CN107032788A - 一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法 - Google Patents

一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法 Download PDF

Info

Publication number
CN107032788A
CN107032788A CN201710417480.5A CN201710417480A CN107032788A CN 107032788 A CN107032788 A CN 107032788A CN 201710417480 A CN201710417480 A CN 201710417480A CN 107032788 A CN107032788 A CN 107032788A
Authority
CN
China
Prior art keywords
rare earth
ceramic block
block material
powder
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710417480.5A
Other languages
English (en)
Other versions
CN107032788B (zh
Inventor
郭巍
刘玲
马壮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201710417480.5A priority Critical patent/CN107032788B/zh
Publication of CN107032788A publication Critical patent/CN107032788A/zh
Application granted granted Critical
Publication of CN107032788B publication Critical patent/CN107032788B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron

Abstract

本发明涉及一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法,属于无机非金属材料技术领域。利用稀土元素氧化物的硝酸溶液和氧氯化锆的水溶液在过量氨水中发生的化学共沉淀反应,得到前驱体粉体;将所得的前驱体粉体进行预煅烧,再利用放电等离子烧结技术进行烧结,得到所述稀土锆酸盐陶瓷块体材料。本发明所述方法利用放电等离子烧结技术的烧结温度低、加热时间短的优势抑制晶粒长大,且致密度达到92%以上;而且该方法工艺简单,制备周期短,不用添加烧结助剂,可以得到高纯相的陶瓷材料。

Description

一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法
技术领域
本发明涉及一种稀土锆酸盐陶瓷块体材料的制备方法,特别涉及一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法,属于无机非金属材料技术领域。
背景技术
随着航空燃气轮机向高流量比、高推重比、高进口温度的方向发展,燃烧室中的燃气温度和压力不断提高,现有的高温合金和冷却技术难以满足需要。因此,单独使用高温结构材料技术已不能满足先进航空发动机迅速发展的迫切要求。
研究表明,在高温合金表面添加厚度为100μm~500μm且性能良好的热障涂层,可以使高温合金表面降低100℃~200℃,这使得航空燃气轮机可以在超过高温合金熔点(1300℃)的温度下正常使用,从而大大提高发动机的效率和性能,因此,热障涂层是航空航天发动机和燃气轮机高温部件的关键材料。目前广泛使用的氧化钇部分稳定的传统热障涂层材料YSZ在高温(1200℃以上)时,会发生相变加剧、易烧结等现象,进而导致涂层失效不能满足目前使用要求。
稀土锆酸盐Ln2Zr2O7陶瓷因其热导率较低、使用温度较高以及高温相稳定性良好等优点,而成为新型热障涂层候选材料,但稀土锆酸盐存在脆性大、韧性不足等缺点,严重制约了其广泛推广使用。纳米化是目前较有效解决稀土锆酸盐陶瓷脆性问题的方法之一。采用稀土锆酸盐陶瓷块体对晶粒尺寸与热导率和断裂韧性等关系进行研究是较为高效的方式,但是稀土锆酸盐陶瓷在烧结致密化的过程中,由于较高的烧结温度和较长的烧结时间,其晶粒不可避免的随之长大,无法形成较致密的纳米陶瓷块体。
发明内容
针对现有技术中存在的不足,本发明的目的在于提供一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法,所述方法可以在得到较高致密度陶瓷的条件下维持原始粉体的亚微米晶粒尺寸,避免了高温烧结期间晶粒剧烈的长大;所制备的稀土锆酸盐陶瓷致密度达到92%以上,晶粒尺寸在300nm~800nm,从而可以进行晶粒尺寸对稀土锆酸盐陶瓷块体材料的性能进行研究。
本发明的目的是通过以下技术方案实现的:
一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法,所述方法的具体步骤如下:
步骤1.先将稀土元素的氧化物溶于稀硝酸中,再加入ZrOCl2·8H2O的水溶液,得到混合溶液;再将混合溶液滴加到过量氨水中进行化学共沉淀反应,且反应完成后反应体系的pH在10~11之间,将反应产生的沉淀物进行洗涤、过滤、干燥,得到前驱体粉体;
步骤2.先将所得的前驱体粉体进行球磨粉碎,再经过检验筛,得到粒径为20μm~80μm的粉体Ⅰ;将粉体Ⅰ在1100℃~1250℃煅烧2h~4h,得到粉体II;
步骤3.将粉体II放入石墨模具中,再将石墨模具置于放电等离子烧结炉中,然后在石墨模具轴向上施加40MPa~50MPa的压力,再以100℃/min~150℃/min的升温速率加热到1200℃~1400℃,保压保温5min~10min后,随炉冷却,石墨模具中的固体即为所述亚微米级稀土锆酸盐陶瓷块体材料。
步骤1所述的混合溶液中,稀土元素的摩尔数与锆元素的摩尔数比为1:1;所述亚微米级稀土锆酸盐陶瓷块体材料中的晶粒尺寸为300nm~800nm。
所述稀土锆酸盐陶瓷块体材料中的稀土元素优选Sm、Sc、Y、La、Nd、Eu、Gd、Dy、Er、Yb或者Lu。
步骤2中,优选在300r/min~400r/min下球磨粉碎10min~20min。
有益效果:
(1)本发明提供了一种高致密度亚微米级A2Zr2O7(稀土锆酸盐)陶瓷块体材料的制备方法,利用SPS(放电等离子烧结)技术的烧结温度低、加热时间短的优势抑制A2Zr2O7的晶粒长大,所制备的A2Zr2O7陶瓷材料中晶粒尺寸在300nm~800nm,且致密度达到92%以上,从而解决了A2Zr2O7材料在烧结致密过程中晶粒剧烈长大的问题。
(2)本发明所述制备方法简单,制备周期短,而且不用添加烧结助剂,可以得到高纯相的A2Zr2O7陶瓷材料。
附图说明
图1为实施例1中制备的Sm2Zr2O7粉体未烧结前的扫描电子显微镜(SEM)图。
图2为实施例1中制备的亚微米级Sm2Zr2O7陶瓷块体材料的X射线衍射(XRD)图。
图3为实施例1中制备的亚微米级Sm2Zr2O7陶瓷块体材料的断面扫描电子显微镜(SEM)图。
图4为实施例2中制备的亚微米级La2Zr2O7陶瓷块体材料的X射线衍射图。
图5为实施例2中制备的亚微米级La2Zr2O7陶瓷块体材料的断面扫描电子显微镜图。
具体实施方式
下面结合具体实施方式对本发明做进一步说明。
以下实施例中所用试剂如下表所示:
以下实施例中所用仪器如下表所示:
致密度计算公式:致密度=(m1×DL)/((m3-m2)×D)×100%;其中,m1为块体干重,m2为块体浮重,m3为块体湿重,DL为水的密度,D为材料的理论密度。
实施例1
亚微米级Sm2Zr2O7陶瓷块体材料的制备:
(1)将1000g ZrOCl2·8H2O溶于950mL去离子水中,将540g Sm2O3溶于3000mL质量分数为30%的稀硝酸中,然后将氧氯化锆的水溶液与氧化钐的硝酸溶液混合,得到混合溶液;再将混合溶液滴加到2000mL质量分数为17%的氨水中进行化学共沉淀反应,且反应完成后反应体系的pH为10,将反应产生的沉淀物进行洗涤、过滤并置于烘箱中干燥,得到前驱体粉体;
(2)将所得的前驱体粉体置于行星球磨机中,球料比为4:1,在300r/min下球磨20min后,将球磨后的粉体经过检验筛,得到粒径为20μm~80μm的粉体;再将该粉体在1250℃下煅烧4h,得到Sm2Zr2O7粉体;
(3)将3g步骤(2)中所得的Sm2Zr2O7粉体放入内径为Φ20.4mm、压头直径为Φ20mm的石墨模具中,再将石墨模具置于放电等离子烧结炉中,然后在石墨模具轴向上施加40MPa的压力,再以100℃/min的升温速率加热到1200℃,保压保温5min后,随炉冷却,石墨模具中的固体即为所述亚微米级Sm2Zr2O7陶瓷块体材料。
对所制得的亚微米级Sm2Zr2O7陶瓷块体材料进行表征,结果如下:
从图2中的XRD谱图可以看出,所制备的陶瓷块体材料为纯Sm2Zr2O7相,无其他杂相。从图3中的断面SEM图中可以看到,Sm2Zr2O7陶瓷块体材料中晶粒大小为400nm~600nm,与烧结前Sm2Zr2O7粉体的颗粒粒径(如图1所示)相比,烧结后的晶粒无明显长大。根据阿基米德排水法测得平均致密度为93.7%。
实施例2
亚微米级La2Zr2O7陶瓷块体材料的制备:
(1)将1000g ZrOCl2·8H2O溶于950mL去离子水中,将505g La2O3溶于3200mL质量分数为30%的稀硝酸中,然后将氧氯化锆的水溶液与氧化镧的硝酸溶液混合,得到混合溶液;再将混合溶液滴加到2100mL质量分数为17%的氨水中进行化学共沉淀反应,且反应完成后反应体系的pH为10.7,将反应产生的沉淀物进行洗涤、过滤并置于烘箱中干燥,得到前驱体粉体;
(2)将所得的前驱体粉体置于行星球磨机中,球料比为4:1,在400r/min下球磨10min后,将球磨后的粉体经过检验筛,得到粒径为得到粒径为20μm~80μm的粉体;再将该粉体在1200℃下煅烧4h,得到La2Zr2O7粉体;
(3)将3g步骤(2)中所得的La2Zr2O7粉体放入内径为Φ20.4mm、压头直径为Φ20mm的石墨模具中,再将石墨模具置于放电等离子烧结炉中,然后在石墨模具轴向上施加45MPa的压力,再以100℃/min的升温速率加热到1300℃,保压保温10min后,随炉冷却,石墨模具中的固体即为所述亚微米级La2Zr2O7陶瓷块体材料。
对所制备得的亚微米级La2Zr2O7陶瓷块体材料进行表征,结果如下:
从图4中的XRD谱图可以看出,所制备的陶瓷块体材料为纯La2Zr2O7相,无其他杂相。从图5中的断面SEM图中可以看到,La2Zr2O7陶瓷块体材料中晶粒大小为300nm~500nm,与步骤(2)中所得到的La2Zr2O7粉体粒径相比,烧结后的晶粒无明显长大。根据阿基米德排水法测得平均致密度为95.7%。
实施例3
亚微米级Gd2Zr2O7陶瓷块体材料的制备:
(1)将1000g ZrOCl2·8H2O溶于950mL去离子水中,将580g Gd2O3溶于3400mL质量分数为30%的稀硝酸中,然后将氧氯化锆的水溶液与氧化钆的硝酸溶液混合,得到混合溶液;再将混合溶液滴加到2400mL质量分数为17%的氨水中进行化学共沉淀反应,且反应完成后反应体系的pH为10.3,将反应产生的沉淀物进行洗涤、过滤并置于烘箱中干燥,得到前驱体粉体;
(2)将所得的前驱体粉体置于行星球磨机中,球料比为4:1,在300r/min下球磨20min后,将球磨后的粉体经过检验筛,得到粒径为20μm~80μm的粉体;再将该粉体在1150℃下煅烧3h,得到Gd2Zr2O7粉体;
(3)将3g步骤(2)中所得的Gd2Zr2O7粉体放入内径为Φ20.4mm、压头直径为Φ20mm的石墨模具中,再将石墨模具置于放电等离子烧结炉中,再将石墨模具置于放电等离子烧结炉中,然后在石墨模具轴向上施加40MPa的压力,再以150℃/min的升温速率加热到1400℃,保压保温5min后,随炉冷却,石墨模具中的固体即为所述亚微米级Gd2Zr2O7陶瓷块体材料。
从Gd2Zr2O7陶瓷块体材料的XRD谱图可知,所制备的陶瓷块体材料为纯Gd2Zr2O7相,无其他杂相。从Gd2Zr2O7陶瓷材料的断面SEM图中可知,Gd2Zr2O7的晶粒大小为500nm~700nm,与步骤(2)中所得到的Gd2Zr2O7粉体粒径相比,烧结后的晶粒无明显长大。根据阿基米德排水法测得平均致密度为98.7%。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法,其特征在于:所述方法的具体步骤如下:
步骤1.先将稀土元素的氧化物溶于稀硝酸中,再加入ZrOCl2·8H2O的水溶液,得到混合溶液;再将混合溶液滴加到过量氨水中进行化学共沉淀反应,且反应完成后反应体系的pH在10~11之间,将反应产生的沉淀物进行洗涤、过滤、干燥,得到前驱体粉体;
步骤2.先将所得的前驱体粉体进行球磨粉碎,再经过检验筛,得到粒径为20μm~80μm的粉体Ⅰ;将粉体Ⅰ在1100℃~1250℃煅烧2h~4h,得到粉体II;
步骤3.将粉体II放入石墨模具中,再将石墨模具置于放电等离子烧结炉中,然后在石墨模具轴向上施加40MPa~50MPa的压力,再以100℃/min~150℃/min的升温速率加热到1200℃~1400℃,保压保温5min~10min后,随炉冷却,石墨模具中的固体即为所述亚微米级稀土锆酸盐陶瓷块体材料;
步骤1所述的混合溶液中,稀土元素的摩尔数与锆元素的摩尔数比为1:1。
2.根据权利要求1所述的一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法,其特征在于:所述稀土锆酸盐陶瓷块体材料中的稀土元素为Sm、Sc、Y、La、Nd、Eu、Gd、Dy、Er、Yb或者Lu。
3.根据权利要求1所述的一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法,其特征在于:步骤2中,在300r/min~400r/min下球磨粉碎10min~20min。
CN201710417480.5A 2017-06-06 2017-06-06 一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法 Active CN107032788B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710417480.5A CN107032788B (zh) 2017-06-06 2017-06-06 一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710417480.5A CN107032788B (zh) 2017-06-06 2017-06-06 一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法

Publications (2)

Publication Number Publication Date
CN107032788A true CN107032788A (zh) 2017-08-11
CN107032788B CN107032788B (zh) 2020-05-26

Family

ID=59540995

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710417480.5A Active CN107032788B (zh) 2017-06-06 2017-06-06 一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法

Country Status (1)

Country Link
CN (1) CN107032788B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357618A (zh) * 2019-06-20 2019-10-22 安徽理工大学 低温烧结温度稳定型锆酸盐微波介质陶瓷材料及其制备方法
CN112939591A (zh) * 2021-01-22 2021-06-11 北京科技大学 一种混合价态稀土铁基氧化物块体材料的合成方法
CN115057704A (zh) * 2022-06-23 2022-09-16 北京航空航天大学 一种抗沙尘环境沉积物腐蚀的稀土块体陶瓷材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070135290A1 (en) * 2001-08-02 2007-06-14 3M Innovative Properties Company Metal Oxide Ceramic and Method of Making Articles Therewith
CN101182212A (zh) * 2007-11-06 2008-05-21 武汉理工大学 YAG/ZrB2系复相陶瓷及其制备方法
CN102557626A (zh) * 2011-12-14 2012-07-11 北京矿冶研究总院 一种稀土改性氧化锆热障涂层用蜂窝状结构球形粉末材料的制备方法
CN102627457A (zh) * 2012-04-27 2012-08-08 赣州虔东稀土集团股份有限公司 一种陶瓷及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070135290A1 (en) * 2001-08-02 2007-06-14 3M Innovative Properties Company Metal Oxide Ceramic and Method of Making Articles Therewith
CN101182212A (zh) * 2007-11-06 2008-05-21 武汉理工大学 YAG/ZrB2系复相陶瓷及其制备方法
CN102557626A (zh) * 2011-12-14 2012-07-11 北京矿冶研究总院 一种稀土改性氧化锆热障涂层用蜂窝状结构球形粉末材料的制备方法
CN102627457A (zh) * 2012-04-27 2012-08-08 赣州虔东稀土集团股份有限公司 一种陶瓷及其制备方法与应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357618A (zh) * 2019-06-20 2019-10-22 安徽理工大学 低温烧结温度稳定型锆酸盐微波介质陶瓷材料及其制备方法
CN110357618B (zh) * 2019-06-20 2021-08-24 安徽理工大学 低温烧结温度稳定型锆酸盐微波介质陶瓷材料及其制备方法
CN112939591A (zh) * 2021-01-22 2021-06-11 北京科技大学 一种混合价态稀土铁基氧化物块体材料的合成方法
CN115057704A (zh) * 2022-06-23 2022-09-16 北京航空航天大学 一种抗沙尘环境沉积物腐蚀的稀土块体陶瓷材料及其制备方法和应用

Also Published As

Publication number Publication date
CN107032788B (zh) 2020-05-26

Similar Documents

Publication Publication Date Title
Zhao et al. High-entropy (Y0. 2Nd0. 2Sm0. 2Eu0. 2Er0. 2) AlO3: A promising thermal/environmental barrier material for oxide/oxide composites
Zhu et al. Low temperature sintering of 8YSZ electrolyte film for intermediate temperature solid oxide fuel cells
Li et al. Rapid sintering of nanocrystalline ZrO2 (3Y) by spark plasma sintering
Liu et al. Preparation and thermophysical properties of (Nd x Gd1− x) 2Zr2O7 ceramics
US7799715B2 (en) Boron carbide ceramic and manufacturing method thereof
CN107032788A (zh) 一种亚微米级稀土锆酸盐陶瓷块体材料的制备方法
CN113105237B (zh) 一种ab2o6型钽酸盐陶瓷及其制备方法
CN115124339B (zh) 多元素高熵掺杂氧化锆基陶瓷材料及其制备方法和应用
CN104628392B (zh) 一种致密氮化铝-氮化硼复合材料的制备方法
CN114478005B (zh) 一种四方相热障涂层材料及其制备方法
Li et al. Low thermal conductivity Hf6Ta2O17 ceramics fabricated by solvothermal and pressure-less sintering
CN112341197A (zh) 一种抗cmas腐蚀的高熵陶瓷材料、制备方法及其应用
CN109942294A (zh) 一种抗低熔点氧化物腐蚀的不同化学计量比的稀土钽酸钐陶瓷及其制备方法
CN110002873A (zh) 一种多孔钽酸盐陶瓷及其制备方法
CN106116586A (zh) 一种钼合金MoSi2‑ZrO2‑Y2O3涂层及其制备方法和应用
CN102786303A (zh) 一种用于热障涂层的陶瓷纳米复合材料及其制备方法
CN102674874A (zh) 一种ZrC-SiC-LaB6三元超高温陶瓷复合材料及其制备方法
Shi et al. YAlO3 reinforced AlN composite ceramics with significantly improved mechanical properties and thermal shock resistance
Zhao et al. Preparation of Ti3AlC2 bulk ceramic via aqueous gelcasting followed by Al-rich pressureless sintering
Thongtha et al. Fabrication and characterization of perovskite SrZrO3 ceramics through a combustion technique
CN109592983A (zh) 一种高热导液相烧结碳化硅陶瓷及其制备方法
Henniche et al. Microstructure and mechanical properties of ceramics obtained from chemically co-precipitated Al2O3-GdAlO3 nano-powders with eutectic composition
CN104418608A (zh) 碳化硅多孔陶瓷的低温烧成方法
Yang et al. Fabrication of in-situ self-reinforced Si3N4 ceramic foams for high-temperature thermal insulation by protein foaming method
CN115057704A (zh) 一种抗沙尘环境沉积物腐蚀的稀土块体陶瓷材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Liu Ling

Inventor after: Ma Zhuang

Inventor after: Guo Wei

Inventor before: Guo Wei

Inventor before: Liu Ling

Inventor before: Ma Zhuang

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant