CN107029801A - 一种用于催化降解苯酚的仿酶催化剂 - Google Patents

一种用于催化降解苯酚的仿酶催化剂 Download PDF

Info

Publication number
CN107029801A
CN107029801A CN201710315224.5A CN201710315224A CN107029801A CN 107029801 A CN107029801 A CN 107029801A CN 201710315224 A CN201710315224 A CN 201710315224A CN 107029801 A CN107029801 A CN 107029801A
Authority
CN
China
Prior art keywords
phenol
catalyst
solution
reaction
degradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710315224.5A
Other languages
English (en)
Inventor
彭娟
宋伟明
高旭宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningxia University
Original Assignee
Ningxia University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningxia University filed Critical Ningxia University
Priority to CN201710315224.5A priority Critical patent/CN107029801A/zh
Publication of CN107029801A publication Critical patent/CN107029801A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Water Treatments (AREA)

Abstract

本发明研究一种光-高级氧化联用的催化降解方法对苯酚降解,以仿酶MoS2/(PVP、PEG、CTAB、Na2SiO3·9H2O和柠檬酸钠)材料为催化剂,H2O2为氧化剂,光催化降解苯酚水溶液。本发明催化剂制备方法简单,合成条件温和,原料成本较为低廉。本发明可操作性强、工艺简单、成本低、处理时间短和处理效果显著。催化剂处理苯酚的去除率达到90%以上,同时COD的去除率为60%左右。

Description

一种用于催化降解苯酚的仿酶催化剂
技术领域
本发明属于水处理技术领域,具体涉及仿酶材料应用于废水中苯酚的吸附-光催化氧化降解方法。
背景技术
苯酚(phenol)又名石炭酸,相对分子质量为94.11,密度为1.071,沸点为182℃,熔点为42-43℃,苯酚为无色针状晶体且带有刺激性气味,易溶于有机溶剂,如:氯仿、***、酒精、二硫化碳等有机溶剂,主要用于生产合成树脂、染料、杀菌剂、防腐剂和农药等,也被应用于消毒外科器械、皮肤杀菌以及***物处理等方面。
酚类物质是重要的染料和医药的中间体,含酚废水广泛来源于石油化工、合成纤维、医药等行业,是一类毒性高且难以生物降解的有机废水,传统的生化法存在处理时间长、处理效率低等缺点,难以满足企业生产的需求。在含酚废水的处理方法中,吸附、多相催化氧化等处理方法已有大量报道。吸附法是利用吸附剂的多孔性质吸附废水中污染物,作为一种传统的废水处理技术,它能有效地去除废水中多种污染物,处理后出水水质好且比较稳定。吸附剂一般具有较大的比表面积和较强的吸附能力,常见的吸附剂有活性炭、活性炭纤维、树脂、分子筛等。对于废水中苯酚的吸附,活性炭纤维是一种性能优良的吸附剂,具有处理条件温和,吸附速率快、吸附容量大等优点,活性炭纤维经过脱附再生后可以重新使用。申请号为CN02133116.2的技术中采用电流加热的方法对活性炭纤维再生,徐志达等(活性炭纤维处理炼油废水展望,工业水处理1998, 18(2))采用200℃~ 500℃过热蒸汽对活性炭纤维进行脱附再生,上述方法存在能耗较高的缺点,而溶剂脱附方法又会引入新的化学物质,因此活性炭纤维的再生是困扰其应用的主要问题。另外,脱附后的有机污染物仍然需要处理。
采用光催化、催化臭氧氧化、催化湿式空气氧化、催化湿式过氧化氢氧化等多相催化氧化法处理含酚废水的研究已有报道,其中催化湿式过氧化氢氧化法采用过氧化氢为氧化剂,具有设备简单、操作条件温和、无二次污染等特点,然而大量文献报道此方法中催化剂的最佳活性温度多在50℃以上,如果将工厂的全部废水均加热到50℃以上再处理,能耗也是影响其应用的主要问题。由此可见,单一的处理方法很难实现废水中苯酚的有效降解,需要耦合多个方法的优点处理废水中的苯酚。专利(申请号200710015182.X)采用活性炭纤维-臭氧化协同降解水中酚类化合物,获得了较好的苯酚去除率,但是专利中并没有提及含酚废水的COD 去除率。申请号为CN201210142480.6 中公开了一种用于空气净化的掺铈纳米二氧化钛/活性炭纤维复合光催化剂及其制备方法,提高了纳米二氧化钛的光催化活性,但是在废水处理中光催化的效率还不高。
目前研究用于光催化降解环境污染物的光催化剂N型金属氧化物半导体,特别是TiO2因其无毒、稳定和廉价而应用得最为广泛,但是由于它大的禁带宽度(3eV以上)导致对太阳光的吸收只在紫外光范围内,而这部分波长的光线只占太阳光的3%左右,严重影响其使用效率。与TiO2相比,MoS2的带隙宽度只有1.80eV左右,对太阳光包括可见光部分具有很强的吸收作用,同时它具有良好的化学稳定性,取长补短,因此MoS2在光催化领域同样具有很大的研究意义和应用潜力。除此之外,纳米MoS2材料兼具多孔大比表面积,大的比表面伴随着许多悬空键的产生,因其具有的不饱和性质而很容易与其它原子结合,故表现出很强的化学活性,这些特点使其成为半导体光催化技术中的研究热点。
发明内容
为了解决现有技术中存在的不足,本发明研究一种光-高级氧化联用的催化降解方法对苯酚降解,以仿酶MoS2/(PVP、PEG、CTAB、Na2SiO3·9H2O和柠檬酸钠)材料为催化剂,H2O2为氧化剂,光催化降解苯酚水溶液。
本发明中仿酶催化剂的制备方法如下:
(1)按摩尔比1:1~5称取Na2MoO4·2H2O和NH2CSNH2,加蒸馏水并在超声辅助下溶解,记为溶液A;
(2)向溶液A中加入聚乙烯吡咯烷酮(PVP)、聚乙二醇(PEG)、十六烷基三甲基溴化铵(CTAB)、Na2SiO3·9H2O、柠檬酸钠、聚乙二醇PEG6000的一种或多种,加入量占总量的5~30%,至完全溶解,记为溶液B;
(3)用盐酸调节调节溶液B酸度,调节pH至6,室温搅拌30~60min,记为溶液C;
(4)将溶液C倒入聚四氟乙烯反应釜中,于150~300℃反应6~24h,优选180℃反应12h;
(5)反应完成后,待反应釜完全冷却后将样品取出,分别用蒸馏水和无水乙醇反复离心洗涤2~5次,在冷冻干燥箱中冷冻干燥24h以上。
本发明催化剂应用于降解废水中苯酚方法如下:
(1)反应器为固定床,优选夹套玻璃反应容器;
(2)反应条件:反应温度为20-60℃,反应时间1~12h,[催化剂]=0.5~3.5g.L-1, pH值为2~12,选用300W~1000W氙灯作为模拟太阳光源;优选反应温度为40℃,反应时间2h,[催化剂] 浓度=1.5g.L-1、pH=8.0,500W氙灯;
(3)向含有苯酚的废水中加入50mg/L 罗丹明B(RhB)、50mg/L 亚甲基蓝(MB),[苯酚]浓度不高于1500mg.L-1,配成苯酚溶液P;
(4)苯酚溶液P必须在可见光照射之前在暗处反应40min,以克服与分子降解无关的浓度降低,达到吸附平衡就开始照射;
(5)加入电子捕获剂,为了抑制电子-空穴复合,优选H2O2作为电子捕获剂,H2O2的浓度为2~10mmol/L时,优选H2O2的浓度为8mmol/L,加入H2O2不仅能够有效的抑制MoS2电子-空穴的复合,而且能够产生更多的·OH自由基增加光催化反应速度。
在可见光照射的情况下光/H2O2体系苯酚光催化降解去除率约为6%。MoS2/PVP催化剂的添加促进了苯酚降解,这证明了有效降解反应需要可见光和仿酶催化剂。
加入过氧化氢作为电子清除剂接受来自导带的光生电子,抑制电子孔穴重组增加•OH的浓度。光催化剂和过氧化氢的组合是在可见光照射下降解苯酚十分有效。优选在光照和H2O2同时存在的条件下降解苯酚。
本发明的优点在于:
(1)本发明催化剂制备方法简单,合成条件温和,原料成本较为低廉,制得的催化剂为纳米级,XRD分析催化剂峰型和峰强度好;组成易于控制,形貌呈片层重叠网状;合成催化剂主活性组分MoS2分子结构中有相对较多的S原子暴露在分子表面,具有较高的表面活性,因此具有良好的光和仿酶催化特性;
(2)催化剂没有引入其他金属离子,如Co2+、Co3+、Fe2+等金属离子及贵金属,加入的聚乙烯吡咯烷酮(PVP)、聚乙二醇(PEG)、十六烷基三甲基溴化铵(CTAB)、Na2SiO3·9H2O、柠檬酸钠、聚乙二醇PEG6000合成的催化剂在催化降解有机物分子的过程中,由荧光检测分析可知,有强氧化剂·OH自由基的生成,有效提高了催化剂性能。一方面MoS2受到光子的激发易产生电子空穴对,电子空穴对发生复合,并以光和热的方式释放能量;一方面价带中的空穴与原子表面处的水发生还原反应,导带中的电子与表面的O2发生氧化反应,进而自由基与有机物发生氧化分解反应。在这过程中,催化剂材料表面的电子和空穴的浓度得到改性,有效延长了载流子的寿命,并加快了载流子在界面的传播,促进和提高光催化作用的量子效率;
(3)本发明在催化降解反应中,加入一定浓度的电子捕获剂H2O2,有效的抑制了MoS2电子-空穴的复合,而且能够产生更多的·OH自由基增加光催化反应速度,提高催化性能;
(4)本发明可操作性强、工艺简单、成本低、处理时间短和处理效果显著。催化剂处理苯酚的去除率达到90%以上,同时COD的去除率为60%左右;
(5)本发明催化剂为固体催化剂,在水相反应中不溶脱,且易于分离重复使用,大大降低了催化剂使用成本。催化剂循环使用实验可知,在四次重复利用后,回收催化剂样品对其进行XRD测试,结构表明XRD图谱中未发现任何其它杂质峰,循环后结晶度有所下降,实验数据显示复合材料的催化降解有一定的下降,但下降幅度不大,仍能保持在80%。说明多次循环催化后催化剂能保持较高活性。
附图说明
图1是以不同反应温度下的合成的催化剂的XRD图谱,字母a、b、c、d意义分别代表反应温度为180℃、200℃、220℃和240℃下的合成催化剂XRD图谱;图2是以钼酸钠和硫脲在不同摩尔配比(1:1、1:2、1:3、1:4、1:5)合成催化剂的XRD图谱;图3显示了产物MoS2-PVP的扫描电子显微镜(SEM)图像;图4是以不同pH值下的催化反应活性图,pH值分别在2.0、4.0、6.0、8.0、10.0和12.0进行催化降解苯酚;图5 是催化剂吸附、直接催化和光-Fenton降解苯酚的催化活性图;图6是 MoS2在各条件下的降解苯酚的速率;图7是催化剂浓度对苯酚降解的影响,字母意义为(a):催化剂浓度对苯酚降解的影响,(b):伪一阶-ln(C/C0)对照射时间的线性图,(c):催化剂浓度与COD去除率线形图。
具体实施方式
下面结合具体实施方式对本发明做进一步的描述,并非对其保护范围的限制。
实施例1
以钼酸钠为钼源,硫脲为硫源,通过水热合成催化剂。称取Na2MoO4·2H2O和NH2CSNH2加入蒸馏水,在超声辅助下使之完全溶解;称取15%PVP加入,完全溶解得到透明溶液;用盐酸调节调节溶液pH约为6,室温搅拌30min;)将反应物倒入100 mL反应釜在一定温度下反应;反应完成后待反应釜完全冷却后将样品取出,分别用蒸馏水和无水乙醇反复离心洗涤2次,在冷冻干燥箱中冷冻干燥24h。
在室温下催化实验,催化反应在200 mL的夹套玻璃反应容器内,0.1g催化剂加入100 mL分别为50 mg/L 罗丹明B(RhB)、50 mg/L 亚甲基蓝(MB)和200 mg/L 苯酚的目标降解物,选用500W氙灯作为模拟太阳光源,光照开始后,每隔一定时间取一次样,测其吸光度。
反应温度对样品的粒度影响很大,随着生成反应温度越高,生成物的粒度明显增大。图1是以不同反应温度下的合成的催化剂的XRD图谱,反应温度分别为180℃、200℃、220℃和240℃,随着反应温度的升高,MoS2/PVP晶体峰强度增强。当反应温度低于180℃时,没有形成MoS2/PVP晶体。当反应温度高于180℃时,产物粒度晶型随着反应温度的升高而增强,较高温度意味着较长时间冷却,有利于晶型结构的形成。
图2是以钼酸钠和硫脲在不同摩尔配比(1:1、1:2、1:3、1:4、1:5)合成催化剂的XRD图谱,从图中可知,样品配比为1:4时,峰强度最大、最窄,配比为1:1、1:2、1:3和1:5逐渐减弱,晶型较好。根据半峰宽与晶粒尺寸的关系可知,半峰宽B越大,纳米粒径Dc越小,摩尔配比1:4尺寸最大。
通过SEM技术表征样品的尺寸和形态图。图3显示了产物MoS2-PVP的扫描电子显微镜(SEM)图像。可以看出,样品具有高度互连的多孔网状结构,具有亚微米尺寸的大孔,并且网络壁的外边缘显示低对比度和明显的波纹,具有超薄厚度几纳米的壁使其具有优异的机械柔性。实验中选取加入的催化剂MoS2/PVP。
实施例2
按摩尔配比1:4称取Na2MoO4·2H2O和NH2CSNH2,加蒸馏水并在超声辅助下溶解,记为溶液A;向溶液A中加入聚乙烯吡咯烷酮(PVP)加入量占总量的10%,至完全溶解,记为溶液B;用盐酸调节pH至6,室温搅拌30min,记为溶液C;将溶液C倒入聚四氟乙烯反应釜中,于180℃反应12h;反应完成后,待反应釜完全冷却后将样品取出,分别用蒸馏水和无水乙醇反复离心洗涤5次,在冷冻干燥箱中冷冻干燥24h以上。
本发明催化剂应用于降解废水中苯酚方法如下:反应器为夹套玻璃反应容器;反应温度为40℃,反应时间2h,[催化剂]=1.5g.L-1, pH值为一定值,选用500W氙灯作为模拟太阳光源;向含有苯酚的废水中加入50mg/L 罗丹明B(RhB)、50mg/L 亚甲基蓝(MB),[苯酚]不高于1500mg.L-1,配成苯酚溶液P;苯酚溶液P必须在可见光照射之前在暗处反应40min,以克服与分子降解无关的浓度降低,达到吸附平衡就开始照射。加入电子捕获剂H2O2,H2O2的浓度为8mmol/L。
选取pH在2.0、4.0、6.0、8.0、10.0和12.0进行催化降解苯酚,结果如图4c,一定范围内随着pH升高苯酚的降解和COD去除效率增大,在pH为8时,苯酚的降解率和COD的去除率达到最大,pH进一步升高苯酚的降解率和COD去除效果降低;同时,从图4b可知在pH为8时,表观速率常数Kapp最大,选取pH为8时降解苯酚。从苯酚降解的机理角度分析,苯酚的降解途径可分为苯酚离子反应和分解产生的·OH与苯酚的自由基反应。由于羟基化作用而使苯酚分子邻位与对位的电子云密度较高,羟基自由基直接攻击苯酚分子的邻、对位,进行亲电取代,生成邻苯二酚和对苯二酚。由于苯酚的Pka=9.45,苯酚在水中显弱酸性,随着溶液的pH的升高,溶液中苯酚分子的氢原子极易生成苯酚离子,其共振式作用会进一步增大苯环的邻、对位的电子云密度,更有利于羟基自由基的亲电攻击。值得注意的是pH>8时,COD的去除效果不增反而降低,主要是由于氧化剂的溶解度随pH增大而降低,造成了·OH自由基的反应特性降低。
从图5中可以看出,反应条件[催化剂]=1.0g.L-1,[phenol]=50mg.L-1和pH值为8.0。表明MoS2/PVP存在于黑暗中,苯酚降解在40min内增加缓慢,然后基本保持不变。因此,苯酚溶液必须在可见光照射之前在暗处反应40min,以克服与分子降解无关的浓度降低,达到吸附平衡就开始照射。在可见光照射的情况下光/H2O2体系苯酚光催化降解去除率约为6%。MoS2/PVP催化剂的添加促进了苯酚降解,这证明了有效降解反应需要可见光和光催化剂。此外,向光MoS2/PVP***添加H2O2增加苯酚降解。事实上,加入过氧化氢作为电子清除剂接受来自导带的光生电子,抑制电子孔穴重组增加•OH的浓度。因此,光催化剂和过氧化氢的组合是在可见光照射下降解苯酚的最有效的方法。从6图中可以看出,仿酶MoS2/PVP的光催化速率是其类Fenton氧化速率为的1.4倍,在光照和H2O2同时存在条件下,MoS2的催化降解速率大大增强,所以实验选择在光照和H2O2同时存在的条件下降解苯酚。
催化降解过程中的催化剂加入量是强烈影响苯酚光催化降解效果的重要因素。在模拟苯酚废水浓度为50mg/L,温度为40℃条件下,催化剂的加入量从0.0至1.5g/L进行实验。图7(a,c)表明随着催化剂浓度增加苯酚降解效率增强,COD的去除也增加;当MoS2催化剂的浓度达到1.5g/L时,模拟苯酚废水的降解率为96.5%,COD的去除率约为60%。由于催化剂浓度的增加导致催化剂表面上吸收的光子和活性位点的数量的增加,而引起苯酚降解增强和COD去除增加。伪一级反应动力学方程对邻苯二酚的催化降解的适用性由每个催化剂浓度的-ln(C/C0)与t图之间的良好线性证实,图7(b)清楚地表明,随着催化剂浓度增加,伴随催化剂的表观速率常数Kapp增加,催化剂浓度为1.5g/L时的表观速率常数Kapp值为0.1267,达到最高值。因此,为了避免催化剂过量使用并确保有效的光子吸收,在本研究中采用1.5g/L作为最佳催化剂浓度。

Claims (3)

1.一种用于催化降解苯酚的仿酶催化剂,其特征在于所述催化剂的制备方法为:
(1)按摩尔比1:1~5称取Na2MoO4·2H2O和NH2CSNH2,加蒸馏水并在超声辅助下溶解,记为溶液A;
(2)向溶液A中加入聚乙烯吡咯烷酮(PVP)、聚乙二醇(PEG)、十六烷基三甲基溴化铵(CTAB)、Na2SiO3·9H2O、柠檬酸钠、聚乙二醇PEG6000的一种或多种,加入量占总量的5~30%,至完全溶解,记为溶液B;
(3)用盐酸调节调节溶液B酸度,调节pH至6,室温搅拌30~60min,记为溶液C;
(4)将溶液C倒入聚四氟乙烯反应釜中,于150~300℃反应6~24h,优选180℃反应12h;
(5)反应完成后,待反应釜完全冷却后将样品取出,分别用蒸馏水和无水乙醇反复离心洗涤2~5次,在冷冻干燥箱中冷冻干燥24h以上。
2.根据权利要求1所述的一种用于催化降解苯酚的仿酶催化剂,其特征在于所述催化剂应用于降解废水中苯酚方法为:
(1)反应器为固定床,优选夹套玻璃反应容器;
(2)向含有苯酚的废水中加入50 mg/L 罗丹明B(RhB)、50 mg/L 亚甲基蓝(MB),苯酚浓度不高于1500 mg.L-1,配成苯酚溶液P;
(3)苯酚溶液P必须在可见光照射之前在暗处反应30~60min,以克服与分子降解无关的浓度降低,达到吸附平衡就开始照射;
(4)加入电子捕获剂H2O2,H2O2的浓度为2~10 mmol/L时;
(5)反应条件:反应温度为20-60℃,反应时间1~12h,催化剂浓度=0.5~3.5g.L-1, pH值为2~12,选用300W~1000W氙灯作为模拟太阳光源。
3.根据权利要求2所述的一种用于催化降解苯酚的仿酶催化剂,其特征在于所述催化剂应用于降解废水中苯酚时,优选反应温度为40℃,反应时间2h,催化剂浓度=1.5g.L-1、pH=8.0,500W氙灯,优选H2O2的浓度为8mmol/L。
CN201710315224.5A 2017-05-08 2017-05-08 一种用于催化降解苯酚的仿酶催化剂 Pending CN107029801A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710315224.5A CN107029801A (zh) 2017-05-08 2017-05-08 一种用于催化降解苯酚的仿酶催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710315224.5A CN107029801A (zh) 2017-05-08 2017-05-08 一种用于催化降解苯酚的仿酶催化剂

Publications (1)

Publication Number Publication Date
CN107029801A true CN107029801A (zh) 2017-08-11

Family

ID=59537002

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710315224.5A Pending CN107029801A (zh) 2017-05-08 2017-05-08 一种用于催化降解苯酚的仿酶催化剂

Country Status (1)

Country Link
CN (1) CN107029801A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109553181A (zh) * 2018-12-11 2019-04-02 中国科学院生态环境研究中心 一种利用三价钼产生自由基的方法及其处理有机废水的方法
CN109647444A (zh) * 2019-01-17 2019-04-19 广州大学 一种金属有机复合多相芬顿催化剂及其制备方法和应用
CN109956500A (zh) * 2019-03-25 2019-07-02 天津大学 一种用于锂钠电池负极的纳米花状的二硫化钼材料的制备方法
CN110723869A (zh) * 2019-10-09 2020-01-24 合肥停弦渡生物科技有限公司 基于预氧化剂的改进型芬顿污水处理方法
CN115634699A (zh) * 2022-11-07 2023-01-24 浙江省环境科技有限公司 镍掺杂CoFe复合氧化物/二硫化钼负载型催化剂及其制备和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6451729B1 (en) * 1999-10-06 2002-09-17 The Penn State Research Foundation Method for preparing a highly active, unsupported high surface-area MoS2 catalyst
CN102351302A (zh) * 2011-09-14 2012-02-15 福建医科大学 纳米氧化铜催化降解水中苯酚的方法
CN104276649A (zh) * 2014-10-09 2015-01-14 常州大学 一种处理印染废水中苯酚的方法
CN104326524A (zh) * 2014-10-13 2015-02-04 陕西华陆化工环保有限公司 光催化降解苯酚的方法
CN105664976A (zh) * 2016-01-13 2016-06-15 三峡大学 一种负载型二维层状硫化钼复合材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6451729B1 (en) * 1999-10-06 2002-09-17 The Penn State Research Foundation Method for preparing a highly active, unsupported high surface-area MoS2 catalyst
CN102351302A (zh) * 2011-09-14 2012-02-15 福建医科大学 纳米氧化铜催化降解水中苯酚的方法
CN104276649A (zh) * 2014-10-09 2015-01-14 常州大学 一种处理印染废水中苯酚的方法
CN104326524A (zh) * 2014-10-13 2015-02-04 陕西华陆化工环保有限公司 光催化降解苯酚的方法
CN105664976A (zh) * 2016-01-13 2016-06-15 三峡大学 一种负载型二维层状硫化钼复合材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
戴志庆: "掺铁TiO2催化剂与H2O2联合处理苯酚废水实验研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
袁志明: "水热法制备二硫化钼纳米材料及其光催化性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109553181A (zh) * 2018-12-11 2019-04-02 中国科学院生态环境研究中心 一种利用三价钼产生自由基的方法及其处理有机废水的方法
CN109647444A (zh) * 2019-01-17 2019-04-19 广州大学 一种金属有机复合多相芬顿催化剂及其制备方法和应用
CN109647444B (zh) * 2019-01-17 2021-09-03 广州大学 一种金属有机复合多相芬顿催化剂及其制备方法和应用
CN109956500A (zh) * 2019-03-25 2019-07-02 天津大学 一种用于锂钠电池负极的纳米花状的二硫化钼材料的制备方法
CN110723869A (zh) * 2019-10-09 2020-01-24 合肥停弦渡生物科技有限公司 基于预氧化剂的改进型芬顿污水处理方法
CN110723869B (zh) * 2019-10-09 2021-07-02 合肥停弦渡生物科技有限公司 基于预氧化剂的改进型芬顿污水处理方法
CN115634699A (zh) * 2022-11-07 2023-01-24 浙江省环境科技有限公司 镍掺杂CoFe复合氧化物/二硫化钼负载型催化剂及其制备和应用
CN115634699B (zh) * 2022-11-07 2023-05-23 浙江省环境科技有限公司 镍掺杂CoFe复合氧化物/二硫化钼负载型催化剂及其制备和应用

Similar Documents

Publication Publication Date Title
Wang et al. 3D hierarchical H2-reduced Mn-doped CeO2 microflowers assembled from nanotubes as a high-performance Fenton-like photocatalyst for tetracycline antibiotics degradation
Dong et al. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures
Wang et al. 0D/2D Co3O4/TiO2 Z-Scheme heterojunction for boosted photocatalytic degradation and mechanism investigation
Ji et al. 2D/1D graphitic carbon nitride/titanate nanotubes heterostructure for efficient photocatalysis of sulfamethazine under solar light: Catalytic “hot spots” at the rutile–anatase–titanate interfaces
Jiang et al. Photo-Fenton degradation of phenol by CdS/rGO/Fe2+ at natural pH with in situ-generated H2O2
Zeng et al. Visible-light-driven sonophotocatalysis and peroxymonosulfate activation over 3D urchin-like MoS2/C nanoparticles for accelerating levofloxacin elimination: Optimization and kinetic study
Zhang et al. Synthesis of flower-like MoS2/g-C3N4 nanosheet heterojunctions with enhanced photocatalytic reduction activity of uranium (VI)
CN107029801A (zh) 一种用于催化降解苯酚的仿酶催化剂
Jia et al. Boosting photocatalytic activity under visible-light by creation of PCN-222/g-C3N4 heterojunctions
Tang et al. Anatase TiO2@ MIL-101 (Cr) nanocomposite for photocatalytic degradation of bisphenol A
Guan et al. Photocatalytic performance and mechanistic research of ZnO/g-C3N4 on degradation of methyl orange
Wang et al. Novel Ag3PO4/boron-carbon-nitrogen photocatalyst for highly efficient degradation of organic pollutants under visible-light irradiation
Liu et al. Modified g-C3N4/TiO2/CdS ternary heterojunction nanocomposite as highly visible light active photocatalyst originated from CdS as the electron source of TiO2 to accelerate Z-type heterojunction
Mei et al. The enhanced photodegradation of bisphenol A by TiO2/C3N4 composites
Tian et al. 0D/3D coupling of g-C3N4 QDs/hierarchical macro-mesoporous CuO-SiO2 for high-efficiency norfloxacin removal in photo-Fenton-like processes
Sonawane et al. Nanocomposites and its applications
Kargar et al. Synthesis of modified beta bismuth oxide by titanium oxide and highly efficient solar photocatalytic properties on hydroxychloroquine degradation and pathways
Liang et al. Porous loofah-sponge-like ternary heterojunction g-C3N4/Bi2WO6/MoS2 for highly efficient photocatalytic degradation of sulfamethoxazole under visible-light irradiation
Vinesh et al. rGO supported self-assembly of 2D nano sheet of (g-C3N4) into rod-like nano structure and its application in sonophotocatalytic degradation of an antibiotic
Chen et al. Preparation of a g-C3N4/Ag3PO4 composite Z-type photocatalyst and photocatalytic degradation of Ofloxacin: degradation performance, reaction mechanism, degradation pathway and toxicity evaluation
Su et al. Z-scheme 2D/2D WS2/Bi2WO6 heterostructures with enhanced photocatalytic performance
Zhang et al. Self-assembly of MoS2 nanosheet adhered on Fe-MOF heterocrystals for peroxymonosulfate activation via interfacial interaction
Lin et al. Facile preparation of a novel modified biochar-based supramolecular self-assembled g-C3N4 for enhanced visible light photocatalytic degradation of phenanthrene
Amanulla et al. A magnetically recoverable bimetallic Au-FeNPs decorated on g-C3N4 for efficient photocatalytic degradation of organic contaminants
Rahimi et al. Investigation of the synergistic effect of porphyrin photosensitizer on graphene–TiO2 nanocomposite for visible light photoactivity improvement

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170811

RJ01 Rejection of invention patent application after publication