将过筛后的粉末进行煅烧,所述煅烧温度为1300℃,煅烧时间为3h,煅烧完成后将混料取出空冷至室温;
d.将煅烧后的料进行球磨碎料,其中混料:球的质量比为2:2,球磨时间为20min,转速为450r/min,球磨后既得所述CaSiO3·MgSiO3复合物。
实施例5
一种碱性含锑溶液深度脱除铜、铅的方法,其步骤具体为:
1)将CaSiO3·MgSiO3复合硅酸盐作为添加剂加入碱性含锑溶液中进行反应,添加剂的加入质量与溶液体积比为40g/L,反应温度为80℃、反应时间为1小时,反应后固液分离,得到铜、铅集渣和处理后液,所述处理后液即为脱除铜、铅后的含锑溶液;
2)向处理后液中通入CO2气体去除溶液中存在的Mg2+、Ca2+,其中二氧化碳的流量保证在1~5L/min,通入CO2的量与溶液体积比为70g/L,通气完毕后过滤,获得含锑溶液进入后续工序。
采用火焰原子吸收分光光度法测定处理完后溶液的铜、铅、镁和钙元素的含量,其结果如表1所示。
上述CaSiO3·MgSiO3复合硅酸盐的制备步骤为:
a.将SiO2粉末、CaO粉末和MgO粉末按质量比3:2:1的配比均匀混合,混合后将混合粉末进行球磨,其中混料:球的质量比为2:2,球磨时间为10h,转速为450r/min;
b.将球磨后的混料过筛,所述筛网为1000目;
c.将过筛后的粉末进行煅烧,所述煅烧温度为1400℃,煅烧时间为4h,煅烧完成后将混料取出空冷至室温;
d.将煅烧后的料进行球磨碎料,其中混料:球的质量比为2:2,球磨时间为20min,转速为450r/min,球磨后既得所述CaSiO3·MgSiO3复合物。
实施例6
一种碱性含锑溶液深度脱除铜、铅的方法,其步骤具体为:
1)将CaSiO3·MgSiO3复合硅酸盐作为添加剂加入碱性含锑溶液中进行反应,添加剂的加入质量与溶液体积比为50g/L,反应温度为95℃、反应时间为1小时,反应后固液分离,得到铜、铅集渣和处理后液,所述处理后液即为脱除铜、铅后的含锑溶液;
2)向处理后液中通入CO2气体去除溶液中存在的Mg2+、Ca2+,其中二氧化碳的流量保证在1~5L/min,通入CO2的量与溶液体积比为60g/L,通气完毕后过滤,获得含锑溶液进入后续工序。
采用火焰原子吸收分光光度法测定处理完后溶液的铜、铅、镁和钙元素的含量,其结果如表1所示。
上述CaSiO3·MgSiO3复合硅酸盐的制备步骤为:
a.将SiO2粉末、CaO粉末和MgO粉末按质量比3:2:1的配比均匀混合,混合后将混合粉末进行球磨,其中混料:球的质量比为2:2,球磨时间为6h,转速为450r/min;
b.将球磨后的混料过筛,所述筛网为1000目;
c.将过筛后的粉末进行煅烧,所述煅烧温度为1300℃,煅烧时间为3h,煅烧完成后将混料取出空冷至室温;
d.将煅烧后的料进行球磨碎料,其中混料:球的质量比为2:2,球磨时间为20min,转速为450r/min,球磨后既得所述CaSiO3·MgSiO3复合物。
对比例1
一种碱性含锑溶液深度脱除铜、铅的方法,其操作步骤和工艺参数如实施例4所述,其区别仅在于:步骤1)中用稀盐酸将含锑溶液的PH调节到酸性(即PH≤7),其他工艺参数和方法和实施例4完全相同。
处理完后采用火焰原子吸收分光光度法测定处理完后溶液的铜、铅、镁和钙元素的含量,其结果如表1所示。
对比例2
一种碱性含锑溶液深度脱除铜、铅的方法,其操作步骤和工艺参数如实施例4所述,其区别仅在于:步骤1)中用稀盐酸将含锑溶液的PH调节到弱碱性(PH为12),其他工艺参数和方法和实施例4完全相同。
处理完后采用火焰原子吸收分光光度法测定处理完后溶液的铜、铅、镁和钙元素的含量,其结果如表1所示。
对比例3
一种碱性含锑溶液深度脱除铜、铅的方法,其操作步骤和工艺参数如实施例4所述,其区别仅在于:所述步骤2)中,将CaSiO3·MgSiO3复合硅酸盐加入碱性含锑溶液之前,先浸泡在质量分数为10%的氯化钡溶液中5min,浸泡后将复合硅酸盐在90℃温度下烘干,然后在450℃下煅烧1h,煅烧后取出空冷。
处理完后采用火焰原子吸收分光光度法测定处理完后溶液的铜、铅、镁和钙元素的含量,其结果如表1所示。
对比例4
一种碱性含锑溶液深度脱除铜、铅的方法,其操作步骤和工艺参数如实施例4所述,其区别仅在于:所述步骤2)中的CaSiO3·MgSiO3用等质量的CaSiO3粉末代替,其他工艺参数和方法和实施例4完全相同。
处理完后采用火焰原子吸收分光光度法测定处理完后溶液的铜、铅、镁和钙元素的含量,其结果如表1所示。
对比例5
一种碱性含锑溶液深度脱除铜、铅的方法,其操作步骤和工艺参数如实施例4所述,其区别仅在于:所述步骤2)中的CaSiO3·MgSiO3用等质量的MgSiO3粉末代替,其他工艺参数和方法和实施例4完全相同。
处理完后采用火焰原子吸收分光光度法测定处理完后溶液的铜、铅、镁和钙元素的含量,其结果如表1所示。
对比例6
一种碱性含锑溶液深度脱除铜、铅的方法,其操作步骤和工艺参数如实施例4所述,其区别仅在于:所述步骤2)中的CaSiO3·MgSiO3按照Ca、Mg元素的摩尔量等量地用CaSiO3和MgSiO3粉末代替,其他工艺参数和方法和实施例4完全相同。
处理完后采用火焰原子吸收分光光度法测定处理完后溶液的铜、铅、镁和钙元素的含量,其结果如表1所示。
表1
由表1可以看出,采用CaSiO3·MgSiO3复合硅酸盐脱除碱性含锑溶液中的铜、铅会引入一定量的Ca和Mg离子,因此本发明采用通入CO2的方式对Ca、Mg加以去除作为优选方案。从表中实验结果来看,随着CO2通入量的增加,溶液中Ca、Mg的含量减少,当通入量达到30g/L以上时,效果显著。处理后溶液中的Ca、Mg含量完全可以达标,不影响后续工艺。
铜、铅元素在含锑液中的含量最高均可达2g/L。对比实施例1~实施例6可知,本发明处理后的碱性含锑溶液中Cu、Pb的含量显著降低,铜、铅含量均可低至50mg/L以下,可作为合格原料进入下一步生产线。CaSiO3·MgSiO3复合硅酸盐添加剂的加入质量与反应温度对铜、铅的脱除效果影响很大,当添加剂的加入质量与溶液体积比为30~40g/L,反应温度为70~95℃时,效果最好,基本能够完全清楚溶液中的铜铅。
对比实施例4和对比例1、对比例2可知,本发明所述CaSiO3·MgSiO3复合硅酸盐添加剂只有在碱性的环境下才具有很好的效果,酸性环境基本没有脱除Cu、Pb的技术效果,且弱碱性环境下技术效果也不理想,达不到工业生产所需的要求。
对比实施例4和对比例3可知,采用氯化钡溶液对本发明所述复合硅酸盐添加剂进行前处理能够进一步提高添加剂脱除Cu、Pb的活性,这可能是因为Ba在添加剂上形成了铜铅结合点,容易和铜铅形成稳定的复合盐,进一步加剧Cu、Pb的沉淀脱出。
对比实施例4和对比例4~6可知,单纯采用CaSiO3固体、MgSiO3固体或者CaSiO3、MgSiO3的物理混合均起不到脱除锑溶液中铜和铅的技术效果,CaSiO3固体、MgSiO3固体单质没有Cu、Pb结合的活性点位,加入溶液中反应完全后依然保持CaSiO3固体、MgSiO3固体原有的结构、形态和表面状态。

Claims (7)

1.一种碱性含锑溶液深度脱除铜、铅的方法,其特征在于,包括以下步骤:
1)将复合硅酸盐作为添加剂加入碱性含锑溶液中进行反应;
2)反应后固液分离,得到铜、铅集渣和处理后液,所述处理后液即为脱除铜、铅后的含锑溶液。
2.根据权利要求1所述的一种碱性含锑溶液深度脱除铜、铅的方法,其特征在于,其步骤具体为:
1)将复合硅酸盐作为添加剂加入碱性含锑溶液中进行反应,添加剂的加入质量与溶液体积比为5~50g/L,反应温度为30~95℃、反应时间≥1小时,反应后固液分离,得到铜、铅集渣和处理后液,所述处理后液即为脱除铜、铅后的含锑溶液;
2)向处理后液中通入CO2气体,其中二氧化碳的流量保证在1~5L/min,通入CO2的量与溶液体积比为14~70g/L,通气完毕后过滤,获得含锑溶液进入后续工序。
3.根据权利要求2所述的一种碱性含锑溶液深度脱除铜、铅的方法,其特征在于,所述碱性含锑溶液中OH-离子的浓度≥100g/L。
4.根据权利要求2所述的一种碱性含锑溶液深度脱除铜、铅的方法,其特征在于,所述添加剂的加入质量与溶液体积比为30~40g/L,反应温度为70~95℃。
5.根据权利要求2所述的一种碱性含锑溶液深度脱除铜、铅的方法,其特征在于,所述复合硅酸盐加入碱性含锑溶液之前,先浸泡在质量分数为5%~15%的氯化钡溶液中5min以上,浸泡后将复合硅酸盐在90~150℃温度下烘干,然后在400~550℃下煅烧1~2h,煅烧后取出空冷。
6.根据权利要求1~5任一项所述的一种碱性含锑溶液深度脱除铜、铅的方法,其特征在于,所述复合硅酸盐为CaSiO3·MgSiO3复合物。
7.根据权利要求6所述的一种碱性含锑溶液深度脱除铜、铅的方法,其特征在于,所述CaSiO3·MgSiO3复合物的制备步骤为:
a.将SiO2粉末、CaO粉末和MgO粉末按质量比2~3:2:1的配比均匀混合,混合后将混合粉末进行球磨,其中混料:球的质量比为1~2:2,球磨时间为5~10h,转速为400~500r/min;
b.将球磨后的混料过筛,所述筛网≥1000目;
c.将过筛后的粉末进行煅烧,所述煅烧温度为1200~1400℃,煅烧时间为3~4h,煅烧完成后将混料取出空冷至室温;
d.将煅烧后的料进行球磨碎料,其中混料:球的质量比为1~2:2,球磨时间为10~20min,转速为400~500r/min,球磨后既得所述CaSiO3·MgSiO3复合物。
CN201710376107.XA 2017-05-25 2017-05-25 一种碱性含锑溶液深度脱除铜、铅的方法 Active CN107099668B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710376107.XA CN107099668B (zh) 2017-05-25 2017-05-25 一种碱性含锑溶液深度脱除铜、铅的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710376107.XA CN107099668B (zh) 2017-05-25 2017-05-25 一种碱性含锑溶液深度脱除铜、铅的方法

Publications (2)

Publication Number Publication Date
CN107099668A true CN107099668A (zh) 2017-08-29
CN107099668B CN107099668B (zh) 2018-05-01

Family

ID=59669536

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710376107.XA Active CN107099668B (zh) 2017-05-25 2017-05-25 一种碱性含锑溶液深度脱除铜、铅的方法

Country Status (1)

Country Link
CN (1) CN107099668B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0102044A2 (de) * 1982-08-27 1984-03-07 Süd-Chemie Ag Thiolathaltiges Mittel und Verfahren zur Entfernung von Schwermetallionen aus verdünnten wässrigen Lösungen
CN1194237A (zh) * 1997-03-24 1998-09-30 张至德 湿法脱除锑矿物中铅、砷、硒、锡、汞杂质制备工业纯硫化锑的工艺
CN105274565A (zh) * 2014-07-18 2016-01-27 张超 一种湿法电解金属的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0102044A2 (de) * 1982-08-27 1984-03-07 Süd-Chemie Ag Thiolathaltiges Mittel und Verfahren zur Entfernung von Schwermetallionen aus verdünnten wässrigen Lösungen
CN1194237A (zh) * 1997-03-24 1998-09-30 张至德 湿法脱除锑矿物中铅、砷、硒、锡、汞杂质制备工业纯硫化锑的工艺
CN105274565A (zh) * 2014-07-18 2016-01-27 张超 一种湿法电解金属的方法

Also Published As

Publication number Publication date
CN107099668B (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
TWI729543B (zh) 鋰離子二次電池之正極活性物質廢棄物之處理方法
CN104846202B (zh) 一种多金属铜渣生产电积铜的方法
US9017542B2 (en) Process for recovering valuable metals from precious metal smelting slag
CN105543489B (zh) 一种铜冶炼烟尘的处理工艺
CN113166846B (zh) 用于回收锂的方法
EP3012226A1 (en) Hematite manufacturing method and hematite manufactured by same
CN107090551B (zh) 一种钒钛磁铁矿的直接提钒的方法
CN101817553B (zh) 一种含砷烟尘的处理方法
CN105293564A (zh) 一种钢铁厂含锌烟尘灰循环利用的方法
KR20160034927A (ko) 전기로 제강 더스트로부터의 아연 회수 방법 및 전기로 제강 더스트로부터의 아연 회수 장치
CN103993182B (zh) 一种铁矾渣中二次资源的综合回收方法
CN101519727A (zh) 一种锌冶炼副产物的处理方法
CN104946903A (zh) 一种锌焙砂还原焙烧-浸出-沉锌回收金属资源的方法
CN111020235A (zh) 从含钨废料回收钨的方法
CN103374658A (zh) 利用脱硫铅膏三段法制备的超细氧化铅及其方法
CN104060106A (zh) 从含铋溶液中用溶剂萃取法提取铋及制备氧化铋的方法
CN114988485B (zh) 一种利用海洋多金属结核同步生产软磁用四氧化三锰和三氧化二铁的方法
CN113355525A (zh) 一种铜冶炼渣协同搭配处理含金废渣的方法
CN113444886A (zh) 一种铜冶炼烟尘的有价元素浸出回收方法
CN111621646A (zh) 一种锌浮渣回收利用方法
CN106834728A (zh) 处理钒铬渣的方法和***
CN101525696A (zh) 一种从含铟浸出渣中浸出铟的方法
CN107099668B (zh) 一种碱性含锑溶液深度脱除铜、铅的方法
CN108048655A (zh) 一种锑金属的冶炼方法
CN107312935A (zh) 一种铅阳极泥熔炼后的还原渣的处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant