CN107070315A - 一种多开关磁阻电机转速同步控制装置及控制方法 - Google Patents

一种多开关磁阻电机转速同步控制装置及控制方法 Download PDF

Info

Publication number
CN107070315A
CN107070315A CN201710398938.7A CN201710398938A CN107070315A CN 107070315 A CN107070315 A CN 107070315A CN 201710398938 A CN201710398938 A CN 201710398938A CN 107070315 A CN107070315 A CN 107070315A
Authority
CN
China
Prior art keywords
mrow
msub
motor
msubsup
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710398938.7A
Other languages
English (en)
Other versions
CN107070315B (zh
Inventor
***
赵轩
张铸
匡斯建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Science and Technology
Original Assignee
Hunan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Science and Technology filed Critical Hunan University of Science and Technology
Priority to CN201710398938.7A priority Critical patent/CN107070315B/zh
Publication of CN107070315A publication Critical patent/CN107070315A/zh
Application granted granted Critical
Publication of CN107070315B publication Critical patent/CN107070315B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本发明公开了一种多开关磁阻电机转速同步控制方法,包括以下步骤:计算虚拟主轴转速并作为各电机的给定转速;计算各电机的权重平均转速并作为各电机转矩补偿模块的参考转速;计算各电机的参考转矩,并与该电机实际转矩比较得到相应的转矩偏差;计算各电机相应的补偿转矩,并与转矩偏差求和得到各电机的转矩调节量;将电机实际磁链与***给定磁链进行比较获得磁链偏差;根据转矩调节量及磁链偏差对电机进行控制,可实现各电机实际转速对***给定转速的准确跟踪,达到多电机转速同步运行的目的。本发明还公开了一种多开关磁阻电机转速同步控制装置。

Description

一种多开关磁阻电机转速同步控制装置及控制方法
技术领域
本发明涉及开关磁阻电机控制领域,特别涉及一种多开关磁阻电机转速同步控制装置及控制方法。
背景技术
开关磁阻电机因具有结构简单坚固、起动电流小、起动转矩大、效率高等系列优点,近年来得到了迅速的推广应用。然而在一些复杂的多电机传动***中,涉及到多电机的同步运行问题,因而需要对多电机实施转速的同步控制。目前在有关多开关磁阻电机转速同步控制方面已开展了一些研究工作,提出了主令控制、主从控制、耦合控制以及虚拟主轴控制等多种控制方法,虽取得了一定的控制效果,但仍存在不足:如主令控制每个运动轴并行工作,互不相干,当其中一个轴受到扰动时,只能靠该轴本身来调节,其他轴不会做出响应,仅适用于受干扰较少的场合;主从控制与主令控制类似,只是将运动轴分为主轴和从轴,从轴的参考信号来自主轴的输出,当主轴受到扰动时,从轴能做出相应的调节,而当从轴受到扰动时,主轴则不会做出相应的响应;耦合式控制虽然解决了上述方法中电机间不存在耦合的问题,但是由于引入了轴间参数耦合,使得***的整体稳定性变差;虚拟主轴模拟了机械硬轴连接的物理特性,因而具有与其类似的固有同步特性,但是虚拟主轴在负载扰动、启动或停机过程中会产生失同步的现象等。因此针对多开关磁阻电机研究更为有效的转速同步控制方法具有重要的现实意义。
发明内容
为了解决上述技术问题,本发明提供一种结构简单、控制精确的多开关磁阻电机转速同步控制装置,并提供一种多开关磁阻电机转速同步控制方法。
本发明解决上述问题的技术方案是:一种多开关磁阻电机转速同步控制装置,包括转速给定模块、虚拟主轴控制器、磁链给定模块和多个电机控制模块,转速给定模块的输出端与虚拟主轴控制器的输入端相连;每个电机控制模块均包括电机转速检测模块、电机转速比较模块、电机自抗扰控制模块、电机转矩估算模块、电机实际转矩与参考转矩比较模块、电机转矩补偿模块、加法器、电机磁链估算模块、电机磁链比较模块和电机控制器;每个电机控制模块中,电机转速检测模块的输入端与相应电机相连,电机转速检测模块的输出端与电机转速比较模块、电机转矩补偿模块、虚拟主轴控制器的输入端相连,虚拟主轴控制器的输出端与电机转速比较模块、电机转矩补偿模块的输入端相连,电机转速比较模块的输出端与电机自抗扰控制模块的输入端相连,电机自抗扰控制模块的输出端与电机实际转矩与参考转矩比较模块的输入端相连,电机转矩补偿模块的输出端与加法器的输入端相连,所述电机转矩估算模块的输入端与相应电机相连,电机转矩估算模块的输出端与电机实际转矩与参考转矩比较模块的输入端相连,电机实际转矩与参考转矩比较模块的输出端与加法器的输入端相连,加法器的输出端与电机控制器的输入端相连,所述电机磁链估算模块的输入端与相应电机相连,电机磁链估算模块的输出端与电机磁链比较模块的输入端相连,电机磁链比较模块的输出端与电机控制器相连,电机控制器与相应电机相连;所述磁链给定模块的输出端与每个电机控制模块中电机磁链比较模块的输入端相连。
一种多开关磁阻电机转速同步控制方法,包括以下步骤:
步骤一:设定***的给定转速ω*,同时检测各电机的实际转速ωi(i=1,2…n),n表示电机数,经虚拟主轴控制器运算处理后,得到虚拟主轴转速ωr,并将其作为各电机的给定转速;虚拟主轴控制器根据各电机的实际转速ωi(i=1,2…n)及其相应的转动惯量ji(i=1,2…n),经运算得到各电机的权重平均转速ωw,并将其作为各电机转矩补偿模块的参考转速;
步骤二:将各电机的实际转速ωi与虚拟主轴转速ωr比较,其偏差经自抗扰控制器运算处理后得到各电机的参考转矩Ti *(i=1,2…n),同时由转矩估算模块得到各电机的实际转矩Ti(i=1,2…n),并将该实际转矩Ti与上述参考转矩Ti *比较,得到相应的转矩偏差ΔTi(i=1,2…n);
步骤三:各电机转矩补偿模块根据其实际转速ωi与权重平均转速ωw运算处理得到相应的补偿转矩ΔTi′(i=1,2…n),并将该补偿转矩ΔTi′与上述转矩偏差ΔTi求和,得到该电机的转矩调节量ΔTi″(i=1,2…n);
步骤四:估算各电机的实际磁链ψi(i=1,2…n),并将其与***给定磁链ψ*进行比较,得到各电机的磁链偏差Δψi(i=1,2…n);
步骤五:将转矩调节量ΔTi″和磁链偏差Δψi经电机控制器运算处理后,输出控制信号控制电机所对应功率变换器中功率开关的开关状态,从而使各电机的实际转速实现对***给定转速ω*的准确跟踪,达到多开关磁阻电机转速同步控制的目的。
上述多开关磁阻电机转速同步控制方法,所述步骤一中虚拟主轴控制器得到虚拟主轴转速ωr的方法包括:
1-1-1)设定***给定转速ω*,同时检测虚拟主轴控制器输出的初始转速ωr′,并将其与***给定转速ω*比较,其偏差由胡克定律得到虚拟主轴的驱动转矩Tr,如式(1)所示:
Tr=br*r′)+kr∫(ω*r′)dt (1)
其中:br为虚拟主轴的衰减系数,kr为虚拟主轴弹性系数;
1-1-2)将各电机的实际转速ωi与***给定转速ω*比较,其偏差由胡克定律得到各电机虚拟传动轴的驱动转矩,如式(2)所示:
Ti′=bi*i)+ki∫(ω*i)dt (2)
其中:bi为电机i传动轴的衰减系数,ki为电机i传动轴的弹性系数;
1-1-3)将虚拟主轴的驱动转矩与各电机虚拟传动轴驱动转矩之和进行比较,其偏差由刚性定轴旋转定律得到调整后的虚拟主轴转速ωr,即:
其中:jr为虚拟主轴的转动惯量;
1-1-4)将调整后的虚拟主轴转速ωr作为各电机的给定转速。
上述多开关磁阻电机转速同步控制方法,采用果蝇优化算法来优化所述虚拟主轴衰减系数br和虚拟主轴弹性系数kr,具体如下:
以虚拟主轴衰减系数br和虚拟主轴弹性系数kr为优化对象,以***给定转速ω*与虚拟主轴转速ωr的偏差Δωr及***给定转速ω*与权重平均转速ωw的偏差Δωw为优化目标,优化步骤如下:
①:分别设定优化对象br与kr的果蝇初始个***置为Xc(xc0,yc0)和Xc′(x′c0,y′c0)(c为果蝇个体数,c=1,2…n′),同时设定最大迭代次数为Maxgen;
②:随机生成果蝇的搜索方向与距离,分别如式(4)和式(5)所示:
其中:Dxc、Dyc、D′xc和D′yc为随机值;
③:以果蝇个体距原点的距离的倒数作为味道浓度的判断值Sc和Sc′,其表达式分别为:
④:将一组味道浓度判定值代入多开关磁阻电机虚拟主轴同步控制模型,得到相应的Δωrc和Δωwc
⑤:构建优化目标函数H(c),如式(8)所示:
其中:d1与d2为权重系数,d1>0,d2>0且d1+d2=1,取d1=d2=0.5;
⑥:保留式(8)的极大值,即当前最高味道浓度,并保存此时果蝇群体的位置;
⑦:进入迭代寻优,重复步骤②-步骤⑥,并判断果蝇新个体的味道浓度是否优于当前最高味道浓度值,若是则更新当前最高味道浓度和果蝇群体的初始位置;否则返回步骤②,直至当前迭代次数等于最大迭代次数Maxgen或已达到目标精度要求时再执行步骤⑧;
⑧:迭代寻优结束后,保留最佳味道浓度值与此时果蝇的位置,即得到最优的虚拟主轴衰减系数br和虚拟主轴弹性系数kr
上述多开关磁阻电机转速同步控制方法,所述步骤(1)中虚拟主轴控制器计算权重平均转速ωw的方法为:
1-2-1)确定各电机的权重系数gi
根据各电机的转动惯量ji(i=1,2…n),确定各电机的权重系数gi(i=1,2…n),即:
1-2-2)计算权重平均转速ωw
根据各电机的实际转速ωi及其相应的权重系数gi,得到***的权重平均转速ωw,如式(10)所示:
上述多开关磁阻电机转速同步控制方法,所述步骤二中参考转矩Ti *的获取方法如下:
2-1)以电机实际转速ωi与虚拟主轴转速ωr的偏差Δωi作为电机i自抗扰控制模块的输入,对电机i的总扰动yi进行实时估计,如式(11)所示:
yi=-βi1fal(Δωi1,η) (11)
式中:yi表示电机i运行过程中受到的总扰动;βi1(i=1,2…n)为增益系数;函数fal(Δωi1,η)的表达式如式(12)所示:
式中:参数α1为0~1之间的常数,一般取α1=0.25;参数η为影响滤波效果的常数,取η=0.5;
2-2)由Δωi得到非线性误差反馈控制律为:
ui0(t)=βi2fal(Δωi2,η) (13)
式中:βi2(i=1,2…n)为增益系数;函数fal(Δωi2,η)的表达式如式(14)所示:
其中:参数α2为0~1之间的常数,取α2=0.75;
2-3)根据式(11)和式(13),得到电机i的参考转矩Ti*为:
Ti *=ui0(t)-yi/ei (15)
其中:ei(i=1,2…n)为扰动补偿系数。
上述多开关磁阻电机转速同步控制方法,采用果蝇优化算法来优化所述增益系数βi1、βi2和扰动补偿系数ei,具体如下:
以第i台电机自抗扰控制器的增益系数βi1、βi2和扰动补偿系数ei为优化对象,以转速偏差Δωi为优化目标,优化步骤如下:
2-1-1):分别设定优化参数βi1、βi2和ei的果蝇初始个***置为Xe(xe0,ye0),Xe′(x′e0,y′e0)和X″e(x″e0,y″e0)(e为果蝇个体数,e=1,2…n″),同时设定最大迭代次数为Maxgen′;
2-1-2):随机生成果蝇的搜索方向与距离:
其中:Dxe、Dye、D′xe、D′ye、D″xe和D″ye为随机值
2-1-3):以果蝇个体距原点的距离的倒数作为味道浓度的判断值Se、Se′和S″e,其表达式分别如下:
2-1-4):将味道浓度判定值代入自抗扰控制器,并对自抗扰控制器进行仿真,确定各味道浓度判定值所对应的味道浓度We,We的表达式如式(22)所示:
式中:表示取一组味道浓度判定值时,自抗扰控制器输入与输出之间的误差;
2-1-5):保留式(22)的极大值,即当前最高味道浓度,并保留此时果蝇的位置;
2-1-6):进入迭代寻优,重复执行步骤2-1-2)-步骤2-1-5),并判断此时果蝇个体的味道浓度是否优于当前最高味道浓度值,若是,则更新当前果蝇最高味道浓度和果蝇群体的初始位置;否则返回步骤2-1-2),至当前迭代次数等于最大迭代次数Maxgen′或已达到目标要求精度时再执行步骤2-1-7);
步骤2-1-7):迭代寻优结束后,保留最佳味道浓度值与此时果蝇个体的位置,即得到电机i最优的自抗扰控制参数βi1、βi2、ei
采用果蝇优化算法求出第i台电机的控制参数βi1、βi2及ei后,利用时间尺度法得到其它电机的控制参数,方法如下:
Ⅰ:根据第i台电机相电流和转速的状态方程得到第i台电机的时间尺度pi,如式(23)所示:
其中:iin为第i台电机的额定电流;ni0为第i台电机的额定转速;ji为第i台电机的转动惯量;Bi为第i台电机的摩擦系数;Limin为第i台电机定子凸极与转子凹槽中心重合位置时的电感,即相电感最小值;为第i台电机相电感随位置角的变化率;
Ⅱ:再根据式(23)计算出第k台电机(k=1~n,且k≠i)的时间尺度pk,由电机i和电机k的时间尺度pi和pk以及电机i的控制参数βi1、βi2、ei,即可得到电机k相应的控制参数βk1、βk2、ek,分别如式(24)~(26)所示:
ek=ei (26)。
上述多开关磁阻电机转速同步控制方法,所述步骤三中,第i台电机补偿转矩ΔTi′的获取方式如下:
1)以电机i的实际转速ωi与权重平均转速ωw的偏差及其积分作为状态变量,分别如式(27)、(28)所示:
xi1=ωwi(i=1,2…n) (27)
2)设定积分滑模面函数,如式(29)所示:
si=xi1+Cxi2(i=1,2…n) (29)
其中:C为正常数;
3)根据已建立的滑模面函数采用指数趋近律来设计转矩补偿器,所采用的指数趋近律表达式为:
其中:ε、K均为正常数,sgn(si)为符号函数;
4)根据开关磁阻电机运动方程以及式(29)、(30)确定补偿转矩ΔTi′为:
本发明的有益效果在于:本发明针对多开关磁阻电机构成的转速同步控制***,采用虚拟主轴控制法并结合转矩补偿来实现多电机的同步运行。其基本原理为:设定***的给定转速,同时检测各电机的实际转速,经虚拟主轴控制器运算处理得到虚拟主轴转速,并将其作为各电机的给定转速;同时虚拟主轴控制器还根据各电机的实际转速及其转动惯量计算出***的权重平均转速,并将其作为各电机转矩补偿模块的参考转速;然后将各电机实际转速与其给定转速的偏差经自抗扰控制模块处理得到各电机的参考转矩,并将其与该电机的实际转矩比较得到相应的转矩偏差;同时各电机转矩补偿模块根据该电机实际转速与***权重平均转速得到相应的补偿转矩,并将该补偿转矩与上述转矩偏差求和得到该电机的转矩调节量;另外,各电机实际磁链与***给定磁链比较获得相应的磁链偏差,最后电机控制器根据上述转矩调节量及磁链偏差对电机进行控制,可实现各电机实际转速对***给定转速的准确跟踪,达到多电机转速同步运行的目的。
附图说明
图1为本发明控制装置的结构框图。
图2为本发明虚拟主轴控制器控制流程图。
图3为本发明控制方法的流程图。
图4为本发明自抗扰控制器控制参数优化流程图。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明。
一种多开关磁阻电机转速同步控制装置,包括转速给定模块、虚拟主轴控制器、磁链给定模块和多个电机控制模块,转速给定模块的输出端与虚拟主轴控制器的输入端相连;每个电机控制模块均包括电机转速检测模块、电机转速比较模块、电机自抗扰控制模块、电机转矩估算模块、电机实际转矩与参考转矩比较模块、电机转矩补偿模块、加法器、电机磁链估算模块、电机磁链比较模块和电机控制器;每个电机控制模块中,电机转速检测模块的输入端与相应电机相连,电机转速检测模块的输出端与电机转速比较模块、电机转矩补偿模块、虚拟主轴控制器的输入端相连,虚拟主轴控制器的输出端与电机转速比较模块、电机转矩补偿模块的输入端相连,电机转速比较模块的输出端与电机自抗扰控制模块的输入端相连,电机自抗扰控制模块的输出端与电机实际转矩与参考转矩比较模块的输入端相连,电机转矩补偿模块的输出端与加法器的输入端相连,所述电机转矩估算模块的输入端与相应电机相连,电机转矩估算模块的输出端与电机实际转矩与参考转矩比较模块的输入端相连,电机实际转矩与参考转矩比较模块的输出端与加法器的输入端相连,加法器的输出端与电机控制器的输入端相连,所述电机磁链估算模块的输入端与相应电机相连,电机磁链估算模块的输出端与电机磁链比较模块的输入端相连,电机磁链比较模块的输出端与电机控制器相连,电机控制器与相应电机相连;所述磁链给定模块的输出端与每个电机控制模块中电机磁链比较模块的输入端相连。
如图2-4所示,一种多开关磁阻电机转速同步控制方法,包括以下步骤:
步骤一:设定***的给定转速ω*,同时检测各电机的实际转速ωi(i=1,2…n),n表示电机数,经虚拟主轴控制器运算处理后,得到虚拟主轴转速ωr,并将其作为各电机的给定转速;虚拟主轴控制器根据各电机的实际转速ωi(i=1,2…n)及其相应的转动惯量ji(i=1,2…n),经运算得到各电机的权重平均转速ωw,并将其作为各电机转矩补偿模块的参考转速。
虚拟主轴控制器得到虚拟主轴转速ωr的方法包括:
1-1-1)设定***给定转速ω*,同时检测虚拟主轴控制器输出的初始转速ωr′,并将其与***给定转速ω*比较,其偏差由胡克定律得到虚拟主轴的驱动转矩Tr,如式(1)所示:
Tr=br*r′)+kr∫(ω*r′)dt (1)
其中:br为虚拟主轴的衰减系数,kr为虚拟主轴弹性系数;
1-1-2)将各电机的实际转速ωi与***给定转速ω*比较,其偏差由胡克定律得到各电机虚拟传动轴的驱动转矩,如式(2)所示:
Ti′=bi*i)+ki∫(ω*i)dt (2)
其中:bi为电机i传动轴的衰减系数,ki为电机i传动轴的弹性系数;
1-1-3)将虚拟主轴的驱动转矩与各电机虚拟传动轴驱动转矩之和进行比较,其偏差由刚性定轴旋转定律得到调整后的虚拟主轴转速ωr,即:
其中:jr为虚拟主轴的转动惯量;
1-1-4)将调整后的虚拟主轴转速ωr作为各电机的给定转速。
采用果蝇优化算法来优化所述虚拟主轴衰减系数br和虚拟主轴弹性系数kr,具体如下:
以虚拟主轴衰减系数br和虚拟主轴弹性系数kr为优化对象,以***给定转速ω*与虚拟主轴转速ωr的偏差Δωr及***给定转速ω*与权重平均转速ωw的偏差Δωw为优化目标,优化步骤如下:
①:分别设定优化对象br与kr的果蝇初始个***置为Xc(xc0,yc0)和Xc′(x′c0,y′c0)(c为果蝇个体数,c=1,2…n′),同时设定最大迭代次数为Maxgen;
②:随机生成果蝇的搜索方向与距离,分别如式(4)和式(5)所示:
其中:Dxc、Dyc、D′xc和D′yc为随机值;
③:以果蝇个体距原点的距离的倒数作为味道浓度的判断值Sc和Sc′,其表达式分别为:
④:将一组味道浓度判定值代入多开关磁阻电机虚拟主轴同步控制模型,得到相应的Δωrc和Δωwc;Δωrc和Δωwc分别表示将Sc,Sc′代入模型后,***给定转速ω*与虚拟主轴转速ωr的偏差及***给定转速ω*与权重平均转速ωw的偏差;
⑤:构建优化目标函数H(c),此函数表示该优化步骤的优化目标,即达到Δωrc和Δωwc最小的目的,如式(8)所示:
其中:d1与d2为权重系数,d1>0,d2>0且d1+d2=1,取d1=d2=0.5;
⑥:保留式(8)的极大值,即当前最高味道浓度,并保存此时果蝇群体的位置;
⑦:进入迭代寻优,重复步骤②-步骤⑥,并判断果蝇新个体的味道浓度是否优于当前最高味道浓度值,若是则更新当前最高味道浓度和果蝇群体的初始位置;否则返回步骤②,直至当前迭代次数等于最大迭代次数Maxgen或已达到目标精度要求时再执行步骤⑧;
⑧:迭代寻优结束后,保留最佳味道浓度值与此时果蝇的位置,即得到最优的虚拟主轴衰减系数br和虚拟主轴弹性系数kr
虚拟主轴控制器计算权重平均转速ωw的方法为:
1-2-1)确定各电机的权重系数gi
根据各电机的转动惯量ji(i=1,2…n),确定各电机的权重系数gi(i=1,2…n),即:
1-2-2)计算权重平均转速ωw
根据各电机的实际转速ωi及其相应的权重系数gi,得到***的权重平均转速ωw,如式(10)所示:
步骤二:将各电机的实际转速ωi与虚拟主轴转速ωr比较,其偏差经自抗扰控制器运算处理后得到各电机的参考转矩Ti *(i=1,2…n),同时由转矩估算模块得到各电机的实际转矩Ti(i=1,2…n),并将该实际转矩Ti与上述参考转矩Ti *比较,得到相应的转矩偏差ΔTi(i=1,2…n)。
参考转矩Ti *的获取方法如下:
2-1)以电机实际转速ωi与虚拟主轴转速ωr的偏差Δωi作为电机i自抗扰控制模块的输入,对电机i的总扰动yi进行实时估计,如式(11)所示:
yi=-βi1fal(Δωi1,η) (11)
式中:yi表示电机i运行过程中受到的总扰动;βi1(i=1,2…n)为增益系数;函数fal(Δωi1,η)的表达式如式(12)所示:
式中:参数α1为0~1之间的常数,一般取α1=0.25;参数η为影响滤波效果的常数,取η=0.5;
2-2)由Δωi得到非线性误差反馈控制律为:
ui0(t)=βi2fal(Δωi2,η) (13)
式中:βi2(i=1,2…n)为增益系数;函数fal(Δωi2,η)的表达式如式(14)所示:
其中:参数α2为0~1之间的常数,一般取α2=0.75;
2-3)根据式(11)和式(13),得到电机i的参考转矩Ti*为:
Ti *=ui0(t)-yi/ei (15)其中:ei(i=1,2…n)为扰动补偿系数。
如图4所示,采用果蝇优化算法来优化所述增益系数βi1、βi2和扰动补偿系数ei,具体如下:
以第i台电机自抗扰控制器的增益系数βi1、βi2和扰动补偿系数ei为优化对象,以转速偏差Δωi为优化目标,优化步骤如下:
2-1-1):分别设定优化参数βi1、βi2和ei的果蝇初始个***置为Xe(xe0,ye0),Xe′(x′e0,y′e0)和X″e(x″e0,y″e0)(e为果蝇个体数,e=1,2…n″),同时设定最大迭代次数为Maxgen′;
2-1-2):随机生成果蝇的搜索方向与距离:
其中:Dxe、Dye、D′xe、D′ye、D″xe和D″ye为随机值
2-1-3):以果蝇个体距原点的距离的倒数作为味道浓度的判断值Se、Se′和S″e,其表达式分别如下:
2-1-4):将一组味道浓度判定值代入自抗扰控制器,并对自抗扰控制器进行仿真,根据仿真结果,确定各味道浓度判定值所对应的味道浓度We,We的表达式如式(22)所示:
式中:表示取一组味道浓度判定值时,自抗扰控制器输入与输出之间的误差;
2-1-5):保留式(22)的极大值,即当前最高味道浓度,并保留此时果蝇的位置;
2-1-6):进入迭代寻优,重复执行步骤2-1-2)-步骤2-1-5),并判断此时果蝇个体的味道浓度是否优于当前最高味道浓度值,若是,则更新当前果蝇最高味道浓度和果蝇群体的初始位置;否则返回步骤2-1-2),至当前迭代次数等于最大迭代次数Maxgen′或已达到目标精度要求时再执行步骤2-1-7);
步骤2-1-7):迭代寻优结束后,保留最佳味道浓度值与此时果蝇个体的位置,即得到电机i最优的自抗扰控制参数βi1、βi2、ei
采用果蝇优化算法求出第i台电机的控制参数βi1、βi2及ei后,利用时间尺度法得到其它电机的控制参数,方法如下:
Ⅰ:根据第i台电机相电流和转速的状态方程得到第i台电机的时间尺度pi,如式(23)所示:
其中:iin为第i台电机的额定电流;ni0为第i台电机的额定转速;ji为第i台电机的转动惯量;Bi为第i台电机的摩擦系数;Limin为第i台电机定子凸极与转子凹槽中心重合位置时的电感,即相电感最小值;为第i台电机相电感随位置角的变化率;
Ⅱ:再根据式(23)计算出第k台电机(k=1~n,且k≠i)的时间尺度pk,由电机i和电机k的时间尺度pi和pk以及电机i的控制参数βi1、βi2、ei,即可得到电机k相应的控制参数βk1、βk2、ek,分别如式(24)~(26)所示:
ek=ei (26)
步骤三:各电机转矩补偿模块根据其实际转速ωi与权重平均转速ωw运算处理得到相应的补偿转矩ΔTi′(i=1,2…n),并将该补偿转矩ΔTi′与上述转矩偏差ΔTi求和,得到该电机的转矩调节量ΔTi″(i=1,2…n)。
第i台电机补偿转矩ΔTi′的获取方式如下:
1)以电机i的实际转速ωi与权重平均转速ωw的偏差及其积分作为状态变量,分别如式(27)、(28)所示:
xi1=ωwi(i=1,2…n) (27)
2)设定积分滑模面函数,如式(29)所示:
si=xi1+Cxi2(i=1,2…n) (29)
其中:C为正常数;
3)根据已建立的滑模面函数选取指数趋近律来设计转矩补偿器,所选指数趋近律表达式为:
其中:ε、K均为正常数,sgn(si)为符号函数;
4)针对式(27)、(28)设定的状态变量求导得:
其中:由式(29)结合开关磁阻电机运动方程可化为式(34)的形式:
式中:TLi表示负载转矩。
结合式(29)、(33)、(34)可得:
根据式(30)与式(35),可得:
令补偿转矩ΔTi′为:由于式(36)中部分远小于因而可将省略,则最终输出量ΔTi′为:
步骤四:估算各电机的实际磁链ψi(i=1,2…n),并将其与***给定磁链ψ*进行比较,得到各电机的磁链偏差Δψi(i=1,2…n)。
步骤五:电机控制器根据转矩调节量ΔTi″和磁链偏差Δψi以及磁链的区间查询开关表得到对应的电压矢量,再根据电压矢量确定功率变换器中对应功率开关的开关状态,从而可使各电机的实际转速实现对***给定转速ω*的准确跟踪,达到多开关磁阻电机转速同步控制的目的。

Claims (8)

1.一种多开关磁阻电机转速同步控制装置,其特征在于:包括转速给定模块、虚拟主轴控制器、磁链给定模块和多个电机控制模块,转速给定模块的输出端与虚拟主轴控制器的输入端相连;每个电机控制模块均包括电机转速检测模块、电机转速比较模块、电机自抗扰控制模块、电机转矩估算模块、电机实际转矩与参考转矩比较模块、电机转矩补偿模块、加法器、电机磁链估算模块、电机磁链比较模块和电机控制器;每个电机控制模块中,电机转速检测模块的输入端与相应电机相连,电机转速检测模块的输出端与电机转速比较模块、电机转矩补偿模块、虚拟主轴控制器的输入端相连,虚拟主轴控制器的输出端与电机转速比较模块、电机转矩补偿模块的输入端相连,电机转速比较模块的输出端与电机自抗扰控制模块的输入端相连,电机自抗扰控制模块的输出端与电机实际转矩与参考转矩比较模块的输入端相连,电机转矩补偿模块的输出端与加法器的输入端相连,所述电机转矩估算模块的输入端与相应电机相连,电机转矩估算模块的输出端与电机实际转矩与参考转矩比较模块的输入端相连,电机实际转矩与参考转矩比较模块的输出端与加法器的输入端相连,加法器的输出端与电机控制器的输入端相连,所述电机磁链估算模块的输入端与相应电机相连,电机磁链估算模块的输出端与电机磁链比较模块的输入端相连,电机磁链比较模块的输出端与电机控制器相连,电机控制器与相应电机相连;所述磁链给定模块的输出端与每个电机控制模块中电机磁链比较模块的输入端相连。
2.一种基于权利要求1所述的多开关磁阻电机转速同步控制装置的多开关磁阻电机转速同步控制方法,包括以下步骤:
步骤一:设定***的给定转速ω*,同时检测各电机的实际转速ωi(i=1,2…n),n表示电机数,经虚拟主轴控制器运算处理后,得到虚拟主轴转速ωr,并将其作为各电机的给定转速;虚拟主轴控制器根据各电机的实际转速ωi(i=1,2…n)及其相应的转动惯量ji(i=1,2…n),经运算得到各电机的权重平均转速ωw,并将其作为各电机转矩补偿模块的参考转速;
步骤二:将各电机的实际转速ωi与虚拟主轴转速ωr比较,其偏差经自抗扰控制器运算处理后得到各电机的参考转矩Ti *(i=1,2…n),同时由转矩估算模块得到各电机的实际转矩Ti(i=1,2…n),并将该实际转矩Ti与上述参考转矩Ti *比较,得到相应的转矩偏差ΔTi(i=1,2…n);
步骤三:各电机转矩补偿模块根据其实际转速ωi与权重平均转速ωw运算处理得到相应的补偿转矩ΔTi′(i=1,2…n),并将该补偿转矩ΔTi′与上述转矩偏差ΔTi求和,得到该电机的转矩调节量ΔTi″(i=1,2…n);
步骤四:估算各电机的实际磁链ψi(i=1,2…n),并将其与***给定磁链ψ*进行比较,得到各电机的磁链偏差Δψi(i=1,2…n);
步骤五:将转矩调节量ΔTi″和磁链偏差Δψi经电机控制器运算处理后,输出控制信号控制电机所对应功率变换器中功率开关的开关状态,从而使各电机的实际转速实现对***给定转速ω*的准确跟踪,达到多开关磁阻电机转速同步控制的目的。
3.根据权利要求2所述的多开关磁阻电机转速同步控制方法,其特征在于:所述步骤一中虚拟主轴控制器得到虚拟主轴转速ωr的方法包括:
1-1-1)设定***给定转速ω*,同时检测虚拟主轴控制器输出的初始转速ω′r,并将其与***给定转速ω*比较,其偏差由胡克定律得到虚拟主轴的驱动转矩Tr,如式(1)所示:
Tr=br*-ω′r)+kr∫(ω*-ω′r)dt (1)
其中:br为虚拟主轴的衰减系数,kr为虚拟主轴弹性系数;
1-1-2)将各电机的实际转速ωi与***给定转速ω*比较,其偏差由胡克定律得到各电机虚拟传动轴的驱动转矩,如式(2)所示:
Ti′=bi*i)+ki∫(ω*i)dt (2)
其中:bi为电机i传动轴的衰减系数,ki为电机i传动轴的弹性系数;
1-1-3)将虚拟主轴的驱动转矩与各电机虚拟传动轴驱动转矩之和进行比较,其偏差由刚性定轴旋转定律得到调整后的虚拟主轴转速ωr,即:
<mrow> <msub> <mi>T</mi> <mi>r</mi> </msub> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msubsup> <mi>T</mi> <mi>i</mi> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <msub> <mi>j</mi> <mi>r</mi> </msub> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
其中:jr为虚拟主轴的转动惯量;
1-1-4)将调整后的虚拟主轴转速ωr作为各电机的给定转速。
4.根据权利要求3所述的多开关磁阻电机转速同步控制方法,其特征在于:采用果蝇优化算法来优化所述虚拟主轴衰减系数br和虚拟主轴弹性系数kr,具体如下:
以虚拟主轴衰减系数br和虚拟主轴弹性系数kr为优化对象,以***给定转速ω*与虚拟主轴转速ωr的偏差Δωr及***给定转速ω*与权重平均转速ωw的偏差Δωw为优化目标,优化步骤如下:
①:分别设定优化对象br与kr的果蝇初始个***置为Xc(xc0,yc0)和X′c(x′c0,y′c0)(c为果蝇个体数,c=1,2…n′),同时设定最大迭代次数为Maxgen;
②:随机生成果蝇的搜索方向与距离,分别如式(4)和式(5)所示:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mi>c</mi> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow> <mi>c</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>D</mi> <mrow> <mi>x</mi> <mi>c</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>y</mi> <mi>c</mi> </msub> <mo>=</mo> <msub> <mi>y</mi> <mrow> <mi>c</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>D</mi> <mrow> <mi>y</mi> <mi>c</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>x</mi> <mi>c</mi> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <msubsup> <mi>x</mi> <mrow> <mi>c</mi> <mn>0</mn> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>D</mi> <mrow> <mi>x</mi> <mi>c</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>y</mi> <mi>c</mi> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <msubsup> <mi>y</mi> <mrow> <mi>c</mi> <mn>0</mn> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>D</mi> <mrow> <mi>y</mi> <mi>c</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
其中:Dxc、Dyc、D′xc和D′yc为随机值;
③:以果蝇个体距原点的距离的倒数作为味道浓度的判断值Sc和S′c,其表达式分别为:
<mrow> <msub> <mi>S</mi> <mi>c</mi> </msub> <mo>=</mo> <msub> <mi>b</mi> <mi>r</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mrow> <msubsup> <mi>x</mi> <mi>c</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>y</mi> <mi>c</mi> <mn>2</mn> </msubsup> </mrow> </msqrt> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msup> <msub> <mi>S</mi> <mi>c</mi> </msub> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <msub> <mi>k</mi> <mi>r</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mrow> <msubsup> <mi>x</mi> <mi>c</mi> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>y</mi> <mi>c</mi> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> </mrow> </msqrt> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
④:将一组味道浓度判定值代入多开关磁阻电机虚拟主轴同步控制模型,得到相应的Δωrc和Δωwc
⑤:构建如式(8)所示优化目标函数H(c):
<mrow> <mi>H</mi> <mrow> <mo>(</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>d</mi> <mn>1</mn> </msub> <msubsup> <mi>&amp;Delta;&amp;omega;</mi> <mrow> <mi>r</mi> <mi>c</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <msubsup> <mi>&amp;Delta;&amp;omega;</mi> <mrow> <mi>w</mi> <mi>c</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
其中:d1与d2为权重系数,d1>0,d2>0且d1+d2=1,取d1=d2=0.5;
⑥:保留式(8)的极大值,即当前最高味道浓度,并保存此时果蝇群体的位置;
⑦:进入迭代寻优,重复步骤②-步骤⑥,并判断果蝇新个体的味道浓度是否优于当前最高味道浓度值,若是则更新当前最高味道浓度和果蝇群体的初始位置;否则返回步骤②,直至当前迭代次数等于最大迭代次数Maxgen或已达到目标精度要求时再执行步骤⑧;
⑧:迭代寻优结束后,保留最佳味道浓度值与此时果蝇的位置,即得到最优的虚拟主轴衰减系数br和虚拟主轴弹性系数kr
5.根据权利要求2所述的多开关磁阻电机转速同步控制方法,其特征在于:所述步骤(1)中虚拟主轴控制器计算权重平均转速ωw的方法为:
1-2-1)确定各电机的权重系数gi
根据各电机的转动惯量ji(i=1,2…n),确定各电机的权重系数gi(i=1,2…n),即:
<mrow> <msub> <mi>g</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>j</mi> <mi>i</mi> </msub> <mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>j</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
1-2-2)计算权重平均转速ωw
根据各电机的实际转速ωi及其相应的权重系数gi,得到***的权重平均转速ωw,如式(10)所示:
<mrow> <msub> <mi>&amp;omega;</mi> <mi>w</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>g</mi> <mi>i</mi> </msub> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
6.根据权利要求2所述的多开关磁阻电机转速同步控制方法,其特征在于:所述步骤二中参考转矩Ti *的获取方法如下:
2-1)以电机实际转速ωi与虚拟主轴转速ωr的偏差Δωi作为电机i自抗扰控制模块的输入,对电机i的总扰动yi进行实时估计,如式(11)所示:
yi=-βi1fal(Δωi1,η) (11)
式中:yi表示电机i运行过程中受到的总扰动;βi1(i=1,2…n)为增益系数;函数fal(Δωi1,η)的表达式如式(12)所示:
<mrow> <mi>f</mi> <mi>a</mi> <mi>l</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;Delta;&amp;omega;</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <mi>&amp;eta;</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mo>|</mo> <msub> <mi>&amp;Delta;&amp;omega;</mi> <mi>i</mi> </msub> <msup> <mo>|</mo> <msub> <mi>&amp;alpha;</mi> <mn>1</mn> </msub> </msup> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;Delta;&amp;omega;</mi> <mi>i</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>|</mo> <msub> <mi>&amp;Delta;&amp;omega;</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>&lt;</mo> <mi>&amp;eta;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;&amp;omega;</mi> <mi>i</mi> </msub> <mo>/</mo> <msup> <mi>&amp;eta;</mi> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;alpha;</mi> <mn>1</mn> </msub> </mrow> </msup> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>|</mo> <msub> <mi>&amp;Delta;&amp;omega;</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>&amp;GreaterEqual;</mo> <mi>&amp;eta;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>&amp;eta;</mi> <mo>&gt;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
式中:参数α1为0~1之间的常数,一般取α1=0.25;参数η为影响滤波效果的常数,取η=0.5;
2-2)由Δωi得到非线性误差反馈控制律为:
ui0(t)=βi2fal(Δωi2,η) (13)
式中:βi2(i=1,2…n)为增益系数;函数fal(Δωi2,η)的表达式如式(14)所示:
<mrow> <mi>f</mi> <mi>a</mi> <mi>l</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;Delta;&amp;omega;</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> <mo>,</mo> <mi>&amp;eta;</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mo>|</mo> <msub> <mi>&amp;Delta;&amp;omega;</mi> <mi>i</mi> </msub> <msup> <mo>|</mo> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> </msup> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;Delta;&amp;omega;</mi> <mi>i</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>|</mo> <msub> <mi>&amp;Delta;&amp;omega;</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>&lt;</mo> <mi>&amp;eta;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;&amp;omega;</mi> <mi>i</mi> </msub> <mo>/</mo> <msup> <mi>&amp;eta;</mi> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;alpha;</mi> <mn>2</mn> </msub> </mrow> </msup> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>|</mo> <msub> <mi>&amp;Delta;&amp;omega;</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>&amp;GreaterEqual;</mo> <mi>&amp;eta;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>&amp;eta;</mi> <mo>&gt;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
其中:参数α2为0~1之间的常数,取α2=0.75;
2-3)根据式(11)和式(13),得到电机i的参考转矩Ti *为:
Ti *=ui0(t)-yi/ei (15)
其中:ei(i=1,2…n)为扰动补偿系数。
7.根据权利要求6所述的多开关磁阻电机转速同步控制方法,其特征在于:采用果蝇优化算法来优化所述增益系数βi1、βi2和扰动补偿系数ei,具体如下:
以第i台电机自抗扰控制器的增益系数βi1、βi2和扰动补偿系数ei为优化对象,以转速偏差Δωi为优化目标,优化步骤如下:
2-1-1):分别设定优化参数βi1、βi2和ei的果蝇初始个***置为Xe(xe0,ye0),X′e(x′e0,y′e0)和X″e(x″e0,y″e0)(e为果蝇个体数,e=1,2…n″),同时设定最大迭代次数为Maxgen′;
2-1-2):随机生成果蝇的搜索方向与距离:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mi>e</mi> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow> <mi>e</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>D</mi> <mrow> <mi>x</mi> <mi>e</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>y</mi> <mi>e</mi> </msub> <mo>=</mo> <msub> <mi>y</mi> <mrow> <mi>e</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>D</mi> <mrow> <mi>y</mi> <mi>e</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>x</mi> <mi>e</mi> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <msubsup> <mi>x</mi> <mrow> <mi>e</mi> <mn>0</mn> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>D</mi> <mrow> <mi>x</mi> <mi>e</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>y</mi> <mi>e</mi> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <msubsup> <mi>y</mi> <mrow> <mi>e</mi> <mn>0</mn> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>D</mi> <mrow> <mi>y</mi> <mi>e</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>x</mi> <mi>e</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>x</mi> <mrow> <mi>e</mi> <mn>0</mn> </mrow> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>D</mi> <mrow> <mi>x</mi> <mi>e</mi> </mrow> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>y</mi> <mi>e</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>y</mi> <mrow> <mi>e</mi> <mn>0</mn> </mrow> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>D</mi> <mrow> <mi>y</mi> <mi>e</mi> </mrow> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
其中:Dxe、Dye、D′xe、D′ye、D″xe和D″ye为随机值;
2-1-3):以果蝇个体距原点的距离的倒数作为味道浓度的判断值Se、Se′和S″e,其表达式分别如下:
<mrow> <msub> <mi>S</mi> <mi>e</mi> </msub> <mo>=</mo> <msub> <mi>&amp;beta;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mrow> <msubsup> <mi>x</mi> <mi>e</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>y</mi> <mi>e</mi> <mn>2</mn> </msubsup> </mrow> </msqrt> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>S</mi> <mi>e</mi> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <msub> <mi>&amp;beta;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mrow> <msubsup> <mi>x</mi> <mi>e</mi> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>y</mi> <mi>e</mi> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> </mrow> </msqrt> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>S</mi> <mi>e</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>e</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mrow> <msubsup> <mi>x</mi> <mi>e</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>y</mi> <mi>e</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msubsup> </mrow> </msqrt> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow>
2-1-4):将一组味道浓度判定值代入自抗扰控制器,并对自抗扰控制器进行仿真,确定各味道浓度判定值所对应的味道浓度We,We的表达式如式(22)所示:
<mrow> <msub> <mi>W</mi> <mi>e</mi> </msub> <mo>=</mo> <mi>F</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mi>e</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msup> <mrow> <mo>&amp;lsqb;</mo> <mi>&amp;Delta;</mi> <mi>&amp;omega;</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mi>e</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow>
式中:表示取一组味道浓度判定值时,自抗扰控制器输入与输出之间的误差;
2-1-5):保留式(22)的极大值,即当前最高味道浓度,并保留此时果蝇的位置;
2-1-6):进入迭代寻优,重复执行步骤2-1-2)-步骤2-1-5),并判断此时果蝇个体的味道浓度是否优于当前最高味道浓度值,若是,则更新当前果蝇最高味道浓度和果蝇群体的初始位置;否则返回步骤2-1-2),至当前迭代次数等于最大迭代次数Maxgen′或已达到目标要求精度时再执行步骤2-1-7);
步骤2-1-7):迭代寻优结束后,保留最佳味道浓度值与此时果蝇个体的位置,即得到电机i最优的自抗扰控制参数βi1、βi2、ei
采用果蝇优化算法求出第i台电机的控制参数βi1、βi2及ei后,利用时间尺度法得到其它电机的控制参数,方法如下:
Ⅰ:根据第i台电机相电流和转速的状态方程得到第i台电机的时间尺度pi,如式(23)所示:
<mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mrow> <mfrac> <mrow> <msubsup> <mi>c</mi> <mi>i</mi> <mn>2</mn> </msubsup> <msubsup> <mi>i</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> <msub> <mi>n</mi> <mrow> <mi>i</mi> <mn>0</mn> </mrow> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>j</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>c</mi> <mi>i</mi> <mn>2</mn> </msubsup> <msubsup> <mi>i</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> <msub> <mi>n</mi> <mrow> <mi>i</mi> <mn>0</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>j</mi> <mi>i</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>i</mi> <mi>min</mi> </mrow> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <msubsup> <mi>B</mi> <mi>i</mi> <mn>2</mn> </msubsup> <msubsup> <mi>j</mi> <mi>i</mi> <mn>2</mn> </msubsup> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>c</mi> <mi>i</mi> </msub> <msub> <mi>B</mi> <mi>i</mi> </msub> <msubsup> <mi>i</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> </mrow> <mrow> <mn>2</mn> <msubsup> <mi>j</mi> <mi>i</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>c</mi> <mi>i</mi> </msub> <msubsup> <mi>i</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> <msub> <mi>R</mi> <mi>i</mi> </msub> </mrow> <mrow> <msub> <mi>j</mi> <mi>i</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>i</mi> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </msqrt> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow>
其中:iin为第i台电机的额定电流;ni0为第i台电机的额定转速;ji为第i台电机的转动惯量;Bi为第i台电机的摩擦系数;Limin为第i台电机定子凸极与转子凹槽中心重合位置时的电感,即相电感最小值;为第i台电机相电感随位置角的变化率;
Ⅱ:再根据式(23)计算出第k台电机(k=1~n,且k≠i)的时间尺度pk,由电机i和电机k的时间尺度pi和pk以及电机i的控制参数βi1、βi2、ei,即可得到电机k相应的控制参数βk1、βk2、ek,分别如式(24)~(26)所示:
<mrow> <msub> <mi>&amp;beta;</mi> <mrow> <mi>k</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>p</mi> <mi>i</mi> <mn>3</mn> </msubsup> <msub> <mi>&amp;beta;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> </mrow> <msubsup> <mi>p</mi> <mi>k</mi> <mn>3</mn> </msubsup> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>&amp;beta;</mi> <mrow> <mi>k</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mi>k</mi> </msub> <msub> <mi>&amp;beta;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> </mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow>
ek=ei (26)。
8.根据权利要求2所述的多开关磁阻电机转速同步控制方法,其特征在于:所述步骤三中,第i台电机补偿转矩ΔTi′的获取方式如下:
1)以电机i的实际转速ωi与权重平均转速ωw的偏差及其积分作为状态变量,分别如式(27)、(28)所示:
xi1=ωwi (i=1,2…n) (27)
<mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <mi>t</mi> </msubsup> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mi>d</mi> <mi>t</mi> <mo>,</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>...</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>28</mn> <mo>)</mo> </mrow> </mrow>
2)设定积分滑模面函数,如式(29)所示:
si=xi1+Cxi2 (i=1,2…n) (29)
其中:C为正常数;
3)根据已建立的滑模面函数采用指数趋近律来设计转矩补偿器,所采用的指数趋近律表达式为:
<mrow> <mfrac> <mrow> <msub> <mi>ds</mi> <mi>i</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <mi>&amp;epsiv;</mi> <mi>sgn</mi> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>Ks</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>30</mn> <mo>)</mo> </mrow> </mrow>
其中:ε、K均为正常数,sgn(si)为符号函数;
4)根据开关磁阻电机运动方程以及式(29)、(30)确定补偿转矩ΔTi′为:
<mrow> <msubsup> <mi>&amp;Delta;T</mi> <mi>i</mi> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <msub> <mi>j</mi> <mi>i</mi> </msub> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <msub> <mi>g</mi> <mi>i</mi> </msub> <msub> <mi>j</mi> <mi>i</mi> </msub> </mfrac> <msub> <mi>B</mi> <mi>i</mi> </msub> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>g</mi> <mi>i</mi> </msub> <msub> <mi>B</mi> <mi>i</mi> </msub> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>j</mi> <mi>i</mi> </msub> <mi>C</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;omega;</mi> <mi>w</mi> </msub> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>j</mi> <mi>i</mi> </msub> <mi>&amp;epsiv;</mi> <mi>s</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>j</mi> <mi>i</mi> </msub> <msub> <mi>Ks</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>31</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow> 5
CN201710398938.7A 2017-05-31 2017-05-31 一种多开关磁阻电机转速同步控制装置及控制方法 Active CN107070315B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710398938.7A CN107070315B (zh) 2017-05-31 2017-05-31 一种多开关磁阻电机转速同步控制装置及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710398938.7A CN107070315B (zh) 2017-05-31 2017-05-31 一种多开关磁阻电机转速同步控制装置及控制方法

Publications (2)

Publication Number Publication Date
CN107070315A true CN107070315A (zh) 2017-08-18
CN107070315B CN107070315B (zh) 2023-05-12

Family

ID=59616083

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710398938.7A Active CN107070315B (zh) 2017-05-31 2017-05-31 一种多开关磁阻电机转速同步控制装置及控制方法

Country Status (1)

Country Link
CN (1) CN107070315B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108733887A (zh) * 2018-04-12 2018-11-02 湖南科技大学 一种基于变密度对称网格划分的开关磁阻电机热分析方法
CN109474207A (zh) * 2018-11-22 2019-03-15 天津大学 一种提高多轴运动***同步性能的控制方法
CN109510521A (zh) * 2018-11-06 2019-03-22 湖南工业大学 一种基于虚拟总轴的多电机总量协同一致容错控制方法
CN109687772A (zh) * 2019-01-17 2019-04-26 武汉菲仕运动控制***有限公司 一种多轴同步控制方法及***
CN109861618A (zh) * 2019-01-11 2019-06-07 江苏大学 混合动力汽车用bsg交流电机抗干扰复合控制器的构造方法
CN109968051A (zh) * 2019-03-28 2019-07-05 沈阳机床成套设备有限责任公司 基于数控双主轴同步加工的机床设计方法并两主轴电机
CN110456657A (zh) * 2019-07-18 2019-11-15 中山瑞信智能控制***有限公司 一种磁阻电机的仿真模型及嵌入式***、运行方法
CN111555665A (zh) * 2020-05-29 2020-08-18 中国铁建重工集团股份有限公司 电机控制方法
CN111665824A (zh) * 2020-06-23 2020-09-15 中国北方车辆研究所 一种pi控制器和线性自抗扰控制器对比测试方法
CN113452287A (zh) * 2021-06-07 2021-09-28 江苏科技大学 一种水下航行器的多永磁同步电机的控制方法及控制***
CN113844281A (zh) * 2021-10-09 2021-12-28 四川鼎鸿智电装备科技有限公司 一种转速同步控制方法、装置、电子设备及存储介质
WO2022012130A1 (zh) * 2020-07-14 2022-01-20 湖南科技大学 开关磁阻电机驱动海洋绞车主动升沉补偿控制方法
CN113965108A (zh) * 2021-11-19 2022-01-21 江苏科技大学 一种水下机器人多电机协同推进***及控制方法
CN114679103A (zh) * 2022-05-30 2022-06-28 广东工业大学 一种开关磁阻电机滑模电流补偿控制***及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316893B1 (en) * 1998-05-20 2001-11-13 Abb Industry Oy Method and arrangement for adaptive load change compensation
CN1889358A (zh) * 2006-07-11 2007-01-03 合肥工业大学 基于自适应滑模变结构的永磁同步电机控制***
CN102035456A (zh) * 2010-12-14 2011-04-27 长春工业大学 基于终端滑模的永磁同步电机直接转矩控制***
CN102611381A (zh) * 2012-03-12 2012-07-25 浙江工业大学 永磁同步电机直接转矩控制***
CN105515455A (zh) * 2016-01-28 2016-04-20 湖南科技大学 双开关磁阻电机同步控制方法及装置
CN106208865A (zh) * 2016-08-10 2016-12-07 天津工业大学 基于负载观测器的多永磁同步电机虚拟总轴控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316893B1 (en) * 1998-05-20 2001-11-13 Abb Industry Oy Method and arrangement for adaptive load change compensation
CN1889358A (zh) * 2006-07-11 2007-01-03 合肥工业大学 基于自适应滑模变结构的永磁同步电机控制***
CN102035456A (zh) * 2010-12-14 2011-04-27 长春工业大学 基于终端滑模的永磁同步电机直接转矩控制***
CN102611381A (zh) * 2012-03-12 2012-07-25 浙江工业大学 永磁同步电机直接转矩控制***
CN105515455A (zh) * 2016-01-28 2016-04-20 湖南科技大学 双开关磁阻电机同步控制方法及装置
CN106208865A (zh) * 2016-08-10 2016-12-07 天津工业大学 基于负载观测器的多永磁同步电机虚拟总轴控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张露等: "永磁同步电机直接转矩控制***的研究", 《变频器世界》 *
甘韦韦等: "一种用于冶金轧钢传动***的转矩补偿方法", 《大功率变流技术》 *
齐宏等: "《辐射传输逆问题的智能优化理论与应用》", 31 March 2016 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108733887B (zh) * 2018-04-12 2020-01-10 湖南科技大学 一种基于变密度对称网格划分的开关磁阻电机热分析方法
CN108733887A (zh) * 2018-04-12 2018-11-02 湖南科技大学 一种基于变密度对称网格划分的开关磁阻电机热分析方法
CN109510521A (zh) * 2018-11-06 2019-03-22 湖南工业大学 一种基于虚拟总轴的多电机总量协同一致容错控制方法
CN109510521B (zh) * 2018-11-06 2022-01-14 湖南工业大学 一种基于虚拟总轴的多电机总量协同一致容错控制方法
CN109474207A (zh) * 2018-11-22 2019-03-15 天津大学 一种提高多轴运动***同步性能的控制方法
CN109861618B (zh) * 2019-01-11 2020-11-20 江苏大学 混合动力汽车用bsg交流电机抗干扰复合控制器的构造方法
CN109861618A (zh) * 2019-01-11 2019-06-07 江苏大学 混合动力汽车用bsg交流电机抗干扰复合控制器的构造方法
CN109687772A (zh) * 2019-01-17 2019-04-26 武汉菲仕运动控制***有限公司 一种多轴同步控制方法及***
CN109968051A (zh) * 2019-03-28 2019-07-05 沈阳机床成套设备有限责任公司 基于数控双主轴同步加工的机床设计方法并两主轴电机
CN109968051B (zh) * 2019-03-28 2021-03-12 沈阳机床成套设备有限责任公司 基于数控双主轴同步加工的机床设计方法
CN110456657B (zh) * 2019-07-18 2022-10-04 中山瑞信智能控制***有限公司 一种磁阻电机的仿真方法及嵌入式***、运行方法
CN110456657A (zh) * 2019-07-18 2019-11-15 中山瑞信智能控制***有限公司 一种磁阻电机的仿真模型及嵌入式***、运行方法
CN111555665A (zh) * 2020-05-29 2020-08-18 中国铁建重工集团股份有限公司 电机控制方法
CN111555665B (zh) * 2020-05-29 2021-11-23 中国铁建重工集团股份有限公司 电机控制方法
CN111665824A (zh) * 2020-06-23 2020-09-15 中国北方车辆研究所 一种pi控制器和线性自抗扰控制器对比测试方法
WO2022012130A1 (zh) * 2020-07-14 2022-01-20 湖南科技大学 开关磁阻电机驱动海洋绞车主动升沉补偿控制方法
CN113452287A (zh) * 2021-06-07 2021-09-28 江苏科技大学 一种水下航行器的多永磁同步电机的控制方法及控制***
CN113844281A (zh) * 2021-10-09 2021-12-28 四川鼎鸿智电装备科技有限公司 一种转速同步控制方法、装置、电子设备及存储介质
CN113844281B (zh) * 2021-10-09 2023-05-19 四川鼎鸿智电装备科技有限公司 一种转速同步控制方法、装置、电子设备及存储介质
CN113965108A (zh) * 2021-11-19 2022-01-21 江苏科技大学 一种水下机器人多电机协同推进***及控制方法
CN114679103A (zh) * 2022-05-30 2022-06-28 广东工业大学 一种开关磁阻电机滑模电流补偿控制***及方法
CN114679103B (zh) * 2022-05-30 2022-12-06 广东工业大学 一种开关磁阻电机滑模电流补偿控制***及方法

Also Published As

Publication number Publication date
CN107070315B (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
CN107070315A (zh) 一种多开关磁阻电机转速同步控制装置及控制方法
CN103701368B (zh) 双电机节能消隙控制方法
CN101989827B (zh) 基于惯量辨识的交流伺服***速度环控制参数自整定方法
CN104639003B (zh) 一种交流伺服***的转动惯量辨识方法
CN108649847A (zh) 基于频率法和模糊控制的电机pi控制器参数整定方法
CN101938246A (zh) 无速度传感器电机转速的模糊融合辨识方法
CN106788052B (zh) 基于观测器的异步电机命令滤波误差补偿模糊控制方法
CN107132759A (zh) 一种直线电机驱动fts基于eso滑模改进重复控制方法
CN105577058A (zh) 基于新型模糊自抗扰控制器的五相容错永磁电机速度控制方法
CN105048896B (zh) 一种无刷直流电机直接转矩自适应模糊控制方法
CN109921707A (zh) 一种开关磁阻轮毂电机无位置预测控制方法
CN101977010A (zh) 基于自抗扰控制技术的无刷双馈风力发电机解耦方法
CN106788046A (zh) 永磁同步电机命令滤波有限时间模糊控制方法
CN110112971B (zh) 一种基于有限时间动态面的异步电动机位置跟踪控制方法
CN105262393A (zh) 一种采用新型过渡过程的容错永磁电机速度控制方法
CN108365785A (zh) 一种异步电机重复预测控制方法
CN105305895A (zh) 一种基于转矩反馈和换向补偿的无刷电机控制方法
CN107294448B (zh) 一种基于命令滤波的异步电机模糊离散控制方法
CN107276471A (zh) 一种基于状态受限的异步电机模糊位置跟踪控制方法
CN110266227A (zh) 一种基于模糊滑膜变结构的永磁同步电机控制***
CN108512476A (zh) 一种基于新型龙贝格观测器的感应电机转速估算方法
CN104408223B (zh) 一种风电机组的跟踪优化控制方法
CN106655962B (zh) 基于极限学习机的电动汽车异步电机驱动***控制方法
Luo et al. Fuzzy MRAS based speed estimation for sensorless stator field oriented controlled induction motor drive
CN107359835B (zh) 一种基于自适应鲁棒控制的超高速永磁同步电机转速控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant