CN107010943A - 一种x8r电容器介质材料及其制备方法 - Google Patents

一种x8r电容器介质材料及其制备方法 Download PDF

Info

Publication number
CN107010943A
CN107010943A CN201710277642.XA CN201710277642A CN107010943A CN 107010943 A CN107010943 A CN 107010943A CN 201710277642 A CN201710277642 A CN 201710277642A CN 107010943 A CN107010943 A CN 107010943A
Authority
CN
China
Prior art keywords
znnb
dielectric materials
capacitor dielectric
powder
batio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710277642.XA
Other languages
English (en)
Inventor
刘韩星
曾亚兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201710277642.XA priority Critical patent/CN107010943A/zh
Publication of CN107010943A publication Critical patent/CN107010943A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1254Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

本发明公开了一种X8R电容器介质材料及其制备方法,所述X8R电容器介质材料是BaTiO3和ZnNb2O6放入行星球磨机上混合球磨6h,其中,BaTiO3:ZnNb2O6的质量百分数比为94.5wt%‑98wt%:2wt%~5.5wt%,烘干后过40目筛,然后置于马弗炉中以2min/℃的升温速率升温至1100℃保温3h,并自然冷却降温,将冷却后的熔块用研钵磨碎成粉体,再将粉体置于球磨罐中进行二次球磨6h,烘干并造粒,然后干压成型,600℃保温2h排胶得陶瓷片,最后在1150~1250℃的温度下保温3h制得。本发明所述的X8R电容器介质材料介电常数高,宽温稳定性能较好,介电损耗低以及烧结温度低。

Description

一种X8R电容器介质材料及其制备方法
技术领域
本发明涉及一种宽温稳定性能较好且介电损耗较低的电容器介质材料的制备方法。
背景技术
掺杂改性的BaTiO3基X7R多层陶瓷电容器,由于其较高介电性能和良好的宽温稳定性能(-55℃~125℃)已得到了大量的研究与应用。目前,多层陶瓷电容器已经用于对温度特性要求十分苛刻的电子装置中,如防报死***,电控单元,燃料喷射程序控制模块等,这些用于制动控制、驱动控制和引擎控制的电路设备的工作温度范围较宽,约为-20℃~130℃,但是在冬天意味着工作温度可能比-20℃更低,夏天工作温度可能超过 130℃,所以,如此恶劣的应用环境使得X7R无法满足应用需求,各企业和研究学者便将注意力放在了性能更好的X8R(- 55℃~150℃,tanσ25℃≤0.025)多层陶瓷电容器的研究上。
BaTiO3体系由于具有较高的介电常数、较低的介电损耗是适宜于制备大容量MLCC的环保材料。由于BaTiO3自身的居里温度在120℃左右,但在该温度附近的介电常数变化较大,容温变化率较大,不适合实际的应用需求,纯BaTiO3的容温变化率如图1,因此如果要进一步提高介质材料的在使用温度范围内的容温变化率,可以通过两种方案来解决:1、提高介电性能的高温稳定性;2、压低或展宽居里峰,增强温度稳定性。本发明通过掺杂ZnNb2O6来改性BaTiO3的宽温温度稳定性,ZnNb2O6被是一种很有前景的微波介质材料,较优的微波介电性能(介电常数ε=24.46),同时烧结温度也较低(1100℃-1225℃), ZnNb2O6中含有大量的Nb5+能够对BaTiO3起到移峰展宽的作用, Zn2+能起到降低烧结温度的作用,不仅能改善介质材料的温度稳定性,也能降低烧结温度,但目前并没有直接应用在BaTiO3掺杂改性的研究中。因此亟需一种宽温稳定性好、介电损耗低、烧结温度低的电容器介质材料。
发明内容
基于以上现有技术的不足,本发明所解决的技术问题在于提供一种宽温稳定性好、介电损耗低、烧结温度低的X8R电容器介质材料及其制备方法。
为了解决上述技术问题,本发明提供一种X8R电容器介质材料,其特征在于:所述X8R电容器介质材料是BaTiO3和ZnNb2O6放入行星球磨机上混合球磨6h,其中,BaTiO3:ZnNb2O6的质量百分数比为94.5wt%-98wt%:2wt%~5.5wt%,烘干后过40目筛,然后置于马弗炉中以2min/℃的升温速率升温至1100℃保温3h,并自然冷却降温,将冷却后的熔块用研钵磨碎成粉体,再将粉体置于球磨罐中进行二次球磨6h,烘干,1g粉体中加入2滴粘合剂研磨造粒,然后干压成型,600℃保温2h排胶得陶瓷片,最后在 1150~1250℃的温度下保温3h制得X8R电容器介质材料;
所述ZnNb2O6是用ZnO、Nb2O5按照摩尔比1:2称量,放入行星球磨机上混合球磨6h,烘干后过40目筛,然后置于马弗炉中以 2min/℃的升温速率升温至800℃保温2h,自然冷却至常温制得 ZnNb2O6
作为上述技术方案的优选实施方式,本发明实施例提供的X8R 电容器介质材料的制备方法进一步包括下列技术特征的部分或全部:
作为上述技术方案的改进,在本发明的一个实施例中,所述的粘合剂为质量分数为5wt%的聚乙烯醇溶液。
作为上述技术方案的改进,在本发明的一个实施例中,所述 ZnNb2O6粉体占总粉体质量的2wt%。
一种X8R电容器介质材料的制备方法,其特征在于,包括如下步骤:
步骤一、将ZnO、Nb2O5原料按照摩尔比1:2称量,放入行星球磨机上混合球磨6h,烘干后过40目筛,然后置于马弗炉中以 2min/℃的升温速率升温至800℃保温2h,自然冷却至常温后,得到 ZnNb2O6,备用;
步骤二、将BaTiO3和ZnNb2O6放入行星球磨机上混合球磨 6h,其中,BaTiO3:ZnNb2O6的质量百分数比为94.5wt%-98 wt%:2wt%~5.5wt%,烘干后过40目筛,然后置于马弗炉中以 2min/℃的升温速率升温至1100℃保温3h,并自然冷却降温,将冷却后的熔块用研钵磨碎成粉体,再将粉体置于球磨罐中进行二次球磨6h,烘干,1g粉体中加入2滴粘合剂研磨造粒,然后干压成型, 600℃保温2h排胶得陶瓷片,最后在1150~1250℃的温度下保温 3h,并自然冷却降温,既得所述X8R电容器介质材料。
作为上述技术方案的优选实施方式,本发明实施例提供的X8R 电容器介质材料的制备方法进一步包括下列技术特征的部分或全部:
作为上述技术方案的改进,在本发明的一个实施例中,所述的粘合剂为质量分数为5wt%的聚乙烯醇溶液。
作为上述技术方案的改进,在本发明的一个实施例中,所述 ZnNb2O6粉体占总粉体质量的2wt%。
与现有技术相比,本发明的技术方案具有如下有益效果:本发明中的Nb5+能够对BaTiO3起到移峰展宽的作用,Zn2+能起到降低烧结温度的作用,通过Nb5+和Zn2+的复合作用,调整了BaTiO3基介质材料的宽温稳定性、介电损耗和烧结温度。
本发明采用ZnNb2O6掺杂BaTiO3,相较于ZnO和Nb2O5单独掺杂BaTiO3有较低的压峰活性,烧结温度对其影响较小。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下结合优选实施例,详细说明如下。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍。
图1是纯BaTiO3在1kHz下的容温变化率图;
图2是添加ZnNb2O6的BaTiO3基陶瓷在25℃下介电性能图;
图3(a)-(f)是添加质量百分比分别为2wt%、3wt%、4wt%、 4.5wt%、5wt%、5.5wt%的ZnNb2O6的BaTiO3基陶瓷在1kHz下的容温变化率图。
具体实施方式
下面详细说明本发明的具体实施方式,其作为本说明书的一部分,通过实施例来说明本发明的原理,本发明的其他方面、特征及其优点通过该详细说明将会变得一目了然。
将ZnO、Nb2O5按照摩尔比1:2称量配料,放入行星球磨机上混合球磨6h,烘干后过40目筛,然后置于马弗炉中以2min/℃的升温速率升温至800℃保温2h,自然冷却至常温,制得ZnNb2O6粉体;将BaTiO3和ZnNb2O6按照质量百分数比为94.5wt%-98wt%: 2wt%~5.5wt%的比例称量配料,放入行星球磨机上混合球磨6h,烘干后过40目筛,然后置于马弗炉中以2min/℃的升温速率升温至 1100℃保温3h,并自然冷却降温,将冷却后的熔块用研钵磨碎成粉体,再将粉体置于球磨罐中进行二次球磨6h,烘干,并造粒(可采用:烘干后的1g粉体中加入2滴粘合剂),然后干压成型,600℃保温2h排胶得陶瓷片,最后在1150~1250℃的温度下保温3h,自然冷却降温,将烧结好的陶瓷片打磨、抛光,并在陶瓷片的上下表面均匀涂覆银浆,经800℃烧银制备电极,制得X-R型陶瓷电容器。
本发明最终制得的产品的宽温性能较优,在应用温度范围内 (-55℃~150℃)的容温变化率均小于±15%,介电常数ε=2490,介电损耗tanα=0.0068,烧结温度降低了50℃左右,具体的工艺参数和性能参见表1。
表1.实施例1-6的配方及介电性能
根据表1的数据,随着ZnNb2O6掺加量的增加,介电常数逐渐下降,介电损耗先下降后趋于平稳;ZnNb2O6的掺入使烧结温度降低 50℃;附图1为纯BaTiO3的容温变化率,在-55℃至150℃的温度范围内,容温变化率最高为200%,最低为-25%。附图3(a)-(f)为掺入不同量ZnNb2O6的BaTiO3基陶瓷的容温变化率,在-55℃至150℃的温度范围内,图3(a)表示ZnNb2O6掺入量为2wt%的容温变化率示意图,随着温度的变化,容温变化率-4%逐渐增加至10%,当温度升至 140℃时,容温变化率呈下降趋势,因此容温变化率最高为10%,最低为-4%,图3(b)表示ZnNb2O6掺入量为3wt%的容温变化率示意图,容温变化率的变化规律与图3(a)的变化规律相同,容温变化率最高为8%,最低为-5%,图3(c)表示ZnNb2O6掺入量为4wt%的容温变化率示意图,容温变化率的变化规律与图3(a)的变化规律相同,容温变化率最高为5%,最低为-4%,图3(d)表示ZnNb2O6掺入量为 4.5wt%的容温变化率示意图,容温变化率的变化规律大体上与图3(a) 的变化规律相同,但容温变化率整体上的数值更小更平,容温变化率最高为-5%,最低为-13%,图3(e)表示ZnNb2O6掺入量为5wt%的容温变化率示意图,容温变化率最高为5%,最低为-4%,图3(f)表示ZnNb2O6掺入量为5.5wt%的容温变化率示意图,容温变化率最高为5%,最低为-5%,图3(e)和图3(f)的容温变化率的变化规律大体上与图3(a)的变化规律相同,但相较于图3(a)而言图3(e)和图3(f)的容温变化率更为平稳。总的来说,从上述实施例的温度-容温变化率图中可以看出,在BaTiO3中掺加少量的ZnNb2O6可使容温变化率在- 55℃至150℃的温度范围内均符合±15%的范围,由此可见,掺入少量的ZnNb2O6可改善BaTiO3基陶瓷的宽温稳定性。
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本发明的保护范围。

Claims (8)

1.一种X8R电容器介质材料,其特征在于:所述X8R电容器介质材料是BaTiO3和ZnNb2O6放入行星球磨机上混合球磨6h,其中,BaTiO3:ZnNb2O6的质量百分数比为94.5wt%-98wt%:2wt%~5.5wt%,烘干后过40目筛,然后置于马弗炉中以2min/℃的升温速率升温至1100℃保温3h,并自然冷却降温,将冷却后的熔块用研钵磨碎成粉体,再将粉体置于球磨罐中进行二次球磨6h,烘干,研磨造粒,然后干压成型,600℃保温2h排胶得陶瓷片,最后在1150~1250℃的温度下保温3h,制得X8R电容器介质材料;
所述ZnNb2O6是用ZnO、Nb2O5按照摩尔比1:2称量,放入行星球磨机上混合球磨6h,烘干后过40目筛,然后置于马弗炉中以2min/℃的升温速率升温至800℃保温2h,自然冷却至常温制得ZnNb2O6
2.如权利要求1所述的X8R电容器介质材料的制备方法,其特征在于:研磨造粒采用:烘干后的1g粉体中加入2滴粘合剂。
3.如权利要求1所述的X8R电容器介质材料的制备方法,其特征在于:所述的粘合剂为质量分数为5wt%的聚乙烯醇溶液。
4.如权利要求1所述的X8R电容器介质材料,其特征在于:所述ZnNb2O6粉体占总粉体质量的2wt%。
5.一种X8R电容器介质材料的制备方法,其特征在于,包括如下步骤:
步骤一、将ZnO、Nb2O5按照摩尔比1:2称量,放入行星球磨机上混合球磨6h,烘干后过40目筛,然后置于马弗炉中以2min/℃的升温速率升温至800℃保温2h,自然冷却至常温后,得到ZnNb2O6,备用;
步骤二、将BaTiO3和ZnNb2O6放入行星球磨机上混合球磨6h,其中,BaTiO3:ZnNb2O6的质量百分数比为94.5wt%~98wt%:2wt%~5.5wt%,烘干后过40目筛,然后置于马弗炉中以2min/℃的升温速率升温至1100℃保温3h,并自然冷却降温,将冷却后的熔块用研钵磨碎成粉体,再将粉体置于球磨罐中进行二次球磨6h,烘干,研磨造粒,然后干压成型,600℃保温2h排胶得陶瓷片,最后在1150~1250℃的温度下保温3h后自然冷却降温,既得所述X8R电容器介质材料。
6.如权利要求5所述的X8R电容器介质材料的制备方法,其特征在于:研磨造粒采用:烘干后的1g粉体中加入2滴粘合剂。
7.如权利要求5所述的X8R电容器介质材料的制备方法,其特征在于:所述的粘合剂为质量分数为5wt%的聚乙烯醇溶液。
8.如权利要求5所述的X8R电容器介质材料的制备方法,其特征在于:所述步骤二中ZnNb2O6粉体占总粉体质量的2wt%。
CN201710277642.XA 2017-04-25 2017-04-25 一种x8r电容器介质材料及其制备方法 Pending CN107010943A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710277642.XA CN107010943A (zh) 2017-04-25 2017-04-25 一种x8r电容器介质材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710277642.XA CN107010943A (zh) 2017-04-25 2017-04-25 一种x8r电容器介质材料及其制备方法

Publications (1)

Publication Number Publication Date
CN107010943A true CN107010943A (zh) 2017-08-04

Family

ID=59446878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710277642.XA Pending CN107010943A (zh) 2017-04-25 2017-04-25 一种x8r电容器介质材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107010943A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108530059A (zh) * 2018-05-02 2018-09-14 武汉理工大学 一种高击穿强度脉冲功率电容器陶瓷材料及其制备方法
CN115141013A (zh) * 2022-07-28 2022-10-04 电子科技大学 一种BaTiO3基X8R陶瓷基板材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103214239A (zh) * 2013-05-06 2013-07-24 福建火炬电子科技股份有限公司 一种高介电常数x8r型mlcc介质材料

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103214239A (zh) * 2013-05-06 2013-07-24 福建火炬电子科技股份有限公司 一种高介电常数x8r型mlcc介质材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TONG WANG等: "Effects of ZnNb2O6 addition on BaTiO3 ceramics for energy storage", 《MATERIALS SCIENCE AND ENGINEERING B》 *
YAN YAN等: "The dielectric properties and microstructure of BaTiO3 ceramics with ZnOeNb2O5 composite addition", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
YUN YANG等: "Electrical properties and microstructures of (Zn and Nb) co-doped BaTiO3 ceramics prepared by microwave sintering", 《CERAMICS INTERNATIONAL》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108530059A (zh) * 2018-05-02 2018-09-14 武汉理工大学 一种高击穿强度脉冲功率电容器陶瓷材料及其制备方法
CN115141013A (zh) * 2022-07-28 2022-10-04 电子科技大学 一种BaTiO3基X8R陶瓷基板材料及其制备方法

Similar Documents

Publication Publication Date Title
CN107162583B (zh) 基于成分梯度提高钛酸钡基陶瓷介电温度稳定性的方法
CN102653469B (zh) 一种片式多层陶瓷电容电介质瓷浆及电介质制备方法
CN105869887B (zh) 一种x9r高温稳定多层陶瓷电容器瓷浆及其器件制备方法
CN106587987A (zh) C0g微波介质材料及制备方法及陶瓷材料的制备方法
CN108546115A (zh) 一种钛酸钡基低损耗巨介电常数电介质材料及其制备方法
CN103664163B (zh) 一种高介晶界层陶瓷电容器介质及其制备方法
CN109231985A (zh) 一种低损耗x8r型电介质材料的制备方法
CN103787653A (zh) 一种碳改性CaCu3Ti4O12高介电材料的制备方法
CN110015894A (zh) 一种高温下介电稳定的钛酸铋钠基陶瓷及其制备方法和应用
CN103011805B (zh) 一种BaTiO3 基无铅X8R 型陶瓷电容器介质材料及其制备方法
CN107010943A (zh) 一种x8r电容器介质材料及其制备方法
CN111410530A (zh) 一种抗还原BaTiO3基介质陶瓷及其制备方法
CN103524127B (zh) 一种高频晶界层陶瓷电容器介质及其制备方法
CN102432291A (zh) 电容正电压系数反铁电陶瓷材料及其制作方法
CN106587989A (zh) 一种高介电性能晶界层陶瓷电容器介质
CN107459347B (zh) 一种具有高储能密度和高储能效率的无铅陶瓷材料及其制备方法
CN102219506A (zh) 稀土Nd和SiO2掺杂SrTiO3基介质陶瓷及其制备方法
CN109293247A (zh) 一种高电导玻璃粉及其制备方法,及基于其的钛酸钡基玻璃陶瓷及其制备方法
CN108178628A (zh) 一种制备低损耗巨介电常数介质陶瓷材料的方法
CN109437896A (zh) 一种正温度系数x7r陶瓷介质材料及其制备方法
CN108129145A (zh) 一种x7r陶瓷电容器介质材料及其制备方法
CN103214237B (zh) 一种巨介电常数钛酸钡陶瓷的制备方法
CN113860866A (zh) 一种钛酸钡基x8r型多层陶瓷电容器用介质材料及制备方法
CN102674813B (zh) 一种制作固态储能电容器的材料
CN102173785A (zh) 一种宽工作温区热稳定型复合介质陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170804