CN107021450B - 用于制备氨和尿素的方法 - Google Patents

用于制备氨和尿素的方法 Download PDF

Info

Publication number
CN107021450B
CN107021450B CN201610961537.3A CN201610961537A CN107021450B CN 107021450 B CN107021450 B CN 107021450B CN 201610961537 A CN201610961537 A CN 201610961537A CN 107021450 B CN107021450 B CN 107021450B
Authority
CN
China
Prior art keywords
stream
gas
cpo
ammonia
partial oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610961537.3A
Other languages
English (en)
Other versions
CN107021450A (zh
Inventor
G·亚夸涅洛
B·库基耶拉
E·安东内蒂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stamicarbon BV
Original Assignee
Stamicarbon BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47628417&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN107021450(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Stamicarbon BV filed Critical Stamicarbon BV
Publication of CN107021450A publication Critical patent/CN107021450A/zh
Application granted granted Critical
Publication of CN107021450B publication Critical patent/CN107021450B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/02Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds
    • C07C273/10Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds combined with the synthesis of ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/025Preparation or purification of gas mixtures for ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0411Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/02Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds
    • C07C273/04Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds from carbon dioxide and ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/0445Selective methanation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/068Ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/141At least two reforming, decomposition or partial oxidation steps in parallel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

公开的是用于制备氨的方法,包括其中合成气体以两个不同方式即通过催化部分氧化(31)和通过蒸汽重整而形成的步骤,其中合成气体的合并物流进行水煤气变换反应(50)。还公开的是制备尿素的方法,其中在涉及所述合并物流的工艺中形成氨(90),且其中在同一工艺中形成的二氧化碳(110)与所述氨反应,以形成尿素。

Description

用于制备氨和尿素的方法
本申请是2014年8月6日提交到中华人民共和国国家知识产权局的发明名称为“用于制备氨和尿素的方法”、申请号为“201280069097.0”的发明专利申请的分案申请。
技术领域
本发明涉及用于制备氨的方法以及用于制备氨且随后制备尿素的方法。
背景技术
通常根据以下反应式通过使氢与氮反应来制备氨:
3H2+N2→2NH3
H2通常从合成气体(通常称为“合成气”)中获得,而合成气体从烃类进料中获得,该烃类进料进行蒸汽重整,其后经常为自热重整(ATR),以生成包括一氧化碳(CO)、氢(H2)和二氧化碳(CO2)的混合物,之后通常进行水煤气变换反应,在该反应中,一氧化碳与水反应,以形成二氧化碳和氢。在去除CO2(或从气体混合物中分离出H2)后,氢可用于与氮(N2)的反应。后者存在于原始气体混合物中(因为其对于在氨合成条件之前的所有步骤均为惰性),或者如果从空气获得的话则在之后添加到从氧中分离氮的单元中。使氢和氮在合成反应器中压缩,并转化成氨。
氨经常用作尿素合成中的起始材料。可以在尿素设备的合成区中,在通常为150℃~250℃的升高温度以及通常为12~40Mpa的升高压力下,由氨和二氧化碳制备尿素(NH2CONH2)。在该合成中,可认为发生两个连续的反应步骤。在第一步骤中,形成氨基甲酸铵,且在下一步骤中,使该氨基甲酸铵脱水以得到尿素:
(i)2NH3+CO2→H2N–CO–ONH4
(ii)
图1示出的用于制备氨的参考方法包括,用于制备氢的蒸汽重整工序,后接所述氢与空气分离单元(ASU)中生成的氮的反应。然而,该方法的缺点在于,大量能量用于将空气分离成氮与氧,而所产生的氧没有用处。
例如在US专利6,448,441(并入本文以供参考)中示出的另一参考方法,涉及使用在不同操作条件下工作的两个平行气化装置,以在使用天然气气化装置来生成合成气时增加用于尿素制备的CO2率。通过使用两个气化装置,可以获得反应混合物中的正确化学计量,以用于后续的氨的制备。在US专利6,448,441的方法中,相对于氮需要生成额外的CO2以获得氨与CO2反应的正确化学计量。这需要燃烧额外的碳质材料例如天然气,其消耗更多的原材料和能量。
因此,在氨的制备中,以及在尿素的制备中,期望能够以所需的化学计量来提供起始材料,且期望尽可能降低能量和材料成本。
发明内容
为更好地解决一个或多个上述期望,本发明在一方面提供用于制备氨的方法,包括以下步骤:
(a)提供烃类材料;
(b)使烃类材料进行催化部分氧化(CPO),以产生包括一氧化碳、氢和二氧化碳的CPO气流;
(c)提供由烃类进料的蒸汽重整(SR)而获得的SR气流;
(d)使CPO气流和SR气流进行水煤气变换(WGS)反应,以使一氧化碳与水反应形成包括氢和二氧化碳的WGS气体;
(e)在WGS反应之前或之后,使单独的气流进行混合步骤,以提供混合的WGS气体;
(f)使混合的WGS气体进行氢富集步骤,以获得富含氢的物流;
(g)在氨形成条件下使富含氢的物流与氮反应,以制备氨。
在另一方面,本发明涉及用于制备尿素的方法,包括如上限定的用于制备氨的工序,其中分离步骤(d)包括从反应混合物中去除CO2,并在尿素形成条件下使氨与所去除的CO2反应。
附图说明
图1和图2是领域内已知的实施方式的示意性表示。
图3是本发明实施方式的示意性表示。
具体实施方式
广义而言,本发明基于如下明智见解,即由于产生可用于增加的尿素产量的额外CO2,在合成气的形成中与蒸汽重组组合地使用催化部分氧化(CPO)能够在氨的制备(引起改进的氨制备)和尿素的制备中同时带来预料不到的优点。
为了增加用于尿素制备的CO2比率,对一部分用于蒸汽重整的常规烃进料进行CPO,并转化为一种合成气,在本说明书中表示为“CPO气体”,其相比于在蒸汽重整中所获得者具有更高的CO/H2比。所得的相对较高量的CO随后在下游在水煤气变换转化器中转化成CO2
氨的制备需要作为反应物的氮(N2)的可得性。氮得自空气,在常规方法中,这引起氧(O2)的损失。在本发明中,明智地预见到,将通过提供作为反应物的氮而得到的氧用作催化部分氧化步骤中氧化氧的来源,并被回收用于生产进一步的尿素。
因此,根据本发明,催化部分氧化步骤和用于氨合成的蒸汽重整步骤的组合呈现出高度经济的进步。这在催化部分氧化所需的氧可通过氨的制备而得到的情况下实际上提供协同作用,也就是说,现在可以使用通常损失的氧。
CPO气流和SR气流可以在WGS反应之前混合。也可以使它们分别进行WGS反应,然后将所得的气流混合以提供混合的WGS气体。优选地,本发明的方法包括混合CPO气流和SR气流以提供混合气体,并使混合气体进行WGS反应的步骤。在一个特别优选的实施方式中,对整个CPO气体和SR气流进行WGS,由此没有气流绕开WGS反应。此实施方式的优点是用于氨和随后的尿素制备的必需化学计量比已从完全进行WGS的该两股气流获得。因此,不需绕开WGS和使用部分CPO和SR气流用于例如氢回收,以在氨合成反应之前调整组成。
尿素的制备需要作为反应物的二氧化碳(CO2)的可得性。常规尿素制备方法的问题在于通常存在CO2相对于可用氨的缺乏(deficit)。本发明具有以下优点,即氨和CO2都以所需的量生产并因此直接适用于尿素合成。催化部分氧化中形成的任何CO2,特别是从水煤气变换反应的后续步骤中而来的CO2,存在于部分制备工序的气流中,因此直接可得以用作尿素制备的反应物。
本发明的方法,不管用于制备氨或是用于制备尿素,均以烃类材料的催化部分氧化以及烃类材料的蒸汽重整开始。烃类材料可以是单一烃、烃的混合物、或包括至少一种烃的任何其他组合物。通常而言,在采用天然气的情况中,通常在进行本发明方法之前进行脱硫。
烃类材料可以是气态(例如,甲烷或天然气)和/或液态,也可以来自生物质。烃类材料可以适用于直接供应至CPO或者可以进行预处理以去除任何可能存在的杂质例如硫化合物。
优选地,烃类材料选自天然气、液化石油气(LPG)、炼厂气、石脑油及其混合物。
根据本发明方法的SR部分对于技术人员是已知的。CPO部分将在下文中更详细地阐明。
CPO反应器为技术人员已知。CPO反应器通常包括由内衬耐火材料的竖直圆柱形钢制压力容器构成的反应区。CPO反应器通常区别于自热重整反应器,因为后者包括燃烧器,而CPO通常没有。
混合器例如在WO2007045457中所示者可以用于向反应器中引入进料流。
CPO方法形成合成气体、或合成气,其包括CO、CO2和H2。这种气体在本说明书中被称为“CPO气体”。参考作为示例性烃类进料的甲烷,CPO方法的反应式为:
CH4+0.5O2→CO+2H2
术语CPO(也称为SCT-CPO)为技术人员已知。SCT-CPO是指短接触时间催化部分氧化。CPO反应在反应器中在催化剂的影响下进行,停留时间为10-2~10-4且典型催化剂表面接触时间为约10-6s-1。这些接触时间相应于100,000~250,000hr-1的典型空速,优选为100,000~200,000hr-1。SCT-CPO采用的催化剂包括Ni、Pd、Pt、Rh或Ru。反应在高于950℃的催化表面温度进行,优选为高于1000℃。通过采用所述短接触时间和高催化剂表面温度,高度有利于CO的形成,并抑制碳或CO2的形成。这导致高度有利的合成气体组成,其继而导致用于氨和尿素制备的有利化学计量条件。CPO反应通常将在催化部分氧化反应器中进行,该反应器包括合适的催化剂床,其用于催化烃向CO和H2的部分氧化。应当理解的是,也可形成一些完全氧化产物(即,CO2)。术语“CPO”对于技术人员是已知的,并且实现其的催化剂是人们熟知的。参见,例如,L.Basini,Catalyst Today 117(2006),384-393或L.Basini,K.Aasberg-Petersen,A.Guarinoni,M.Oestberg,Catalysis Today(2001)64,9-20"CatalyticPartial Oxidation of Natural Gas at Elevated Pressure and Low ResidenceTime";(c)H.Hickman,L.D.Schmidt,J.Catal.138(1992)267;(d)D.Hichman,L.D.SchmidtScience,259(1993)343;(e)L.Basini,G.Donati WO 97/37929;(f)Sanfilippo,Domenico;Basini,Luca;Marchionna,Mario;EP-640559;(g)D.Schaddenhorst,R.J.Schoonebeek;WO00/00426;(h)K.L.Hohn,L.D.Schmidt,S.Reyes,J.S.Freeley,WO 01/32556;(i)A.M.Gaffney,R.Songer,R.Ostwald,D.Corbin,WO 01/36323。
应理解的是,在CPO过程中,提供氧以实现氧化。尽管氧可以是空气的形式,其缺点在于,这意味着相当大量的在氨形成反应前为惰性的氮被带入工序中。这需要比将要进行的反应严格所需的仪器大得多的仪器,这是经济上不期望的,并且与其他缺点例如需要建造占据过大地表面积的设施相关。在该方面,优选催化部分氧化在包括至少40%氧、优选至少60%氧的含氧气流的影响下进行。更优选地,含氧气流是纯度为90%~100%的氧。
使用催化部分氧化的其它优点在于,合成气体可以制备成具有合适的H2/CO2比,以关于进料组成使氨和尿素的产量最大化。通过适当地设定蒸汽与碳(S/C)以及氧与碳(O2/C)的比率并使去往CPO反应器的物流的温度预热,也在天然气进料的存在下,合成气体中生成的CO2的量很高,足以利用所有所生成的NH3而没有过量的NH3。技术人员无需过多实验即可知晓,怎样计算合成气体中所需的反应物的合适量,以及怎样设定催化部分氧化过程以实现这一点。
CPO反应器优选以0.3~1.0范围内的蒸汽与碳的比率(S/C)工作,更优选在0.4~0.6的范围内。氧与碳的比率(O/C)优选在0.3~1.0的范围内,更优选在0.5~0.7的范围内。
在又一优选实施方式中,从催化部分氧化中得到的未净化气体(raw gas)具有约900℃~1200℃的温度,优选为950~1050℃,更好为约1000℃。
为提高氢生产的目的,使CPO反应混合物即CPO气体进行水煤气变换反应。为此,使混合物进行水煤气变换(WGS),其中包括一氧化碳与蒸汽的气体混合物转化为氢和二氧化碳。在进入WGS反应器之前,合成气体通常在工艺气体锅炉或直接骤冷器中冷却,制备出变换的合成气流。在以上实例中,由CH4开始,通过WGS反应器使CO转换成CO2的该后续步骤由以下反应式表示:
CO+2H2+H2O→CO2+3H2
WGS反应通常使用单级或多级来执行,以达到期望的转化程度和转化率。在多级过程中,高温阶段(HTS)在300~450℃且通常在铁类催化剂例如Fe/Cr的存在下操作。在HTS中,最大量的CO被转化,通常多于90%,例如96~98%。随后的阶段可以是高温、中温或低温阶段(HTS、MTS或LTS);使用MTS或LTS,操作温度为约180~280℃,且通常使用担载于氧化铝(Cu/Zn/Al)催化剂上的铜/锌催化剂。在这些后面的阶段中,出口物流中的剩余CO浓度通常低至0.1~0.3%。
得自WGS反应器的气流主要包含氢、氮和二氧化碳。对该气流进行氢富集步骤以便获得富氢的物流。氢富集步骤包括将氢与二氧化碳分离,例如,通过除去后者。任选地,通过变压吸附(pressure swing absorption,PSA)从WGS气流中分离氢,以得到纯氢流和吹扫气(purge gas)(通常包括H2、CH4、CO和CO2)。来自PSA的吹扫气循环至CPO反应器,以使进料100%转化。
在第一方面,本发明的方法用于制备氨。具体而言,本发明的方法用于提高其后是尿素制备的氨制备中的CO2含量的目的。
制备氨需要根据上述步骤(e),即从反应混合物中分离氢来提供作为反应物的氢。优选地,通过从包括氢和二氧化碳的气体混合物中去除CO2来执行从得自水煤气变换反应的反应混合物中分离氢,从而获得富含H2的气体混合物。H2与N2反应,从而形成氨。该反应众所周知,且技术人员熟悉制备方法和实施设备。
在本发明的方法中,优选用于催化部分氧化中的氧以及用于氨形成反应中的氮均得自空气分离单元。这带来的优点是,不需要将氮带入工艺中,且分离的空气成分均以尽可能大的程度进行利用,而不是排出氧(在氨形成反应中使用氮的情况下)或使工艺负担大量的惰性氮(在催化部分氧化中使用空气的情况下)。
在空气分离单元中,氮和氧通常根据下式进行制备:
1,88N2+0.5O2(空气)→1,88N2+0.5O2
空气分离单元(通常称为ASU)为技术人员所知。可以使用采取低温、吸附空气分离、真空变压吸附或膜空气分离的空气分离单元。在优选的实施方式中,使用低温空气分离工序,因为其能够得到高纯的氮和氧。在该工序中,来自大气的大体积空气被压缩、冷却并液化。在压缩后,去除杂质,并且通过蒸馏来分离氮和氧。可以在Nexant PERP08/09S1(2010年2月)报告中找到综合概述。应理解的是,氧和氮也可以在不同的空气分离单元中生成。优选地,用于该工序中的氮和氧来自于同一空气分离单元。
在第二方面,本发明的方法用于制备尿素。具体而言,本发明的方法用于提高现有单元中尿素的产量。更具体地,本发明的方法可用于通过消除任何过量的NH3或任何过量的CO2而提高现有单元中尿素的产量。根据本发明,在尿素形成条件下,氨与前述去除的CO2反应。该反应也是众所周知,且制备方法和设备为技术人员可得。
在另外的方面,本发明提供提高与包括蒸汽重整器的合成气生产***偶联的现有尿素生产中的尿素产量的方法,其通过将CPO反应器以与蒸汽重整器并联的方式加至合成气生产***。
尿素生产设备通常偶联到合成气/氢生产设备和用于合成尿素生产用试剂的氨设备。包括蒸汽重整器的合成气/氢生产设备的问题是随着时间推移,蒸汽重整器的生产能力(capacity)由于高温下的过度利用而降低。蒸汽重整器通常包含填充有催化剂的管,它们长时间经历极高的温度例如高于1000℃。此类管的典型寿命为15-20年,然而在实践中,生产能力的降低更早开始,例如在10年后就开始。同时,SR下游的WGS反应器的生产能力和其他设施像氨合成和尿素合成反应器的生产能力不随时间改变。总的来说,整个尿素生产的生产能力由于合成气/氢生产设施中生产能力的降低而降低。
本发明对与包括蒸汽重整器的氢生产设施偶联的尿素设备中的生产能力下降提供解决方案,该生产能力下降是由于蒸汽重整器的老化引起的。具体而言,本发明提供提高与包括蒸汽重整器(SR)的合成气生产***偶联的现有尿素生产中的尿素产量的方法,其通过以与蒸汽重整器并联的方式将催化部分氧化(CPO)反应器加至合成气生产***。所述改进使得尿素设备的生产能力增加或恢复到初始生产能力,而不需改变WGS反应器或其他节段。而且,尿素设备的生产能力甚至可由于供应到氨和尿素合成段的供料的化学计量比更佳而增加到高于初始生产能力的值。CPO反应器相对紧凑,相对于蒸汽重整器具有更小的占地面积(footprint)和低的投资成本。在优选的实施方式中,本发明涉及提高与包括蒸汽重整器和自热反应器(SR+ATR)的合成气生产***偶联的现有尿素生产中的尿素产量的方法,其通过将CPO反应器以与蒸汽重整器和自热反应器并联的方式加至合成气生产***。
现有的尿素设备优选包括ASU以在本发明的方法中生产并有效使用氮和氧,如上文所述。本说明书中所述的其他优选的实施方式和工艺参数等同地应用于根据本发明的用于提高尿素产量的方法。
可以在升高的温度(通常在150℃和250℃之间)和升高的压力(通常在12和40MPa之间)下在尿素设备的合成区中从氨和二氧化碳生产尿素(NH2CONH2)。在该合成中,可以考虑进行两个连续反应步骤。在第一步骤中,形成氨基甲酸铵,且在下一步骤中,使该氨基甲酸铵脱水以得到尿素。第一步骤(i)放热,而第二步骤可以表示为吸热平衡反应(ii):
(i)2NH3+CO2→H2N–CO–ONH4
(ii)
在典型的尿素制备设备中,上述反应在尿素合成部分进行,从而得到包括尿素的水溶液。在一个或多个后续的浓缩部分,使该溶液浓缩,以最终得到熔融体形式而非溶液形式的尿素。该熔融体进一步进行一个或多个结束步骤,例如造粒(prilling)、颗粒化(granulation)、微粒化(pelletizing)或压实。
通过明智地在另一部分烃类进料的水煤气变换反应之前涉入部分烃类进料的催化部分氧化,特别是结合空气分离单元的使用,本发明在不从得自蒸汽重整(SR)的烟道气回收CO2的尿素生产提高中提供非常经济的使用所获得的气体混合物的成分的方式。来自空气分离单元的过量氮可以在制备设施内使用或售卖给其他使用者。
在本发明中,如上所述,用于生产合成气体(CPO气体和SR气体)的两个工序组合使用。可以仅通过提供两股不同的烃进料流来将两个工序预先分开进行。这些可以仅是具有不同来源和/或组成的不同的烃进料。这些还可以是相同来源和组成的两个烃进料。优选地,提供单一烃进料流,然后将其分成进行CPO的一股物流和进行SR的另一股物流。
两股物流的相对量通常具有1.2至0.8,优选1.1至0.9且最优选1.05至0.95(vol%/vol%)的CPO物流:SR物流比。这些物流比允许实现对于氨合成反应以及进一步在尿素合成反应工艺中所需的有利的化学计量比。如上所述,本发明的一个优点是使用两股物流——CPO物流和SR物流,它们在WGS反应器中被处理,其中优选使两股物流完全进行WGS反应,可以实现用于氨和尿素生产的必需的试剂比。
本发明还将关于具体实施方式并参考某些附图进行描述,但是本发明不限于此,而仅由权利要求限制。权利要求中的附图标记应不被解释为限制范围。所述的附图仅仅是示意性的,而不是限制性的。在附图中,某些元件的尺寸可能放大而没按比例画出,以用于示例说明的目的。当术语“包括、包含、含有”用在本说明书和权利要求书中时,其不排除其他元素或步骤。当使用不定冠词或定冠词来指代单数名词时,例如“一个”或“一种”、“该”,其包括该名词的复数,除非具体指出其他情况。除非另外指明,百分比是体积百分比且比率(例如蒸汽/碳或氧/碳)基于体积%/体积%。
附图详述
在图1中,给出本领域已知的实施方式的典型图示。
进料气流进入脱硫单元。所得物流与蒸汽混合,并供应至蒸汽重整反应器(SR)。
将SR出口处的合成气(SR气)与工艺空气流一起引入到第二重整。合成气混合物进入HTS和LTS WGS反应器段,其中存在于合成气中的CO几乎全部被转化为CO2和另外的H2
所得的变换气体被冷却并引入到CO2去除单元中,并且然后进入甲烷化反应器中,其中残余的CO/CO2转化成CH4。所得的富H2物流,与对先前步骤表现为惰性的N2(其中H2/N2混合物被调整到适当比例,如果需要的话)一起被冷却,压缩并引入到氨合成反应器中。为了在用于尿素生产的NH3和CO2之间拥有较好的化学计量比,烟道气中所包含的CO2被回收,压缩并运送到尿素生产以提高其产量。
在图2中,给出了现有技术的另一个实施方式。与图1相比,这里蒸汽重整器单独产生H2,且下游增加N2
在图3中,呈现了本发明的一个实施方式。进料气流101进入脱硫单元10,然后分成两股物流。第一物流102基于参照图1所述的蒸汽重整去向常规设备。单元20、30和40分别对应于第一重整器、第二重整器和工艺气体锅炉。具有剩余脱硫进料的第二物流去向CPO段,202。物流202与另一含氧物流以及物流203在供给到CPO反应器31中之前在适当的混合器21中混合。在本发明的一个实施方式中,预重整器(未示出)在CPO反应器31的上游。
CPO反应器31可以是有内衬的用于转化烃类(例如天然气、LPG、炼厂气、石脑油和甚至更重的进料)的钢制容器。CPO反应器优选以0.3~1.0范围内的蒸汽与碳比率(S/C)工作,优选在0.4~0.6的范围内。氧与碳的比率(O2/C)优选在0.4~1.0的范围内,更优选在0.5~0.7的范围内。
位于CPO反应器的出口处的CPO气体优选在800℃~1200℃的温度范围内,更优选为900℃~1050℃。物流205在工艺气体锅炉36中通过间接热交换产生蒸汽来冷却(在可替换实施方式中,可以通过直接水骤冷来冷却)。之后将冷却的CPO气体206引入常规的CO WGS反应器50中。WGS反应器50可以为使用中冷器(在可替换实施方式中,可以是等温变换转化器)的一级或两级。WGS反应器50通常使用例如铁类催化剂和/或铜类催化剂。
使所得的变换气体106冷却并引入CO2去除单元60中,在此处所有CO2进入物流110。CO2去除单元60可以是溶剂洗涤体系,例如胺、赛列克索(selexol)或其他已知溶剂,或通过其他技术人员已知的方法。由于增加了CPO段,使CO2的量被最大化以提高尿素产量。
然后,将得自CO2去除的物流107纯化进入甲烷化反应器70中,与物流108混合,在单元80中压缩并运送到氨合成反应器90。
与更常规的蒸汽重整(SR)技术相对,本发明使得可以增加高达10%的源自从本发明工序生产的高压工艺气体混合物的总二氧化碳生成。从高压工艺气流中回收二氧化碳要简单得多,没有主要的严重腐蚀问题并且便宜得多。与烟道气体CO2回收体系相比,功用和能量需求显著更低。
从还生产氧气流203的空气分离单元(ASU)91获得氮气。在另一实施方式中,物流108和203在不同的ASU中生成。如本文所实施的,可以使用用于氨合成的任何方法。用于氨合成的最常见工业方法涉及以1:3的摩尔比形成气态氮与氢的混合物,加少量成分例如CH4和CO2
本发明使得可以提高尿素产量至少10%。
所生产的氨随后与除去的CO2结合以形成物流106,并被送到尿素生产单元。如本文所表现的,可使用任何用于尿素合成的工艺。

Claims (17)

1.一种用于制备尿素的方法,包括一种用于制备氨的方法,以及使氨与在制备氨的方法中去除的CO2在尿素形成条件下反应,其中所述用于制备氨的方法包括以下步骤:
(a)提供烃类材料;
(b)使烃类材料进行催化部分氧化(CPO),以产生包括一氧化碳、氢和二氧化碳的CPO气流;
(c)提供通过烃类进料的蒸汽重整(SR)而获得的SR气流;
(d)使所述CPO气流和所述SR气流进行水煤气变换(WGS)反应,以使一氧化碳与水反应形成包括氢和二氧化碳的WGS气体;
(e)在WGS反应之前或之后,使单独的气流进行混合步骤,以提供混合的WGS气体;
(f)使所述混合的WGS气体进行氢富集步骤,以获得富氢物流;
(g)在氨形成条件下使所述富氢物流与氮反应,以制备氨,
其中步骤(c)的蒸汽重整在包括第一重整器(20)和第二重整器(30)的蒸汽重整***中进行,且
其中蒸汽重整包括将烃类进料与蒸汽混合,将所得的物流提供到第一重整器,其中来自所述第一重整器的出口的合成气与工艺空气流一起引入到第二重整,
所混合的合成气体以范围为1.2~0.8vol%/vol%的CPO物流:SR物流比包括来自催化部分氧化(CPO物流)的合成气体和来自蒸汽重整(SR物流)的合成气体,
通过从包括氢和二氧化碳的气体混合物中去除CO2而从反应混合物中富集氢,以获得去除的CO2和富含H2的气体混合物,
在步骤(b)中,所述催化部分氧化以0.4-0.6范围内的蒸汽与碳的比例(S/C)和0.5-0.7范围内的氧与碳的比率(O/C)工作,且其中所述催化部分氧化反应包括烃向CO和H2的催化部分氧化。
2.根据权利要求1所述的方法,包括混合所述CPO气流和所述SR气流以提供混合气体,并使所述混合气体进行WGS反应的步骤。
3.根据权利要求1所述的方法,其中CPO物流:SR物流比在1.1~0.9vol%/vol%的范围内。
4.根据权利要求1所述的方法,其中CPO物流:SR物流比在1.05~0.95vol%/vol%的范围内。
5.根据权利要求1-4中任一项所述的方法,其中步骤(b)中进行催化部分氧化的烃类材料和步骤(c)中的烃类进料是步骤(a)中提供的相同烃类材料的分开部分。
6.根据权利要求1-4中任一项所述的方法,其中所述催化部分氧化中使用的氧和所述氨形成反应中使用的氮从空气分离单元获得。
7.根据权利要求1-4中任一项所述的方法,其中所述催化部分氧化在包含至少40%氧的含氧气流的影响下进行。
8.根据权利要求7所述的方法,其中所述含氧气流包含至少60%氧。
9.根据权利要求7所述的方法,其中所述含氧气流是具有90%~100%纯度的氧。
10.根据权利要求1所述的方法,包括通过CO和CO2的甲烷化来进一步纯化H2
11.根据权利要求1所述的方法,其中在CO2去除之后使用变压吸附器来纯化H2,以产生纯氢流和吹扫气流,且其中使来自变压吸附器的吹扫气体再循环到CPO反应器中。
12.根据权利要求1-4中任一项所述的方法,其中所述烃类材料选自天然气、液化石油气(LPG)、炼厂气、石脑油及其混合物。
13.根据权利要求1所述的方法,其中:
在步骤(b)中,所述催化部分氧化是空速为100,000至250,000hr-1且催化剂表面温度高于950℃的短接触时间催化部分氧化(SCT-CPO),其中所述催化部分氧化在含氧气流的影响下进行;
在步骤(c)中,CPO气流与SR气流的比例在1.2~0.8vol%/vol%的范围内,其中所述蒸汽重整包括将通过对烃进料脱硫而获得的气流与蒸汽混合,并将所得物流供应至蒸汽重整反应器,其中来自所述蒸汽重整反应器的出口的合成气与工艺空气流一起被引入到第二重整器中;且
在步骤(e)中,所混合的气体以范围为1.2~0.8vol%/vol%的CPO物流:SR物流比包括来自催化部分氧化的合成气体(CPO物流)和来自蒸汽重整的合成气体(SR物流)。
14.根据权利要求1-4中任一项所述的方法,其中得自所述催化部分氧化的未净化气体具有900℃~1200℃的温度。
15.根据权利要求1-4中任一项所述的方法,其中CPO气体首先经历蒸汽发生热交换器且然后进行WGS反应,由此所得的物流与从现有SR单元获得的WGS气流混合。
16.根据权利要求1-4中任一项所述的方法,其中步骤(g)包括将含氮物流(108)引入到所述富氢物流中的步骤。
17.根据权利要求10所述的方法,其中步骤(g)包括将从所述甲烷化步骤中得到的所述富含H2的气体混合物的纯化物流与含氮物流混合,将所述混合物流压缩,并将所述混合物流运送到氨合成反应器的步骤。
CN201610961537.3A 2011-12-19 2012-12-18 用于制备氨和尿素的方法 Active CN107021450B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11194377 2011-12-19
EP11194377.5 2011-12-19
CN201280069097.0A CN104105657B (zh) 2011-12-19 2012-12-18 用于制备氨和尿素的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201280069097.0A Division CN104105657B (zh) 2011-12-19 2012-12-18 用于制备氨和尿素的方法

Publications (2)

Publication Number Publication Date
CN107021450A CN107021450A (zh) 2017-08-08
CN107021450B true CN107021450B (zh) 2019-12-27

Family

ID=47628417

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201280069097.0A Active CN104105657B (zh) 2011-12-19 2012-12-18 用于制备氨和尿素的方法
CN201610961537.3A Active CN107021450B (zh) 2011-12-19 2012-12-18 用于制备氨和尿素的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201280069097.0A Active CN104105657B (zh) 2011-12-19 2012-12-18 用于制备氨和尿素的方法

Country Status (6)

Country Link
US (1) US9340494B2 (zh)
EP (2) EP3378832B1 (zh)
CN (2) CN104105657B (zh)
CA (1) CA2859678C (zh)
EA (1) EA027871B1 (zh)
WO (1) WO2013095130A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2867484B1 (en) 2012-06-27 2020-02-12 Grannus, LLC Polygeneration production of power and fertilizer through emissions capture
EP2805914B1 (en) * 2013-05-23 2017-09-13 Haldor Topsøe A/S A process for co-production of ammonia, urea and methanol
US9643856B2 (en) * 2013-08-07 2017-05-09 Kellogg Brown+Root LLC Methods and systems for making ammonia in a double ammonia converter system
US10106430B2 (en) 2013-12-30 2018-10-23 Saudi Arabian Oil Company Oxycombustion systems and methods with thermally integrated ammonia synthesis
CN103848760B (zh) * 2014-02-19 2016-04-06 山西阳煤丰喜肥业(集团)有限责任公司 利用钢铁联合企业中的煤气生产尿素的工艺
WO2016016253A1 (en) * 2014-07-29 2016-02-04 Eni S.P.A. Integrated short contact time catalytic partial oxidation/gas heated reforming process for the production of synthesis gas
US10150670B2 (en) * 2014-11-25 2018-12-11 Haldor Topsoe A/S Process for generation of synthesis gas by flue gas recycle
GB201501952D0 (en) * 2015-02-05 2015-03-25 Johnson Matthey Plc Process
US20160251228A1 (en) * 2015-02-26 2016-09-01 Khalid T. Alkusayer Ammonia synthesis for fertilizer production
DE102015015524A1 (de) * 2015-12-01 2017-06-01 Linde Aktiengesellschaft Verfahren zur Erzeugung von Harnstoff
MX2018006784A (es) 2015-12-04 2018-11-09 Grannus Llc Produccion de poligeneracion de hidrogeno para usarse en diversos procesos industriales.
DE102015121756A1 (de) 2015-12-14 2017-06-14 Thyssenkrupp Ag Verfahren zur Bereitstellung von Kohlendioxid für die Synthese von Harnstoff
KR102438434B1 (ko) 2016-02-02 2022-09-01 토프쉐 에이/에스 Atr 기반 암모니아 공정 및 플랜트
WO2017134691A1 (en) * 2016-02-03 2017-08-10 Processi Innovativi Srl A carbon neutral process and relating apparatus to produce urea from municipal or industrial wastes with zero emissions
KR20240005207A (ko) 2017-07-13 2024-01-11 토프쉐 에이/에스 암모니아 합성 가스의 제조를 위한 방법 및 촉매
MX2022010244A (es) * 2020-02-28 2022-09-19 Topsoe As Co-produccion de metanol, amoniaco y urea.
EP3916206A1 (en) * 2020-05-26 2021-12-01 Yara International ASA Method and system for operating a gas compressor in an ammonia and urea plant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099445A (zh) * 2008-07-18 2011-06-15 凯洛格·布朗及鲁特有限责任公司 催化部分氧化重整
CN104411625A (zh) * 2012-06-21 2015-03-11 赫多特普索化工设备公司 重整烃的方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725380A (en) 1984-03-02 1988-02-16 Imperial Chemical Industries Plc Producing ammonia synthesis gas
DE69221556T2 (de) * 1991-07-09 1997-12-18 Ici Plc Synthesegaserzeugung
IT1272532B (it) 1993-08-27 1997-06-23 Snam Progetti Processo di ossidazione parziale catalitica del gas naturale per ottenere gas di sintesi e formaldeide
US5496859A (en) 1995-01-28 1996-03-05 Texaco Inc. Gasification process combined with steam methane reforming to produce syngas suitable for methanol production
IT1283585B1 (it) 1996-04-11 1998-04-22 Snam Progetti Apparecchiatura per effettuare reazioni di ossidazione parziale
EP1098840B1 (en) 1998-06-30 2002-08-14 Shell Internationale Researchmaatschappij B.V. Catalytic partial oxidation with two catalytically-active metals
EP0999178B1 (en) * 1998-11-03 2006-07-26 Ammonia Casale S.A. Process for the production of synthesis gas
AU8027000A (en) 1999-10-29 2001-05-14 Exxon Research And Engineering Company Process for catalytic partial oxidation using particulate catalysts
AU1767901A (en) 1999-11-17 2001-05-30 Conoco Inc. Cobalt-based catalysts and process for producing synthesis gas
EP1315670B1 (en) 2000-09-05 2007-07-25 Conocophillips Company Process for producing synthesis gas with lanthanide-promoted rhodium catalysts
US6448441B1 (en) 2001-05-07 2002-09-10 Texaco, Inc. Gasification process for ammonia/urea production
US7932296B2 (en) * 2003-03-16 2011-04-26 Kellogg Brown & Root Llc Catalytic partial oxidation reforming for syngas processing and products made therefrom
WO2006117499A1 (en) * 2005-05-03 2006-11-09 Quartey-Papafio Alexander H Synthesis gas production process
ITMI20052002A1 (it) 2005-10-21 2007-04-22 Eni Spa Dispositivo per miscelare fluidi inserito o combinato ad un reattore
EP2199254A1 (en) * 2008-12-11 2010-06-23 BP p.l.c. Integrated gas refinery
EP2199253A1 (en) * 2008-12-18 2010-06-23 Ammonia Casale S.A. Process and equipment for the production of ammonia make-up syngas with an air separation unit as nitrogen source
US20110085967A1 (en) * 2009-10-14 2011-04-14 Troy Michael Raybold Hydrogen product method and apparatus
IT1398292B1 (it) 2009-12-16 2013-02-22 Eni Spa Processo per la produzione di idrogeno a partire da idrocarburi liquidi, idrocarburi gassosi e/o composti ossigenati anche derivanti da biomasse

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099445A (zh) * 2008-07-18 2011-06-15 凯洛格·布朗及鲁特有限责任公司 催化部分氧化重整
CN104411625A (zh) * 2012-06-21 2015-03-11 赫多特普索化工设备公司 重整烃的方法

Also Published As

Publication number Publication date
EP2794465B1 (en) 2018-07-18
US20140364647A1 (en) 2014-12-11
EP3378832B1 (en) 2024-05-08
CN107021450A (zh) 2017-08-08
CA2859678C (en) 2019-07-30
CN104105657A (zh) 2014-10-15
EA027871B1 (ru) 2017-09-29
US9340494B2 (en) 2016-05-17
CN104105657B (zh) 2017-05-10
CA2859678A1 (en) 2013-06-27
EP3378832A1 (en) 2018-09-26
WO2013095130A1 (en) 2013-06-27
EP2794465A1 (en) 2014-10-29
EA201400726A1 (ru) 2014-11-28

Similar Documents

Publication Publication Date Title
CN107021450B (zh) 用于制备氨和尿素的方法
AU2018308587B2 (en) Method for the preparation of ammonia synthesis gas
US9598290B2 (en) Process for producing ammonia and urea
CN110831893A (zh) 甲醇和氨的联合生产方法
EP2994415B1 (en) A process for producing ammonia synthesis gas with high temperature shift and low steam-to-carbon ratio
CN113795460A (zh) 基于atr的氢气方法和设备
US20160264411A1 (en) Process for producing ammonia synthesis gas and a method for revamping a front-end of an ammonia plant
CN102971251A (zh) 用于生产氨合成气的工艺
AU2018308586A1 (en) Method for the preparation of ammonia synthesis gas
AU774093B2 (en) Natural gas conversion to hydrocarbons and ammonia
EP3083490B1 (en) Process for producing ammonia synthesis gas
EP1441981A1 (en) Method and reactor for reformation of natural gas and simultaneous production of hydrogen
WO2023180114A1 (en) Process for co-producing ammonia and methanol with reduced carbon
ZA200200571B (en) Natural gas conversion to hydrocarbons and ammonia.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant